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Abstract: The hybrid microgrid system is considered one of the best solution methods for many
problems, such as the electricity problem in regions without electricity, to minimize pollution and
the depletion of fossil sources. This study aims to propose and implement a new algorithm called
improved heap-based optimizer (IHBO). The objective of minimizing the microgrid system cost is to
reduce the net present cost while respecting the reliability, power availability, and renewable fraction
factors of the microgrid system. The results show that the PV/diesel/battery hybrid renewable
energy system (HRES) gives the best solution, with a net present cost of MAD 120463, equivalent
to the energy cost of MAD 0.1384/kWh. The reliability is about 3.89%, the renewable fraction is
about 95%, and the power availability is near to 99%. The optimal size considered is represented
as 167.3864 m2 of PV area, which is equivalent to 44.2582 kW and 3.8860 kW of diesel capacity. The
study results show that the proposed optimization algorithm of IHBO is better than the artificial
electric field algorithm, the grey wolf optimizer, Harris hawks optimization, and the original HBO
algorithm. A comparison of the net present cost with a different fuel price is carried out, in which it
is observed that the net present cost is reduced even though its quantity used is mediocre.

Keywords: HRES; microgrid design and sizing; optimization algorithm; HBO algorithm; reliability

1. Introduction

The implementation of hybrid microgrids is necessary due to their advantages. Many
projects and studies have proven their essential ecological and economic effects. The
literature has assessed the microgrid from all directions, including design, operation,
optimization, control, and others. Literature reviews have provided more comprehensive
studies. In [1], a comprehensive study on the optimization of microgrid operations has
been presented. In [2], a review of AC and DC microgrid protection has been presented.
Reference [3] presented a D.C. microgrid protection comprehensive review. Reference [4]
presented a review on optimization and control techniques of the hybrid AC/DC microgrid,
as well as the integration challenges. Reference [5] presented a comprehensive review of
the planning, the operation, and the control of a DC microgrid. Reference [6] presented a
review of microgrid sizing, design, and energy management.

The design and operation optimization of microgrids, considered the main objective
of this work, has been presented in many papers. Reference [7] presented a design and
assessment of the microgrid using a statistical methodology that calculates the effect of
energy reliability and variability on microgrid performance. The paper used a REopt
platform to explore the cost savings and revenue streams. In [8,9], the microgrid design
has been investigated using several algorithms and configurations. In [10], a hybrid
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simulated annealing particle swarm (SAPS) algorithm has been presented to determine the
microgrid optimal size that is subject to the economic and reliable operation constraints
and to subsequently boost power supply security and stability. The paper [11] presented
a new compromise method based on the Six Sigma approach to compare several multi-
objective algorithms. The new approach has been applied to microgrid sizing and design
based on PV, wind turbine, diesel, and battery systems. Reference [12] presented a graph-
theoretic algorithm known as P-graph which allows the identification of optimal and
near-optimal solutions for practical decision making. This study proposed a multi-period P-
graph optimization framework for optimizing photovoltaic-based microgrids with battery-
hydrogen energy storage. The proposed approach is demonstrated through two case
studies. Reference [13] proposed a novel cash-flow model for Li-ion battery storage used
in the energy system; the study considers the Li-ion battery degradation characteristic.

Optimization techniques are more competent in solving non-linear optimization
problems, such as optimal reactive power dispatch (ORPD) [14], economic emission dis-
patch [15], intelligent energy management [16], and parameter estimation of photovoltaic
models [17]. Reference [18] used an experimental validation of a lab-scale microgrid. Ref-
erence [19] concerns the undervoltage in smart distribution systems. The optimal power
flow from attackers has been presented in [20].

The development of tools to design microgrids has become an important research
area; the development of meta-heuristic algorithms begins a trend. In the literature, many
papers presented different algorithms which have been applied to design a hybrid micro-
grid. In [21], an improved two-archive many-objective evolutionary algorithm (TA-MaEA)
based on fuzzy decisions has been used to solve the sizing optimization problem for HRES.
The simulation considered the following objective function: costs, probability of loss of
power supply, pollutant emissions, and power balance. Reference [22] proposes an HRES
of PV and fuel cells with an optimal total annual cost; the study used a new, improved
metaheuristic called the amended water strider algorithm (AWSA). The reliability is con-
sidered, and the sensitivity analysis is applied. Reference [23] presents a microgrid design
composed of PV, wind, an inverter, a rectifier, an electrolyzer, and a fuel cell. The paper
used a modified seagull optimization technique to find the best cost of the optimal sizing.
The proposed algorithm is compared with the original seagull optimization algorithm
(SOA) and modified farmland fertility algorithm (MFFA). Reference [24] presents a new
hybrid algorithm called IWO/BSA to resolve the microgrid design of any configuration,
including PV/wind turbine (WT)/biomass/battery, PV/biomass, PV/diesel/battery, and
WT/diesel/battery systems. The study’s objective is to obtain the best system with optimal
cost, pollution, availability, and reliability. Reference [25] presents an adaptive version of
the marine predators algorithm (AMPA) to design a PV/diesel/battery microgrid system.
The objective function minimizes the annualized cost, respecting the ecologic and reliability
factors of the system. The results are compared with PSO and HOMER. Reference [26] pro-
posed an improved version of the bonobo optimizer (BO) based on the quasi-oppositional
technique to resolve the design problem of the HRES considering the PV, wind turbines,
battery, and diesel. A comparison between the traditional BO, the new QOBO, and other
optimization techniques is investigated to prove the efficacy of QOBO. Reference [27]
proposed a deterministic approach to size a PV, battery, anaerobic digestion, and biogas
power plant to meet a demand load in Kenya. The levelized cost of energy (LCOE) is
considered the objective function, while the energy imbalance between generation and
demand is considered.

The present paper proposes a new tool consisting of platforms using an improved
version of the HBO algorithm called IHBO. The improvement of the HBO algorithm de-
pends on enhancing the performance of the HBO algorithm using the velocity equation
from the particle swarm optimization (PSO) algorithm. This equation improves the conver-
gence capability behavior and enables different diversified solutions in the search space,
which is necessary for such an algorithm and achieves the fitness function’s optimal value.
The proposed platforms design hybrid microgrid systems composed of PV, wind, diesel,
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and batteries. Two configurations are presented, and four algorithms are used in the
comparison. In summary, the paper addresses the following points:

• An improved version of the conventional HBO algorithm is proposed with the aim of
improving its performance;

• The conventional HBO and proposed IHBO algorithms are applied for optimal design
of a hybrid microgrid system including RES (photovoltaic panels, wind turbines, and
batteries) with diesel generators;

• In the designed microgrid, the reliability, availability and the renewable fraction
constraints are considered;

• The proposed IHBO algorithm’s efficiency and performance are evaluated on different
benchmark functions, including the statistical measurement;

• The impact of the fuel price variation on the project investment is analyzed.

The paper is organized as follows: the introduction occurs in Section 1; the modeling
of HRES components is contained in Section 2; Section 3 presents the objective functions
and constraints; Section 4 presents the new, improved algorithm, namely IHBO; the results
and discussion are presented in Section 5; and the conclusion is presented in Section 6.

2. HRES Components Modeling
2.1. PV Panel Modeling

The PV output power is calculated as follows [28,29]:

Ppv = I〈t〉 × ηpvt× Apv (1)

where I represents the irradiation, ηpv represents the efficiency of PV, and Apv is the area of
PV. The efficiency of PV can be calculated based on reference efficiency (ηr), the efficiency
of MPPT (ηt), temperature coefficient (β), ambient temperature (Ta), PV cell reference
temperature (Tr) and nominal operating cell temperature (NOCT), as follows:

ηpv(t) = ηr × ηt ×
[

1− β× (Ta〈t〉 − Tr)− β× I〈t〉 ×
(

NOCT − 20
800

)
× (1− ηr × ηt)

]
(2)

2.2. Wind System Modeling

The wind turbine output power can be calculated following these conditions [30]:

Pwind =


0, v〈t〉 ≤ vci, v〈t〉 ≥ vco

a×V〈t〉3 − b× Pr, vci < v〈t〉 < vr

Pr, vr ≤ v〈t〉 < vco

(3)

where V represents the wind velocity, Pr is rated power, vci is cut-in, vco represents cut-out,
and vr is the rated wind. a and b are constant values that expressed as:

a = Pr/
(
vr

3 − vci
3)

b = vci
3/
(
vr

3 − vci
3) (4)

The rated power of wind turbine can be calculated as:

Pr =
1
2
× ρ× Awind × Cp × vr

3 (5)

where ρ is the air density, Awind represents the swept area of the wind turbine, and Cp is
the maximum power coefficient (from 0.25 to 0.45).
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2.3. Diesel System Modeling

The diesel rated power can be calculated as [31]:

Pdg =
Fdg〈t〉 − Ag × Pdg,out

Bg
(6)

where Fdg represents the fuel consumption, Pdg,out is the output power of the diesel genera-
tor, and Ag and Bg are two constant values represent the fuel linear consumption.

2.4. Battery System Modeling

The battery capacity of the battery can be calculated as [31]:

CBESS =
El × AD

DOD× ηi × ηb
(7)

where El is the load demand, AD is the autonomy of the battery which can lead power to
the load on rainy days, DOD represents the depth of discharge, and ηi and ηb represent
the inverter and battery efficiency, respectively.

3. Objective Function and Constraints
3.1. Net Present Cost

The NPC represents an economic factor, which is considered the objective function
in this study. The goal of the paper is to minimize the NPC, which is the sum of all costs
during the project lifetime. The NPC is calculated as [32,33]:

NPC = C + OM + R + FCdg (8)

where C represent the capital cost, OM is the operation and maintenance costs, R is the
replacement cost, and FCdg is the fuel cost.

3.2. LCOE Index

The LCOE represents the price of energy and is a critical factor which is calculated
as [31]:

LCOE =
NPC× CRF

∑8760
t=1 Ploadt

(9)

where CRF represents the capital recovery factor (obtained by converting the initial cost to
annual capital cost), and Pload represents the power load. The CRF is calculated as:

CRF(ir, N) =
ir × (1 + ir)

N

(1 + ir)
R − 1

(10)

3.3. LPSP Index

The loss of power supply probability (LPSP) is a technical index that ranges from 0 to
1. It is used to indicate the reliability of the microgrid system. The LPSP is calculated as
follows [31]:

LPSP =
∑8760

t=1

(
Pload〈t〉 − Ppv〈t〉 − Pwind〈t〉+ Pdg,out〈t〉+ Ebmin

)
∑8760

t=1 Pload〈t〉
(11)
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3.4. Renewable Energy Index

Renewable energy (RF) is calculated to determine the renewable energy percent that
is penetrated into the microgrid system. The RF is expressed as [31]:

RF =

(
1−

∑8760
t=1 Pdg,out〈t〉
∑8760

t=1 Pre〈t〉

)
× 100 (12)

where Pre represents the sum of renewable energy powers.

3.5. Availability Index

The availability factor (Av) is assumed as an index of the customer’s satisfaction;
it measures the ability of the microgrid to convert the total energy to load charge. The
availability is calculated as [33]:

Av = 1− DMN

∑8760
t=1 Pload〈t〉

(13)

DMN = Pbmin〈t〉 − Pb〈t〉 −
(

Ppv〈t〉+ Pwind〈t〉+ Pdg,out〈t〉 − Pload〈t〉
)
× u〈t〉 (14)

where Pbmin represents the battery min state, Pb represents the battery power, and u is a
fixed value which equals 1 when the load is not satisfied and which equals 0 otherwise.

3.6. Constraints

Constraints are introduced to tune the microgrid system factors and help to improve
the microgrid service quality. In this work, the constraints proposed are:

0 ≤ Apv ≤ Amax
pv

0 ≤ Awind ≤ Amax
wind

0 ≤ Pdg ≤ Pmax
dg

0 ≤ CBESS ≤ Cmax
BESS

LPSP ≤ LPSPmax

RFmin ≤ RF
Avmin ≤ Av

ADmin ≤ AD

(15)

where LPSPmax = 0.05, RFmin = 70%, Avmin = 90%, and ADmin = 1 day. The sizing limit is
different from configuration to the others. All other parameters are shown in Table A1.

4. Proposed Algorithm
4.1. Heap-Based Optimizer(HBO)

The heap-based optimizer algorithm (HBO) is inspired by the social behavior of
human beings [34]. One sort of social interaction between human beings can be observed
in organizations where people in teams are arranged in a hierarchy for achieving a specific
target; this is known as corporate rank hierarchy (CRH). CRH is presented in Figure 1a. The
HBO algorithm is based on CRH in a very distinctive manner. In this regard, the concept
of CRH is to arrange the search agents based on their suitability in this hierarchy using a
heap tree-based data structure to enact the implementation of priority queues. Figure 1b
shows an example of 3 degrees (3-ary) of min-heap. Three types of employees’ behaviors
were used in the HBO algorithm. These types are: (i) the interaction of subordinates with
their immediate head; (ii) the interaction between co-workers; and (iii) the self-contribution
of individuals.
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Figure 1. Partial examples of corporate rank hierarchy (a) and 3-ary min-heap (b).

The mapping of the heap concept is divided into four steps:

A. Modeling the corporate rank hierarchy

Figure 2 displays the procedure of CRH modeling through a heap data structure,
wherein xi is the ith search agent of the population. The curve in the objective space
describes the shape of the supposed objective function, and the search agents are drawn on
the fitness shape according to their convenience.
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B. Mathematically modeling the collaboration with the boss

In a centralized organizational structure, the regulations and policies are enforced
from the upper levels, and subordinates must follow their direct manager.

This can be mathematically described by updating the agent position of each search
as follows:

xk
i (t + 1) = Bk + γλk

∣∣∣Bk − xk
i (t)

∣∣∣ (16)

γ =

∣∣∣∣∣∣2−
(

t mod T
C

)
T

4C

∣∣∣∣∣∣ (17)

λk = (2r− 1) (18)

where t is the current iteration, k is the kth component of a vector, B denotes the parent
node, r is a random number from the range [0, 1], T is the maximum number of iterations,
and C represents a user-defined parameter.
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C. Mathematically modeling the interaction between the colleagues

Colleagues cooperate and perform official tasks. It is assumed in a heap that the nodes
at the same level are colleagues, and each search agent xi updates its location based on its
randomly selected colleague Sr as follows:

xk
i (t + 1) =

 sk
r + γλk

∣∣∣sk
r − xk

i (t)
∣∣∣, f (Sr) < f (xi(t))

xk
i + γλk

∣∣∣sk
r − xk

i (t)
∣∣∣, f (Sr) ≥ f (xi(t))

(19)

D. Self-contribution of an employee to accomplish a task

In this phase, the self-contribution of a worker is mapped as follows:

xk
i (t + 1) = xk

i (t) (20)

The following part explains how exploration can be controlled with this equation.

E. putting all together

The principal challenge is determining the selection probabilities for the three equa-
tions to balance exploration and exploitation. The purpose of the roulette wheel is to
achieve a balance of possibilities. The roulette wheel is divided into three parts: p1, p2, and
p3. The value of p1 makes a population changes their position, and it is calculated from the
following equation:

p1 = 1− t
T

(21)

The selection of p2 is computed from the following equation:

p2 = p1 −
1− p1

2
(22)

Finally, the selection of p3 is calculated as follows:

p3 = p2 −
1− p1

2
= 1 (23)

Accordingly, a general position-updating mechanism of the HBO algorithm is mathe-
matically represented as follows:

xk
i (t + 1) =



xk
i (t), p ≤ p1

Bk + γλk
∣∣∣Bk − xk

i (t)
∣∣∣, p > p1 and p ≤ p2

sk
r + γλk

∣∣∣sk
r − xk

i (t)
∣∣∣, p > p2 and p ≤ p3 and f (Sr) < f (xi(t))

xk
i + γλk

∣∣∣sk
r − xk

i (t)
∣∣∣, p > p2 and p ≤ p3 and f (Sr) ≥ f (xi(t))

(24)

where p is a random number in the range (0, 1).

4.2. Improved Heap-Based Optimizer(IHBO)

In order to enhance the strength of the proposed IHBO algorithm for many high-
dimensional optimization problems, core aspects of one of the most used meta-heuristic
algorithms, PSO, are utilized. The PSO algorithm is introduced by [35]. The velocity equa-
tion from the PSO algorithm is used in the proposed IHBO algorithm. This modification
leads to the improvement of the ability of the global search and enhances the local search
capabilities of the improved algorithm. This core equation is as follows:

Vk
i (t + 1) = w·Vk

i (t) + C1·r1 × (pbest − xk
i (t))+C2·r2 × (gbest − xk

i (t)
)

(25)

xk
i (t + 1) = xk

i (t) + Vk
i (t + 1) (26)
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where C1 = C2 = 0.5, as these values gave the best solution in [36]; w = 0.7; r1 and r2 are a
random number in the range (0, 1); pbest is the best solution of an individual population,
and gbest is the best solution so far.

The flow chart of the proposed IHBO algorithm is shown in Figure 3.
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Performance of the Proposed IHBO Algorithm

The proposed IHBO algorithm’s efficiency and performance are evaluated on different
benchmark functions, including statistical measurements, such as minimum values, mean
values, maximum values, and standard deviation (STD) for best solutions obtained by the
proposed IHBO algorithm and the other recent optimization algorithms. The results obtained
with the proposed IHBO technique is compared with three well-known optimization algorithms,
including the sine cosine algorithm (SCA) [37], salp swarm algorithm (SSA) [38], movable
damped wave algorithm (MDWA) [39], and the original heap-based optimizer (HBO). Table 1
shows the parameters of all compared algorithms (SSA, MDWA, SCA, IHBO, and HBO).
Qualitative metrics on F1, F4, F7, F9, F11, F12, F15, and F18, including 2D views of the functions,
search history, average fitness history, and convergence curve, are presented in Figure 4.
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fitness history, and convergence curve.

Table 1. Parameter settings of the selected techniques.

Algorithms Parameter Settings

Common settings Population size: nPop = 50 Maximum iterations: Max_iter = 1000 Number
of independent runs: 20

SSA c2 = rand; c3 = rand
MDWA amax = 1; amin = 0

SCA A = 2
IHBO sv = 100; degree = 3; w = 0.7; C1 = 0.5; C2 = 0.5; r1 = rand; r2 = rand
HBO sv = 100; degree = 3

Tables 2–4 tabulate the statistical results of the proposed IHBO algorithm and other
well-known algorithms when applied for unimodal benchmark functions, named F1 to F7,
multimodal benchmark functions, named F8 to F13, and composite benchmark functions,
named F14 to F23, respectively. The best values, shown in bold, were achieved with the
proposed IHBO algorithm, as well as MDWA and SCA, but the proposed IHBO technique
achieves the best results for most of the benchmark functions. The convergence curves
of all algorithms for the unimodal benchmark functions are shown in Figure 5 while
Figure 6 shows the boxplots of each algorithm for these unimodal benchmark functions.
Figure 7 displays the convergence characteristics curves of all algorithms for the multi-
modal benchmark functions. The boxplots for each algorithm for these types of benchmark
functions are presented in Figure 8. The convergence curves of all algorithms for the
composite benchmark functions are displayed in Figure 9 while Figure 10 illustrates the
boxplots for each algorithm for these benchmark functions. The proposed algorithm
reached a stable point for all functions. Also, the boxplots of the proposed IHBO technique
are very narrow for most functions compared to the other algorithms.
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Table 2. Results of unimodal benchmark functions.

Function HBO IHBO SCA MDWA SSA

F1

Best 8.81 × 10−65 3.11 × 10−86 5.61 × 10−41 1.34 × 10−44 2.21 × 10−10

Worst 7.28 × 10−59 3.81 × 10−81 1.24 × 10−28 3 × 10−39 8.48 × 10−10

Mean 4 × 10−60 3.72 × 10−82 8.72 × 10−30 3.01 × 10−40 5.63 × 10−10

std 1.63 × 10−59 8.56 × 10−82 2.92 × 10−29 8.19 × 10−40 1.99 × 10−10

F2

Best 1.24 × 10−39 4.59 × 10−53 6.81 × 10−27 1.14 × 10−22 2.69 × 10−06

Worst 4.86 × 10−37 1.2 × 10−49 1.84 × 10−19 2.86 × 10−22 1.54 × 10−05

Mean 5.65 × 10−38 1.99 × 10−50 9.67 × 10−21 1.89 × 10−22 6.7 × 10−06

std 1.12 × 10−37 3.32 × 10−50 4.11 × 10−20 4.64 × 10−23 2.62 × 10−06

F3

Best 2.24 × 10−09 3 × 10−16 1.42 × 10−19 5.59 × 10−22 3.12 × 10−10

Worst 2.29 × 10−05 1.8 × 10−11 4.44 × 10−12 5.44 × 10−13 1.84 × 10−09

Mean 1.78 × 10−06 1.45 × 10−12 2.57 × 10−13 3.52 × 10−14 1.14 × 10−09

std 5.22 × 10−06 4.09 × 10−12 9.86 × 10−13 1.21 × 10−13 4.43 × 10−10

F4

Best 8.73 × 10−14 2.76 × 10−16 1.04 × 10−13 1.67 × 10−15 7.74 × 10−06

Worst 1.94 × 10−10 1.5 × 10−13 3.01 × 10−08 1.72 × 10−11 1.73 × 10−05

Mean 2.54 × 10−11 2.05 × 10−14 2 × 10−09 2.27 × 10−12 1.25 × 10−05

std 4.6 × 10−11 3.92 × 10−14 6.71 × 10−09 4.03 × 10−12 2.36 × 10−06

F5

Best 0.072812 0.010245 6.364761 0.068609 4.046853
Worst 8.553338 4.229361 8.078748 4.466474 600.9202
Mean 1.999632 1.430528 6.967484 0.879403 73.87534

std 2.507143 1.504423 0.50586 1.21085 150.4287

F6

Best 0.00 0.00 7.99 × 10−02 6.83 × 10−06 2.94 × 10−10

Worst 1.23 × 10−32 0.00 5.71 × 10−01 1.11 × 10−04 8.89 × 10−10

Mean 1.23 × 10−33 0.00 3.12 × 10−01 2.93 × 10−05 5.74 × 10−10

std 3.79 × 10−33 0.00 1.35 × 10−01 2.67 × 10−05 1.60 × 10−10

F7

Best 7.43 × 10−04 3.54 × 10−04 5.78 × 10−05 2.88 × 10−04 6.27 × 10−04

Worst 3.22 × 10−03 3.30 × 10−03 1.82 × 10−03 4.33 × 10−03 1.49 × 10−02

Mean 1.99 × 10−03 1.50 × 10−03 6.88 × 10−04 1.46 × 10−03 4.60 × 10−03

std 7.46 × 10−04 7.90 × 10−04 5.20 × 10−04 1.23 × 10−03 3.22 × 10−03

The best values obtained are in bold.

Table 3. Results of multimodal benchmark functions.

Function HBO IHBO SCA MDWA SSA

F8

Best −4189.83 −4189.83 −2724.77 −2752.03 −3262.03
Worst −4189.83 −4189.83 −1976.68 −1566.57 −2423.89
Mean −4189.83 −4189.83 −2297.91 −2116.51 −2851.97

std 1.87 × 10−12 1.87 × 10−12 187.9469 338.86 263.4202

F9

Best 0.00 0.00 0.00 0.00 4.974795
Worst 0.00 0.994959 19.68757 0.00 24.87393
Mean 0.00 0.049748 0.984379 0.00 13.82991

std 0.00 0.22248 4.402275 0.00 5.448648

F10

Best 4.44 × 10−15 4.44 × 10−15 4.44 × 10−15 8.88 × 10−16 6.91 × 10−06

Worst 4.44 × 10−15 4.44 × 10−15 2.43 × 10−12 7.99 × 10−15 2.01 × 10+00

Mean 4.44 × 10−15 4.44 × 10−15 1.26 × 10−13 4.44 × 10−15 1.58 × 10−01

std 0.00 0.00 5.43 × 10−13 1.15 × 10−15 5.07 × 10−01

F11

Best 0.00 0.00 0.00 0.00 7.38 × 10−02

Worst 1.06 × 10−09 2.46 × 10−02 1.31 × 10−01 0.00 6.13 × 10−01

Mean 5.32 × 10−11 2.59 × 10−03 8.38 × 10−03 0.00 2.77 × 10−01

std 2.38 × 10−10 6.16 × 10−03 2.96 × 10−02 0.00 1.51 × 10−01

F12

Best 4.71 × 10−32 4.71 × 10−32 1.85 × 10−02 9.67 × 10−07 3.46 × 10−12

Worst 4.81 × 10−32 4.71 × 10−32 9.96 × 10−02 1.31 × 10−04 3.12 × 10+00

Mean 4.72 × 10−32 4.71 × 10−32 6.12 × 10−02 2.06 × 10−05 3.30 × 10−01

std 2.16 × 10−34 5.62 × 10−48 2.05 × 10−02 3.56 × 10−05 7.87 × 10−01
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Table 3. Cont.

Function HBO IHBO SCA MDWA SSA

F13

Best 1.35 × 10−32 1.35 × 10−32 5.71 × 10−02 2.48 × 10−06 1.51 × 10−11

Worst 1.84 × 10−32 1.35 × 10−32 3.59 × 10−01 3.70 × 10−04 1.10 × 10−02

Mean 1.37 × 10−32 1.35 × 10−32 2.16 × 10−01 4.53 × 10−05 1.65 × 10−03

std 1.10 × 10−33 2.81 × 10−48 7.48 × 10−02 8.66 × 10−05 4.03 × 10−03

The best values obtained are in bold.

Table 4. Results of composite benchmark functions.

Function HBO IHBO SCA MDWA SSA

F14

Best 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01 9.98 × 10−01

Worst 9.98 × 10−01 9.98 × 10−01 2.98 × 10+00 6.90 × 10+00 9.98 × 10−01

Mean 9.98 × 10−01 9.98 × 10−01 1.49 × 10+00 4.12 × 10+00 9.98 × 10−01

std 0.00 0.00 8.81 × 10−01 2.51 × 10+00 1.25 × 10−16

F15

Best 3.15 × 10−04 3.07 × 10−04 3.46 × 10−04 3.10 × 10−04 3.07 × 10−04

Worst 7.59 × 10−04 3.56 × 10−04 1.50 × 10−03 1.66 × 10−03 1.27 × 10−03

Mean 5.77 × 10−04 3.10 × 10−04 8.01 × 10−04 5.92 × 10−04 9.01 × 10−04

std 1.55 × 10−04 1.08 × 10−05 3.78 × 10−04 3.77 × 10−04 3.21 × 10−04

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −1.03159 −1.03163 −1.03163
Mean −1.03163 −1.03163 −1.03161 −1.03163 −1.03163

std 2.28 × 10−16 2.28 × 10−16 1.2 × 10−05 4.18 × 10−07 4.92 × 10−15

F17

Best 0.397887 0.397887 0.397907 0.397887 0.397887
Worst 0.397887 0.397887 0.401488 0.397999 0.397887
Mean 0.397887 0.397887 0.398743 0.397896 0.397887

std 0.00 0.00 0.000945 2.48 × 10−05 1.1 × 10−14

F18

Best 3 3 3 3 3
Worst 3 3 3.000052 3.000228 3
Mean 3 3 3.000007 3.000026 3

std 6.03 × 10−16 1.11 × 10−15 1.2 × 10−05 5.53 × 10−05 5.2 × 10−14

F19

Best −3.86278 −3.86278 −3.86221 −3.86278 −3.86278
Worst −3.86278 −3.86278 −3.85312 −3.86276 −3.86278
Mean −3.86278 −3.86278 −3.85612 −3.86278 −3.86278

std 2.28 × 10−15 2.28 × 10−15 0.003147 5.9 × 10−06 1.22 × 10−14

F20

Best −3.322 −3.322 −3.18286 −3.32199 −3.322
Worst −3.322 −3.322 −1.92056 −3.20299 −3.1952
Mean −3.322 −3.322 −2.9198 −3.21496 −3.22015

std 4.56 × 10−16 5.19 × 10−16 0.37441 0.036596 0.043929

F21

Best −10.1532 −10.1532 −5.86842 −10.1532 −10.1532
Worst −10.1532 −10.1532 −0.49729 −2.63044 −2.63047
Mean −10.1532 −10.1532 −2.22823 −6.14446 −8.6434

std 3.43 × 10−15 3.65 × 10−15 1.885656 3.476701 2.751568

F22

Best −10.4029 −10.4029 −9.10162 −10.4029 −10.4029
Worst −10.4029 −10.4029 −0.90756 −2.75188 −2.7659
Mean −10.4029 −10.4029 −4.00724 −6.90966 −9.37553

std 3.21 × 10−15 2.51 × 10−15 2.111063 3.308424 2.548

F23

Best −10.5364 −10.5364 −7.64188 −10.5363 −10.5364
Worst −10.5364 −10.5364 −3.70826 −2.42157 −2.42734
Mean −10.5364 −10.5364 −5.51857 −6.16316 −9.86292

std 1.78 × 10−15 1.95 × 10−15 0.95525 3.420207 2.120365

The best values obtained are in bold.
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5. Project Implementation Location

The project was implemented in a small region in the west of Morocco called Terfaya,
at coordinating latitude 27.932 and longitude −12.935.

6. Results and Discussion

In this paper, the Terfaya region of Morocco is selected as the case study to implement
an HRES platform based on an improved optimization algorithm called IHBO. The maps
for the project location, the load charge, the annual ambient radiation, temperature, wind
speed, and pressure are presented in Figures 11–15, respectively.
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The proposed HRES includes two renewable sources (PV and wind turbines), a diesel
generator, and a battery storage system. According to the mathematical modeling of the
mentioned systems, the PV output can be affected by the solar radiation data; otherwise,
the output power of the wind is influenced by the wind speed data. The decision variables
in this study are dedicated to the size of the HRES where: x(1) is the PV area (Apv,), x(2)
is the wind swept area (Awind), x(3) represents the battery capacity (CBESS) and x(4) is the
rated power of the diesel generator (Pdg). In this paper, an analysis of fuel price variation is
carried out.

6.1. Optimal HRES Design of PV/Diesel/Battery and PV/Wind/Diesel/Battery
6.1.1. PV/Diesel/Battery HRES

The results of the optimal HRES design for the case study concerning the PV/diesel/
battery HRES are summarized in Table 5. The table presents all used algorithms concerning
the predefined constraints, including the LPSP, RF, and the availability. The algorithms
are arranged as GWO, HBO, AEFA, HHO, and IHBO, with a net present cost of MAD
191,661, MAD 175,321, MAD 169,142, MAD 147,527, and MAD 120,463, respectively. The
optimal system needs MAD 120,463, equivalent to an LCOE of MAD 0.13/kWh. The system
designed respected the constraints very well, with a reliability (LPSP) of 3%, a renewable
fraction of 95%, and power availability of 98%. Table 6 presents the optimal size of each
algorithm; the best solution is then obtained by IHBO, with 1,673,864 m2 and 38,860 kW of
diesel generator capacity. Table 7 presents the convergence time of all simulations.

Table 5. Results of the PV/diesel/battery HRES.

Algorithm NPC (MAD) LCOE (MAD/kWh) LPSP RF (%) Availability (%)

AEFA 169,142 0.1361 0.0360 99.7905 98.5686

GWO 191,661 0.1543 0.0386 99.6961 98.6947

HHO 147,527 0.1187 0.0269 99.7289 98.5725

HBO 175,321 0.1411 0.0383 95.5051 98.9342

IHBO 120,463 0.1384 0.0389 95.3802 98.8665
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Table 6. Sizing results of the PV/diesel/battery HRES.

Algorithm PV (m2) Battery (kWh) Diesel (kW)

AEFA 306.3 4.38 0.65

GWO 334 5.16 1.1

HHO 263.4 1.85 0.65

HBO 170.6 0.63 4

IHBO 167.4 0 3.88

Table 7. Convergence time of algorithms.

Algorithm Convergence Time (s)

AEFA 5421

GWO 5959

HHO 7283

HBO 333

IHBO 14,017

The convergence curve results for all scenarios are presented in Figure 16, in which
the IHBO proves its efficacy to reach the optimal solution.
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6.1.2. PV/Wind/Diesel/Battery HRES

The second configuration used in this paper concerns the PV/wind/diesel/battery
HRES. From Table 8, the results respect the constraints; then, the best algorithms results
converge as HBO, GWO, AEFA, HHO, and IHBO, with an investment cost of MAD 461,233,
MAD 226,559, MAD 221,694, MAD 215,371, and MAD 100,337, respectively. The best cost
needs MAD 100,337, equivalent to MAD 0.08/kWh; in this situation, the LPSP is about 4%,
the renewable fraction is near 100%, and the power availability is more than 99%. Table 9
presents the size results, which show that the best project needs 261.3031 m2 of PV area,
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102.7114 m2 of swept area of the wind turbines, 23.2177 kWh of battery, and 1.0762 kW of
diesel. Table 10 presents the convergence time of all simulations.

Table 8. Results of the PV/wind/diesel/battery HRES.

Algorithm NPC (MAD) LCOE (MAD/kWh) LPSP RF (%) Availability (%)

AEFA 221,694 0.1784 0.0440 99.4362 98.7671

GWO 226,559 0.1823 0.0233 98.6033 99.5884

HHO 215,371 0.1733 0.0076 99.9540 99.6287

HBO 461,233 0.3712 0.0030 99.8870 99.9540

IHBO 165,999 0.1336 0.0445 99.9133 99.0391

Table 9. Sizing results of the PV/wind/diesel/battery HRES.

Algorithm PV (m2) Wind (m2) Battery (kWh) Diesel (kW)

AEFA 92.9 659.8 0.14 4.83

GWO 143.9 174 14.64 7.24

HHO 317.8 232.6 3.59 1.47

HBO 403.9 652.8 2.35 10.6

IHBO 261.3 102.7 23.2 1

Table 10. Convergence time of the algorithms.

Algorithm Convergence Time (s)

AEFA 1176

GWO 1079

HHO 3931

HBO 680

IHBO 4942

Figure 17 presents the convergence curve of the NPC for the PV/wind/diesel/battery
HRES; the curve shows that the IHBO algorithm gives better convergence results.

6.2. Impact of Fuel Price Variation

In the paper, if we suppose that the price of fuel is about MAD 0.41/L, then we can
compare the total investment cost with the previous study that used the actual price, which
is MAD 0.96/L.

From Table 11, it is clearly shown that the NPC of the HRES is reduced strongly
while it is passed from MAD 120,463. Table 12 presents the optimal HRES size using all
optimization algorithms. Figure 18 presents the convergence curve of the NPC for the
PV/diesel/battery HRES, with a fuel price of MAD 0.54/L. This figure shows that the
IHBO algorithm gives the better convergence results.

7. Conclusions

This paper proposed a platform to design an HRES microgrid system based on
two configurations, PV/diesel/battery, and PV/wind/diesel/battery. The platform is
based on modeling, power management, and a cost optimization study using an improved
IHBO algorithm. The proposed IHBO algorithm proved its efficacy in finding the optimal
solution compared with many algorithms, including AEFA, GWO, HHO, and the original
HBO. In the paper, we discussed the case of reducing fuel prices and its impact on the
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investment cost. The results show that the NPC is highly reduced when the use of diesel is
small. Several systems, such as hydrogen storage and biomass systems, can be integrated
in the microgrid. Future work will focus on developing configurations considering the
degradation of battery characteristics.
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Table 11. Results of the PV/diesel/battery HRES with fuel prices.

Algorithm NPC (MAD) LCOE
(MAD/kWh) LPSP RF (%) Availability

(%)

AEFA 166,303 0.1339 0.0324 96.1598 99.4268

GWO 107,532 0.0865 0.0483 97.0846 98.0032

HHO 87,394 0.0703 0.0496 99.6090 96.1823

HBO 125,791 0.1012 0.0296 97.7468 98.8978

IHBO 68,121 0.0548 0.1119 99.9999 88.8055

Table 12. Sizing results of the PV/diesel/battery HRES.

Algorithm PV (m2) Battery (kWh) Diesel (kW)

AEFA 216.7 3.7 6

GWO 163.7 0.4 2.24

HHO 161.8 0.7 0.29

HBO 194 0 2.79

IHBO 124.9 0 0
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Nomenclature

AEFA Artificial electric field algorithm
BESS Battery energy storage system
BO Bonobo optimizer
BSA Backtracking aearch algorithm
COE Cost of energy
DG Diesel generator
GWO Grey wolf optimizer
CRH Corporate rank hierarchy
HBO Heap-based optimizer
HHO Harris hawks optimizer
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HRES Hybrid renewable energy system
IWO Invasive weed optimization
MPPT Maximum power point tracker
NPC Net present cost
PSO Particle swarm optimization
QOBO Quasi-oppositional bonobo optimizer
RESSOC Renewable energy sourcesState of charge
WT Wind turbine
Symbols
Ag, Bg Constants of the linear consumption of the fuel (L/kW)
Apv PV area (m2)
Awind Swept area of the wind turbine (m2)
CBESS Capacity of BESS (kWh)
Cp Maximum power coefficient (%)
Ebmin Min battery energy in discharge (kWh)
El Energy Load (kWh)
FCdg Fuel cost (MAD)
Fdg Fuel consumption (L/h)
Pdg,out Output power of diesel generator (kW)
Pdg Rated power of diesel generator (kW)
Pload Load power (kW)
Ppv Output power of PV (kW)
Pre Output power of renewable energy sources (kW)
Pwind Output wind power (kW)
Ta Ambient temperature (◦C),
Tr Photovoltaic cell reference temperature (◦C).
ir Interest rate (%)
Max_iter Maximum iteration
vci Cut-in speed (m/s)
vco Cut-out speed (m/s)
vr Rated wind speed (m/s)
ηb Efficiency of the battery (%)
ηi Efficiency of the inverter (%)
ηpv Efficiency of the PV (%)
ηr Reference efficiency
ηt Efficiency of the MPPT equipment
STD Standard deviation
Av Availability index (%)
AD Autonomy daily of the battery (day)
ADmin Minimum allowed autonomy daily of the battery (day)
C Capital cost (MAD)
CRF Capital recovery factor
DOD Depth of discharge (%)
I Solar irradiation (kW/m2)
LCOE Levelized cost of energy (MAD/kWh)
LPSP Loss of power supply probability (%)
NOCT Nominal operating cell temperature (◦C),
NPC Net present cost (MAD)
OM Operation and maintenance cost (MAD)
R Replacement cost (MAD)
RF Renewable fraction (%)
v Wind velocity (m/s)
ρ Air density (Kg/m3)
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Appendix A

Table A1. Summary of the HRES parameters.

Symbol Quantity Conversion

N Project lifetime 20 year
ηr Reference efficiency of the PV 25%
ηt Efficiency of MPPT 100%
Tr PV cell reference temperature 25 ◦C
β Temperature coefficient 0.005 ◦C

NOCT Nominal operating cell temperature 47 ◦C
Npv PV system lifetime 20 year
Cp Maximum power coefficient 48%
Vci Cut-in wind speed 2.6 m/s
Vco Cut-out wind speed 25 m/s
Vr Rated wind speed 9.5 m/s

Nwind Wind system lifetime 20 year
p f Fuel price in Morocco MAD 0.96/L

Ndiesel Diesel system lifetime 7 year
DOD Depth of discharge 80%

ηb Battery efficiency 97%
Nbat Battery system lifetime 5 year
ηinv Inverter efficiency 97%
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