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Abstract: Dockless electric scooter (E-scooters) services have emerged in the United States as an
alternative form of micro transit in the past few years. With the increasing popularity of E-scooters,
it is important for cities to manage their usage to create and maintain safe urban environments.
However, E-scooter safety in U.S. urban environments remains unexplored due to the lack of traffic
and crash data related to E-scooters. Our study objective is to better understand E-scooter crashes
from a street network perspective. New parcel level street network data are obtained from Zillow
and curated in Geographic Information System (GIS). We conducted local Moran’s I and independent
Z-test to compare where and how the street network that involves E-scooter crash differs spatially
with traffic incidents. The analysis results show that there is a spatial correlation between E-scooter
crashes and traffic incidents. Nevertheless, E-scooter crashes do not fully replicate characteristics of
traffic incidents. Compared to traffic incidents, E-scooter incidents tend to occur adjacent to traffic
signals and on primary roads.

Keywords: e-scooter safety; micro-mobility; street network

1. Introduction

Shared micro-mobility has rapidly increased in popularity as an alternative trans-
portation mode in the United States [1–3]. Shared micro-mobility is a user-oriented trans-
portation mode that is easily accessible [4]. Types of shared micro-mobility services include
station-based bike-sharing, dockless bike-sharing, and E-scooter sharing. E-scooter services
have emerged as a commonly used micro-mobility mode in cities [2,5–7]. The first E-scooter
sharing program was launched in the U.S. in September 2017 [8]. E-scooter services have
become one of the most popular non-automotive alternatives for people to travel short
distances in urban downtowns and universities [3,9].

COVID-19 has brought new safety concerns and challenges that impact traditional
travel safety measures and practices. For instance, drastic increases of reported COVID-
19 cases caused people to avoid public transportation to prevent viral transmission [10].
The unprecedented threat of COVID-19 stimulated favorable opinion of micro-mobility
usage for traveling during the pandemic [11]. Similarly, Teixeira and Lopes found public
transportation users utilized micro-mobility options to reduce their health risks [12]. Micro-
mobility allows users to access their desired destinations while maintaining social distance
from other users and people. As more users are willing to use micro-mobility, micro-
mobility will gain greater public attention as an alternative transportation mode post-
pandemic. It is imperative for transportation planners and researchers to continuously
and actively scrutinize different aspects of shared micro-mobility programs such as travel
behaviors and public safety.

In contrast to the amount of shared micro-mobility research on travel behaviors, there
is scarce literature on E-scooter safety due to the lack of data. Although researchers have
used survey-based methods [13] and data mining techniques [2] to identify scooter-related
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injuries and crashes, it is difficult for planners to contextualize the safety issues without
sufficient empirical evidence.

Past research regarding E-scooters and dockless mobility has identified the usage and
travel patterns of E-scooter users [5,9,14] and characteristics of E-scooter user injuries [6,15].
Shah et al. proved that E-scooter crash characteristics do not fully replicate the features of
other shared micro-mobility crashes [7]. E-scooter users experience more severe vibration
events than bike riding in the event of a crash [6]. However, these studies did not incor-
porate street networks in their analysis and instead focused on E-scooter ridership rather
than E-scooter associated injuries. Street networks are the imperative urban component
associated with transportation crashes and road safety in cities [16,17]. Understanding
E-scooter associated injuries or crashes from a street network perspective remains a vital
task in order to accurately apprehend the characteristics of E-scooter crashes.

2. Literature Review

Dockless electric scooter (E-scooters) services have emerged in the United States as an
alternative form of micro transit in the past few years as they allow users to travel short
distances quickly [3]. Due to the increasing prominence of micro-mobility in the United
States, E-scooters have emerged as a new micro-mobility mode to fulfill increasing short
distance and last mile travel demand [6]. E-scooter services are a single user-oriented
micro-mobility option that can support and benefit other transportation modes, such as rail
and bus [5]. Other benefits of riding E-scooters include reduced greenhouse gas emissions
and automobile congestion [1]. Nevertheless, there is still no universal consensus on how
to manage E-scooter services in urban environments.

E-scooter services are primarily utilized for recreational purposes [13]. In Austin, TX,
our spatial analysis showed that E-scooter usage is concentrated in the downtown and
university campus areas [9]. In addition, greater accessibility, land-use composition, and
proximity to the city center were positively correlated with higher E-scooter ridership [9].

E-scooter associated injuries are believed to be more serious for users and increase the
burden of emergency rooms and other ER related health services [13]. Another problem
with E-scooter-associated injuries is that E-scooter crashes cause injuries to E-scooter riders
and threaten adjacent street users. Due to the compact size of an E-scooter, E-scooter riders
can freely utilize pedestrian streets, and pavements, which result in tensions with and
risks to pedestrians [5]. When E-scooters were first introduced, the media did not give
full attention to E-scooter-associated injuries. However, reports of E-scooter fatalities and
crashes have increased [1].

In 2018, Austin Public Health conducted research to identify the characteristics of
E-scooter-related injuries. Among 190 surveyed users, nearly half (48%) had injuries. 70%
of injured users had upper limb injuries, such as the shoulder, arm, wrist, and hands, and
55% of injured users had injuries in the lower limbs. One-third of injured riders experienced
bone fractures. The results are plausible because the rate of protective gear usage is low
among E-scooter riders [13].

E-scooter crashes do not equal other transportation mode crashes [7]. In addition,
higher travel speed is likely associated with E-scooter injuries of greater severity [15].
Injuries commonly occurred on the sidewalk or roads, and riders injured on roadways
are twice as likely to sustain severe injury than those injured elsewhere [15]. In addition,
E-scooter injuries in Austin suggest that E-scooter related injuries tend to occur more often
on the weekend than on weekdays and during working hours, between 9 a.m. and 11 a.m.
and from 1 p.m. to 4 p.m. [18].

While there are extensive datasets on motor vehicle crashes in the U.S., there are
no public E-scooter crash datasets as of this study, making it difficult to run in-depth
analytics [2,6,13]. Therefore, the present study’s findings do not provide decisive findings
concerning E-scooter crashes or injuries. However, it suggests a new research framework
to better understand E-scooter injuries and crashes from a street network perspective.
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The present study contributes to filling the research gap of past studies by identify-
ing the characteristics of E-scooter incidents in a street network perspective, confirming
previous E-scooter travel patterns, and understanding the difference between E-scooter
incidents compared to motor vehicle crash incidents.

3. Materials and Methods
3.1. Study Area

The study area is Travis County, Austin, TX, USA. Zillow neighborhood is the ge-
ographical unit used for the analysis. There are 61 Zillow neighborhoods. Zillow is a
well-known real estate market platform in the U.S. that offers sales and listings of prop-
erties with thorough comparisons. Contrary to census boundaries such as Census Tracts,
Zillow publicized their neighborhood boundaries experienced by local housing markets,
enabling a new local perspective analysis. Therefore, Zillow neighborhood boundaries do
not fully agree with Census-based geographies.

By using Zillow-defined neighborhoods, we can distinguish areas with different
characters by their neighborhood names. For instance, North University and UT-Austin
in Figure 1 are two separated neighborhoods in one Census Tract, where the former is
mainly for student housing. The latter is the main campus. Generally, it goes within the
micro-mobility service boundary in the City of Austin (COA). Based on the record from
COA during the study period [19], compared to population density, there is relatively
greater E-scooter ridership in downtown, park, and university neighborhoods than other
service areas.
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3.2. Data

The present study analyzed Austin, Texas, USA. The study period was from September
to November 2018, which consists of a total of 90 days. The research objective was to
understand the E-scooter incident from a street network perspective and its occurrence.

E-scooter crash data were obtained from Patch, an American local news platform with
a spatial location in Austin, TX, from September to November 2018 [20]. Patch obtained
data from Austin–Travis County EMS data. They tracked a total of 166 E-scooter crashes
and confirmed that 60 percent of scooter accidents occurred near downtown areas during
the study period [20]. The dataset offers location information of an accident, including
longitude and latitude, and other information such as contact data, gender of the E-scooter
user, injury description, and hospital information. We web scrawled the E-scooter crash
map publicized by Patch each by each. The scrawled E-scooter crash with individual
longitude and latitude were imported in GIS. We assumed the E-scooter crash outside the
E-scooter service boundary as outliers and removed them. As a result, from 166 E-scooter
crash records from Patch, a total of 156 E-scooter crash records were used.

Besides E-scooter accidents, we collected land use and built environment data, traffic
incidents, and E-scooter ridership data during the same period from the COA website to
examine if E-scooter accidents were observed where traffic accidents frequently happened.
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Land use and built environment are based on Land Use Inventory Map publicized by COA.
It contains land use ratio of single-family, mobile homes, duplexes, apartments, commercial,
mixed-use, office, manufacturing, warehousing, miscellaneous industrial, landfills, parks,
cultural, transportation facilities, water, agricultural, undeveloped, and other zoning codes
by each parcel. Using spatial join and overlay tools in GIS, we categorized the land use
data into seven and summed up for each category per geographic unit of the study: resi-
dential, commercial, office, industrial, public, open space, and transportation related land
use. Residential land use includes single-family, mobile homes, sizeable lot-single family,
three/fourplexes, and apartment/condo. Commercial land use includes commercial and
mixed-use. Office land use only includes office. Industrial land use includes manufacturing,
warehousing, and miscellaneous industrial land use. Public land use includes landfills,
semi-institutional housing (housing for mentally and physically ill), government services,
education, and cemetery. Open space land use includes parks/greenbelts and common
acres. Lastly, transportation related land use includes railroad, aviation, transportation
facilities, and streets and roads.

Traffic incidents data offer address information with longitude and latitude. During
the study period and within the study boundary, 7715 traffic incidents were reported.
E-scooter ridership data is provided for each census tract that falls into the E-scooter
service boundary in the City of Austin. It contains trip duration, distance, start time,
and end time with a designated E-scooter ID. Due to the large set of datasets, we used
Python Pandas to import the data and grouped them daily per tract and hourly per tract.
During the study period, 1,067,298 E-scooter riderships were reported with an average trip
duration of 12 min (11.60) for each E-scooter. An average of 191 traffic incidents and an
average of 11,728 E-scooter riderships were reported daily. For spatial analysis, the tract
was areal interpolated into the Zillow neighborhood boundary in GIS.

Zillow, a real estate platform, provides geographic neighborhood boundary and
street networks with nodes and edges. Zillow street network data include nodes and
edges. There are 11,149 Street Nodes (SN) and 15,179 Street Edges (SE) within the study
area. SN offers motorway junction, traffic signal, turning circle, and loop information.
SE includes the type of street network, number of lanes, max-speed, name, length, and
one-way information. However, several data had most of their information as N/A. For
instance, only 1025 (7%) SE had max-speed information. Similarly, only 1579 SE (10%)
includes several lanes. Therefore, this information was hardly included in the analysis.

Figure 2 demonstrates the open-source data used in the present study. Kernel density
results show that E-scooter incidents show similar greater density in downtown and near
university neighborhoods as traffic incidents. Though kernel density of traffic incidents
tends to follow the main road linked to downtown and university, it was most dense in the
downtown neighborhood.

Now with these data, we were able to fill the gaps of past research. Specifically, the
present study explored E-scooter rider injuries from a street network perspective and
identified characteristics of the street network associated with E-scooter injuries compared
to motor crash ones. Moreover, we verified the past studies’ findings regarding E-scooter
ridership and its travel patterns.

Lastly, a two-sample independent Z-test was conducted to determine the statisti-
cal difference between E-scooter incidents involving street networks and motor crashes
involving ones.

Table 1 summarizes variables used for independent Z-test and descriptive statistics of
each variable. Land use and built environment, residential, commercial, office, industrial,
public, open space, and transportation-related land use were collected. For street edges,
length of the street, dummy of one-way, link, living street, motorway, primary, residential,
secondary, territory, trunk, and unclassified road type were used. The type of street edge
was provided in one single column as a nominal factor. Therefore, this information was
assigned to individual dummies as a numeric variable. Regarding street nodes, a total
number of nodes, such as motorway junction, traffic signal, turning circle, and stop sign,
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was used. Street nodes are a single dot that contains nominal factor which explains what
the node refers to, such as motorway junction, traffic signal, tuning circle, and stop sign.
Each node was reclassified by its types and encoded as numeric value one so that we could
add up the number of motorway junctions, traffic signals, tuning circles, and stop signs
adjacent to crash data points. Therefore, the street nodes variables used in Z-test refer to
the total number of nodes for each type inside the designated distance from the individual
crash points.
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Table 1. Variables and descriptive statistics for Z-test.

Variable Unit Count Mean Std Min Max

Land Use and Built
Environment
(COA, 2012)

Residential ratio 1566 0.432 0.286 0.000 0.916

Commercial ratio 1566 0.080 0.126 0.000 0.668

Office ratio 1566 0.041 0.094 0.000 1.000

Industrial ratio 1566 0.033 0.101 0.000 0.807

Public ratio 1566 0.051 0.115 0.000 0.863

OpenSpace ratio 1566 0.033 0.087 0.000 0.827

Transportation
Related ratio 1566 0.011 0.040 0.000 0.443

Street Edges
(Zillow, 2017)

Length meter 1566 168.636 131.382 3.560 1015.575

One-way dummy * 1566 0.159 0.366 0.000 1.000

Link dummy * 1566 0.028 0.165 0.000 1.000

Living Street dummy * 1566 0.001 0.025 0.000 1.000

Motorway dummy * 1566 0.011 0.104 0.000 1.000

Primary dummy * 1566 0.050 0.218 0.000 1.000

Residential dummy * 1566 0.538 0.499 0.000 1.000

Secondary dummy * 1566 0.205 0.404 0.000 1.000

Territory dummy * 1566 0.000 0.000 0.000 0.000

Trunk dummy * 1566 0.003 0.056 0.000 1.000

Unclassified dummy * 1566 0.010 0.101 0.000 1.000

Street Nodes
(Zillow, 2017)

Total Nodes count 1566 2.334 2.495 0.000 27.000

Motorway
Junction count 1566 0.033 0.179 0.000 1.000

Traffic Signal count 1566 0.131 0.337 0.000 1.000

Turning Circle count 1566 0.050 0.219 0.000 1.000

Stop Sign count 1566 0.003 0.050 0.000 1.000

* Dummy compose 0 and 1.

3.3. Methods

The study phase goes through three stages. First, time series analysis has been
performed to reveal the travel pattern of E-scooter ridership, E-scooter incidents, and
traffic incidents throughout time. Here we also visualized correlation matrix using Python
libraries, including Matplotlib and Seaborn. Matplotlib and Seaborn are effective libraries
for visualizing data. Second, spatial autocorrelation (local Moran’s I) was used to identify
the spatial pattern of abovementioned three major variables.

Local Moran’s I is a tool that determines spatial cluster and outlier with statistical
significance, and it is only reliable when the input feature contains at least 30 features [21].
It is a useful tool to identify hotspots and relevant test statistics used for spatial data
analysis [21–23]. It calculates local Moran’s I value, a z-score, p-value, and a numeric
code refer to a type of cluster with statistical significance. The local Moran’s I follows the
equation below. The high positive local Moran’s I value implies the location has similar
values as its neighbors. On the other hand, high negative local Moran’s I value means the
location is containing distinct values and forms spatial outliers. In transportation accident
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research, local Moran’s I has been used to detect accident hot spots [24–27]. Table 2 discerns
a variable used in the analysis.

Ii =
zi − z

σ2

n

∑
j=1,j 6=i

[
wij(zj−z)

]
where zi: value of variable z at location i,

z: average value of z with the sample number of n,
zj: the value of the variable z with all the other location (where j 6= i),
σ2: the variance of variable z,
wij: a weight which can be defined as the inverse of the distance between location i and j.

Weight can also be determined using a distance band: samples within a distance band
are given the same weight, while those outside the distance band are given the weight
of 0 [22].

Table 2. Variables used for time series analysis and spatial statistics.

Variable Unit Source Year

Crash
E-scooter Count Patch 2018

Traffic Incident Count COA 2018

Ridership E-scooter Count COA 2018

Study Period: September–November 2018

Third, a two-sample independent Z-test was conducted to determine the statistical
difference between E-scooter incidents involving street networks and motor crashes in-
volving ones. Street network refers to surrounding street edges, nodes, land use, and built
environment of each incident. Z-test statically tests means of samples and determines
significant differences between groups. It is best used when there are more than 30 sam-
ples, assuming that when there is a more significant number of samples the samples are
believed to be generally distributed under the central limit theorem. The Z-test equation is
described below.

Z =
XE − XT√ (

SEXE

)2

NE
+

(
SEXT

)2

NT

(1)

where XE: average of E-scooter injury associated street network,

XT : average of traffic incident associated street network,
SEXE : standard error E-scooter injury associated street network,
SEXT : standard error of traffic incident associated street network,
NE: number of E-scooter injury associated street network,
NT : number of traffic incident associated street network.

The unit of analysis for independent Z-test is a street network that only involves either
E-scooter incidents or motor crashes. To add incident information into the individual street
network, we had to use ArcGIS. Data curation goes through three steps: First, individual
crash records were geocoded using ArcMap 10.8. Second, crash records were spatially
merged to the overlapping street network. Third, around a 200 m buffer centered at
each traffic incident location was created to capture the number of adjacent street nodes’
information, built environment, and land use features and measure street edges. A round
buffer enables counting and measuring the density of built environment variables [28]. Two
hundred meters is a two-to-three-minute walking distance and best suited for preventing
the creation of outliers for our analysis.
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In total, 1566 street networks were used. A total of 149 street networks (10%) composed
E-scooter incidents and 1417 street networks (90%) were associated with traffic incidents.
For technological support, Stata 16, ArcMap 10.8, and Tableau Desktop were used.

4. Results
4.1. Time Series Analysis

The descriptive analysis of hourly patterns accumulated for the study period is shown
in Figure 3. It is the result of hourly grouped and summed up E-scooter ridership, incidents,
and traffic incidents using Python Pandas. E-scooter ridership gradually increases from
6 a.m., hits its peak during the afternoon (12 p.m. to 5 p.m.), and incrementally decreases
at nighttime (after 5 p.m.). Traffic incidents gradually accumulated starting from 9 a.m.
and hit their peak at 9 p.m. However, contrary to E-scooter ridership, greater cases of
traffic incidents were reported even in evening hours. E-scooter incidents tend to take
place more during the afternoon or night hours than morning or evening hours. The lowest
E-scooter ridership is reported at 4 a.m. (1482 E-scooter ridership) and at its highest at
12 p.m. (94,552 E-scooter ridership). The ridership at 12 p.m. is nearly 64 times greater
than 4 a.m. The highest E-scooter incident was reported at 5 p.m. (14 E-scooter incidents),
and lowest at 4 a.m. and 6 a.m. (1 E-scooter incident). Traffic incidents occurred the most
at 9 p.m. (1329 traffic incidents) and lowest at 9 a.m. (113 traffic incidents). Traffic incidents
at 9 p.m. are nearly 12 times higher than 12 h before.
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Figure 4 describes the correlation matrix of hourly grouped E-scooter ridership, inci-
dents, and traffic incidents. E-scooter incident shows a moderate positive correlation with
E-scooter ridership and traffic incidents of correlation value of 0.61 and 0.59, respectively.
Traffic incidents showed a weak positive correlation with E-scooter ridership with a cor-
relation value of 0.33. The slope of traffic incidents and E-scooter ridership is lower than
the slope calculated by E-scooter incidents with its ridership and E-scooter incidents with
traffic incidents.
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4.2. Local Moran’s I Result

Figure 5 describes the result of the local Moran’s I analysis. Local Moran’s I determines
where spatial clusters and outliers are located, whether high or low in values. Spatial
clusters include high-high clusters with high-value neighborhoods and low-low clusters
with low-value neighborhoods. Similarly, spatial outliers include high-low and low-high.
The former refers to a low-value neighborhood with a high-value outlier. The latter type
indicates high-value neighborhoods with a low-value outlier [29].
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The result shows that spatial correlation exists between E-scooter ridership, E-scooter
incidents, and traffic incidents by forming high-high and low-low clusters with statistical
significance. Specifically, a high degree of clustering happens near the university neigh-
borhood (West University, North University, UT Austin, Hancock, Upper Boggy Creek)
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and downtown areas (Central East Austin, East Cesar Chavez, Holly). Both northern
and southern neighborhoods show a lower degree of clusters. E-Scooter incidents show a
higher degree of clusters near downtown (Downtown, East Cesar Chavez, Bouldin) and the
university neighborhood (West University, UT Austin), and a lower degree of the cluster
was shown in the northern-central neighborhood. Traffic incidents show a high degree of
the cluster in the downtown neighborhood (East Cesar Chavez) and part of the northern
neighborhood (Gateway). East Cesar Chavez, a downtown neighborhood, has high degrees
of E-scooter ridership, E-scooter incidents, and traffic incidents, which explains the spatial
correlation between variables.

4.3. Independent Z-Test Result

Previous spatial statistics analysis shows spatial similarity and dissimilarity between
E-scooter incidents and traffic incidents in different neighborhoods. We conducted Z-
tests to identify how land use, built environment, and street characteristics correlate with
these incidents. A total of 1566 street networks were used for the Z-tests. Results show
that 149 street networks (10%) were associated with E-scooter incidents and 1417 street
networks (90%) related to traffic incidents. The Z-test result is described in Table 3. The
result shows a statically significant difference between the physical environment of E-
scooter incidents and traffic accidents. Adjacent residential land use (p < 0.01), length of
the street (p < 0.001), primary street type (p < 0.05), residential street type (p < 0.01), the
total number of street nodes (p < 0.001), and a total number of traffic signals (p < 0.001)
were statistically significantly different.

Table 3. Z-test result.

Variable Z p

Land Use and
Built Environment

Residential −2.5842 0.0098 **

Commercial 0.5699 0.5687

Office 0.8311 0.4059

Industrial −0.1635 0.8701

Public 0.6657 0.5056

OpenSpace 0.1480 0.8824

Transportation
Related 0.5043 0.6140

Street Edges

Length −1.60 × 102 0.0000 ***

One-way 1.5768 0.1148

Link 0.0701 0.9441

Living Street 0.0779 0.9379

Motorway 0.0329 0.9737

Primary 2.1168 0.0343 *

Residential −2.9462 0.0032 **

Secondary 0.1256 0.9001

Territory 0.0000 1.0000

Trunk −0.041 0.9673

Unclassified 0.4718 0.6371

Street Nodes

Total Nodes 17.4173 0.0000 ***

Motorway Junction 0.0906 0.9278

Traffic Signal 4.7794 0.0000 ***

Turning Circle −0.3029 0.7620

Stop Sign 0.3117 0.7553

(* p < 0.05, ** p < 0.01, *** p < 0.001).
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5. Discussion

Micro-mobility programs such as E-scooter sharing are becoming increasingly impor-
tant and relevant as alternative transportation modes for short distance travels. As more
users are willing to use micro-mobility during the COVID-19 pandemic and beyond, it is
critical to identify and analyze micro-mobility injuries and crashes to secure safe urban en-
vironments. Understanding E-scooter incidents in a street network perspective helps create
a better understanding of the characteristics of E-scooter incidents and their occurrences.

Our study conducted three different phases. First, the time series analysis of E-
scooter ridership, E-scooter incidents, and traffic incidents was conducted to identify
temporal patterns throughout time. Second, local Moran’s I was used to explore the
spatial correlation between three variables and explain the spatial pattern. Finally, the
present study conducted an independent Z-test to identify the statistical difference between
E-scooter incidents and traffic incidents from a street network perspective.

Key findings include the following. First, E-scooter ridership and traffic incidents
share similar patterns throughout time; however, E-scooter incidents hardly shared similar
patterns, but instead fluctuated. Nevertheless, E-scooter incidents do seem to occur more
when there is more significant E-scooter ridership. Second, local Moran’s I verified past
research findings that E-scooter usage tends to occur more near downtown and university
neighborhoods [9]. These neighborhoods were also found to have a relatively greater
degree of E-scooter incidents than others. Moreover, the same downtown neighborhood
was spatially correlated with the first two variables, which explains the likelihood of more
E-scooter ridership and more E-scooter and traffic incidents. Third, independent Z-test
results showed a statistical difference between E-scooter incidents associated with the street
network, with traffic incidents concerning one. Specifically, residential land use, length of
the street, primary and residential street type, number of street nodes, and traffic signals
were statistically significant. These results demonstrate that characteristics of E-scooter
incidents do not fully correlate with traffic incidents, and surrounding built environments
concerning crashes differs. Therefore, these results should be carefully considered for
devising planning initiatives to create safe urban environments.

6. Conclusions

The present study contributes to shared micro-mobility research in several ways.
First, the study identified and verified previous findings that explain E-scooter ridership.
Second, we used an unexplored dataset and suggested a new research framework for
understanding E-scooter incidents or crashes. Third, this study is one of the first E-scooter
safety studies that identified the difference between E-scooter incidents and general traffic
incidents from the street network perspective. This study can provide planners with the
characteristics of E-scooter incidents and improve understanding of contexts of injuries
and crashes.

As there are statically significant built environment differences between E-scooter
and traffic incidents in general, planners should avoid implementing the same traditional
measures to mitigate E-scooter incidents. Moreover, a measure to control other micro-
mobility incidents, such as bike-sharing, cannot be the ultimate panacea since E-scooter
crashes are not completely interchangeable [7]. Instead, E-scooter incidents should be
individually explored and analyzed. E-scooter injuries seem to commonly occur on side-
walks, neighborhood streets, and major roadways, and the time of use and travel speed
affects the severity of E-scooter injury [15,18]. E-scooter incidents tend to occur near streets
adjacent to traffic signals and in primary street types compared to traffic incidents. In
this case, a system that alerts E-scooter users to pay closer attention near sidewalks and
increased traffic signal visibility may help reduce E-scooter incidents. Clear and visible
symbols or colors on roads may help resolve safety issues. As smart crosswalk and signal
systems are being implemented in cities, a system that identifies and control E-scooter
users automatically and controls the traffic signal duration may prevent potential E-scooter
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incidents. Exploring the application of new innovative technology remains a task for future
smart cities.

For future study, we suggest exploring the factors associated with E-scooters by
surveying E-scooter users. For instance, measuring the effects of wearing protective gear
on the severity of the injury is critical. Because the rate of using helmets is mainly found
to be low for shared micro-mobility users [13,30]. Alternatively, as shared micro-mobility
is more visible with other micro-mobilities in streets, evaluating the present risk factors
will be helpful to apprehend shared micro-mobility safety [30]. However, the lack of traffic
and crash data related to E-scooters is the main obstacle for future E-scooter safety studies.
Perhaps applying crowdsourcing tools to obtain public opinions may help gather local
safety data and bring valuable insight to planning practices [3].

The present study has several limitations. First, there are no general public E-scooter
incidents data. Therefore, the research scope of the present study is limited. Second, land
use and built environment factor gathered using round buffer, so the result may differ
depending on its size. Third, land use data are based on 2012 records and may be outdated.
Fourth, the limitation of using Zillow neighborhood boundaries is that the size is hardly big
enough to cover up the entire City of Austin. Though the boundary falls into shared micro-
mobility service areas, the geographic scope is limited. Future studies should consider
these limitations.
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14. Zou, Z.; Younes, H.; Erdoğan, S.; Wu, J. Exploratory analysis of real-time e-scooter trip data in Washington, D.C. Transp. Res. Rec.
2020, 2674, 285–299. [CrossRef]

15. Cicchino, J.B.; Kulie, P.E.; McCarthy, M.L. Severity of e-scooter rider injuries associated with trip characteristics. J. Saf. Res. 2021,
76, 256–261. [CrossRef]

16. Marshall, W.E.; Garrick, N.W. Does street network design affect traffic safety? Accid. Anal. Prev. 2011, 43, 769–781. [CrossRef]
17. Moeinaddini, M.; Asadi-Shekari, Z.; Zaly Shah, M. The relationship between urban street networks and the number of transport

fatalities at the city level. Saf. Sci. 2014, 62, 114–120. [CrossRef]
18. Dockless Electric Scooter-Related Injuries Study September—November 2018; Austin Public Health: Austin, TX, USA, 2019; pp. 1–15.

Available online: https://www.austintexas.gov/sites/default/files/files/Health/Epidemiology/APH_Dockless_Electric_
Scooter_Study_5-2-19.pdf (accessed on 21 February 2021).

19. Shared Micromobility Vehicle Trips. Open Data. City of Austin Texas n.d. Austin. Available online: https://data.austintexas.
gov/Transportation-and-Mobility/Shared-Micromobility-Vehicle-Trips/7d8e-dm7r (accessed on 7 April 2021).

20. Scooter Crash Analysis Gives Glimpse of Injuries Toll in Austin. Austin, TX Patch, 2019. Available online: https://patch.com/
texas/downtownaustin/scooter-crash-analysis-gives-glimpse-injuries-toll-austin (accessed on 7 April 2021).

21. How Cluster and Outlier Analysis (Anselin Local Moran’s I) works—ArcGIS Pro. Documentation, n.d. Available online: https://
pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm (ac-
cessed on 9 September 2021).

22. Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of
Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [CrossRef]

23. Lu, X.; Wang, M.; Tang, Y. The spatial changes of transportation infrastructure and its threshold effects on urban land use
efficiency: Evidence from China. Land 2021, 10, 346. [CrossRef]

24. Moons, E.; Brijs, T.; Wets, G. Improving Moran’s Index to identify hot spots in traffic safety. In Geocomputation and Urban Planning;
Murgante, B., Borruso, G., Lapucci, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 117–132. [CrossRef]

25. Truong, L.; Somenahalli, S. Using GIS to identify pedestrian-vehicle crash hot spots and unsafe bus stops. JPT 2011, 14,
99–114. [CrossRef]

26. Kuo, P.-F.; Zeng, X.; Lord, D. Guidelines for choosing hot-spot analysis tools based on data characteristics, network restrictions,
and time distribustions. In Proceedings of the Transportation Research Board 91st Annual Meeting, Washington, DC, USA,
22–26 January 2012.

27. Xie, Z.; Yan, J. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: An integrated
approach. J. Transp. Geogr. 2013, 31, 64–71. [CrossRef]

28. Jiao, J.; Moudon, A.V.; Drewnowski, A. Grocery shopping: How individuals and built environments influence choice of travel
mode. Transp. Res. Rec. 2011, 2230, 85–95. [CrossRef]

29. Solgi, E.; Oshvandi, Z. Spatial patterns, hotspot, and risk assessment of heavy metals in different land uses of urban soils (case
study: Malayer city). Hum. Ecol. Risk Assess. 2018, 24, 256–270. [CrossRef]

30. Martin, E.; Cohen, A.; Botha, J.; Shaheen, S. Bikesharing and bicycle safety. MTI Publ. 2016, 1204, 93.

http://doi.org/10.1016/j.jsr.2021.03.005
http://doi.org/10.1016/j.tbs.2020.04.005
http://doi.org/10.3390/healthcare9040448
http://www.ncbi.nlm.nih.gov/pubmed/33920432
http://doi.org/10.3390/su12218829
http://doi.org/10.1016/j.trip.2020.100166
http://doi.org/10.3390/jcm9051569
http://www.ncbi.nlm.nih.gov/pubmed/32455862
http://doi.org/10.1177/0361198120919760
http://doi.org/10.1016/j.jsr.2020.12.016
http://doi.org/10.1016/j.aap.2010.10.024
http://doi.org/10.1016/j.ssci.2013.08.015
https://www.austintexas.gov/sites/default/files/files/Health/Epidemiology/APH_Dockless_Electric_Scooter_Study_5-2-19.pdf
https://www.austintexas.gov/sites/default/files/files/Health/Epidemiology/APH_Dockless_Electric_Scooter_Study_5-2-19.pdf
https://data.austintexas.gov/Transportation-and-Mobility/Shared-Micromobility-Vehicle-Trips/7d8e-dm7r
https://data.austintexas.gov/Transportation-and-Mobility/Shared-Micromobility-Vehicle-Trips/7d8e-dm7r
https://patch.com/texas/downtownaustin/scooter-crash-analysis-gives-glimpse-injuries-toll-austin
https://patch.com/texas/downtownaustin/scooter-crash-analysis-gives-glimpse-injuries-toll-austin
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-cluster-and-outlier-analysis-anselin-local-m.htm
http://doi.org/10.1016/j.scitotenv.2008.03.011
http://doi.org/10.3390/land10040346
http://doi.org/10.1007/978-3-540-89930-3_7
http://doi.org/10.5038/2375-0901.14.1.6
http://doi.org/10.1016/j.jtrangeo.2013.05.009
http://doi.org/10.3141/2230-10
http://doi.org/10.1080/10807039.2017.1377597

	Introduction 
	Literature Review 
	Materials and Methods 
	Study Area 
	Data 
	Methods 

	Results 
	Time Series Analysis 
	Local Moran’s I Result 
	Independent Z-Test Result 

	Discussion 
	Conclusions 
	References

