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Abstract: During the last three decades, Delhi has witnessed extensive and rapid urban expansion in
all directions, especially in the East South East zone. The total built-up area has risen dramatically,
from 195.3 sq. km to 435.1 sq. km, during 1989–2020, which has led to habitat fragmentation,
deforestation, and difficulties in running urban utility services effectively in the new extensions. This
research aimed to simulate urban expansion in Delhi based on various driving factors using a logistic
regression model. The recent urban expansion of Delhi was mapped using LANDSAT images of 1989,
2000, 2010, and 2020. The urban expansion was analyzed using concentric rings to show the urban
expansion intensity in each direction. Nine driving factors were analyzed to detect the influence of
each factor on the urban expansion process. The results revealed that the proximity to urban areas,
proximity to main roads, and proximity to medical facilities were the most significant factors in Delhi
during 1989–2020, where they had the highest regression coefficients: −0.884, −0.475, and −0.377,
respectively. In addition, the predicted pattern of urban expansion was chaotic, scattered, and dense
on the peripheries. This pattern of urban expansion might lead to further losses of natural resources.
The relative operating characteristic method was utilized to assess the accuracy of the simulation, and
the resulting value of 0.96 proved the validity of the simulation. The results of this research will aid
local authorities in recognizing the patterns of future expansion, thus facilitating the implementation
of effective policies to achieve sustainable urban development in Delhi.

Keywords: urban expansion; simulation; driving factors; land use/cover change; urban expansion
intensity; logistic regression; Delhi; India

1. Introduction

Urban expansion models are a useful tool for understanding the dynamics of the
urban environment [1]. Many researchers and scholars have applied various techniques to
predict and simulate urban expansion [2–6]. Simulating future urban expansion helps in the
effective management of land use/cover in cities [5,7]. In this regard, several models have
been developed to simulate future urban expansion in many cities. For instance, Karimi
et al. have used the support vector machine (SVM) technique to predict urban expansion in
Guilford County, NC, USA [2]. Omar et al. have used a hybrid model of Markov chain and
logistic regression to simulate future urban expansion in Aswan city, Egypt [8]. Tayyebi
et al. have utilized a logistic regression model to simulate urban expansion in the Shiraz
Metropolitan Area of Iran [5]. Hossein et al. have employed artificial neural networks
(ANNs) to simulate urban expansion in Mumbai, MH, India [9].
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Recognizing the driving factors of urban expansion is crucial for local authorities and
urban researchers [10]. Therefore, a number of studies have focused on examining and
analyzing the driving factors behind urban expansion in many cities [11–13]. A literature
review has shown that the driving forces of urban expansion vary from city to city [4,14,15]
in both the Global South and the Global North. In the Global South, for instance, Salem
et al. found that the population density and the proximity to main roads are the most
significant factors affecting urban expansion in Cairo, Egypt [16]. Appiah et al. claimed
that the increased demands for new housing and good accessibility to new extensions
are the most important factors in Bosomtwe, Ghana [17]. Batsuuri et al. argued that
urban planning policy is the main factor behind urban expansion in Ulaanbaatar city,
Mongolia [18]. Ju et al. found that the distance to the downtown area is the most influential
factor in Beijing, China [19]. Rahman et al. indicated that population growth and migration
from small cities and rural areas to the city are the main causes of urban expansion in Delhi,
India [20]. Moreover, in the Global North, Gielen et al. indicated that urban density and
proximity to the city center are the most important influential factors for urban expansion
in Valencia, Spain [21]. Lien and Anton found that the distance to roads and flood risk are
the most significant factors in Brussels, Belgium [22]. Tavares et al. stated that municipal
master plans and land regulation are the key driving factors behind urban expansion in
the central region of Portugal [23]. Table 1 provides a summary of the main driving factors
of urban expansion described in previous studies.

Table 1. A summary of the main driving factors of urban expansion in previous studies.

Author Location Region City, Country Main Driving Factors

Salem et al.

Global South

Africa Cairo, Egypt Population Density and
Proximity to Roads

Appiah et al. Africa Bosomtwe,
Ghana

Demands for New Housing
and Accessibility

Batsuuri et al. Asia Ulaanbaatar,
Mongolia Urban Planning Policy

Ju et al. Asia Beijing, China Distance to the
Downtown Area

Rahman et al. Asia Delhi, India
Population Growth and

Migration from Small Cities
and Rural Areas

Gielen et al.

Global North

Europe Valencia, Spain Urban Density and
Proximity to the City Center

Lien and
Anton Europe Brussels,

Belgium
Distance to Roads and

Flood Risk

Tavares et al. Europe Coimbra,
Portugal

Municipal Master Plans and
Land Regulation

Many methods have been employed to investigate the driving factors that cause urban
expansion in cities. Li et al. have used the partial least squares (PLS) method to analyze
the influence of driving factors on urban expansion in Wuhan city, China [24]. Kindu et al.
have used a combination of descriptive statistics, GIS-based processing, and regression
analyses to investigate the driving factors of urban land use change in Ethiopia, Africa.
Shu et al. have used logistic regression analysis to investigate the factors that cause urban
expansion in Taicang City, China [3,4].

Alsharif and Pradhan argue that the logistic regression model (LRM) is an appropriate
method for analyzing the driving forces of urban expansion in developing countries, where
urban expansion is strongly affected by socio-economic factors [25]. In the LRM, the effect
of each driving factor on urban expansion can be easily measured [4,26]. Meanwhile, in
some other models, such as ANN models, the contribution of each factor in the urban
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expansion process cannot be explicitly identified; hence, less important variables may be
included in the model [12]. In addition, the result of the analysis of the LRM can be used
for the spatial simulation of urban expansion [27,28]. Therefore, this study has utilized the
LRM to examine the driving factors causing urban expansion in Delhi and simulate the
future urban expansion based on the outputs of the model.

Delhi is the capital of India and the second-largest metropolitan city after Mumbai
(Census 2011). During recent decades, Delhi has witnessed exponential growth. The
built-up area of Delhi has expanded steadily from 195.30 km2 in 1989 to 435.12 km2 in
2020 [29,30]. This urban growth has led to environmental degradation, particularly in the
last few years [31–33]. Many studies have discussed the land use/cover change in Delhi
and its impacts [34–36]. However, so far, little attention has been paid to analyzing the
pattern of urban expansion in Delhi and the driving forces that influence this expansion [37].
Therefore, this research seeks to analyze the driving factors that influence urban expansion
in Delhi and predict the pattern of urban expansion. The novelty of the work lies in
analyzing the pattern of urban expansion in Delhi during the last three decades and its
intensity, trends, and driving factors; we then simulate the future urban expansion based
on the results of these analyses using a logistic regression model.

The structure of this research includes four sections. The first section covers the
introduction and the literature review. The second section presents the study area, the
data used in the research, and the methodology. The third section includes the findings
of the research and a discussion of the results. The fourth and last section provides the
conclusions of the research.

2. Materials and Methods
2.1. Study Area

The study area is the National Capital Territory (NCT) of Delhi (hereinafter referred
to as Delhi), the capital city of India and one of its megacities. Delhi occupies an area
of approx. 1500 km2 and is located at 28.33◦ to 29.0◦ N latitude and 76.83◦ to 77.33◦ E
longitude. The total population of Delhi exceeds 11 million inhabitants, and the annual
growth rate was recorded as 3.9 percent during 1991–2001, which is twice the national
average [38]. The rapid urban expansion in Delhi has led to the loss of large areas of arable
land, which has had a negative impact on urban sustainability [39,40]. Therefore, the issue
of urban expansion is considered one of the most urgent issues in Delhi. Figure 1 shows
the study area and its location within India.

2.2. Dataset

The combination of remote sensing (RS) data and geographical information systems
(GIS) has been used to investigate LULC change [41,42]. For this research, we collected
data from different sources. First, Landsat images for 1989, 2000, 2010, and 2020 were
acquired free of charge from the USGS Earth Explorer website and utilized in detecting the
spatio-temporal changes in Delhi. Second, shapefiles of roads, water bodies, and railways
were derived from the OpenStreetMap database. In addition to 4 shapefiles of tourist
places, restricted areas, industrial areas, and higher education institutes were derived from
Google Earth. Table 2 provides detailed information about the data sources.

Table 2. Data sources.

Data Source Date of Acquisition

Landsat-5
USGS Earth Explorer
website (30 m Res.)

1989/12/12, 1989/12/05
Landsat-7 2000/04/06, 2000/03/14
Landsat-5 2010/12/22, 2010/11/29
Landsat-8 2020/05/07, 2020/05/16

Shapefiles of Roads, Water
Bodies, Railways, etc.

OpenStreetMap and Google
Earth Pro 2020/06/09
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Figure 1. Location map of the study area (the NCT of Delhi) with reference to India. The map is
composed of false-color composite bands.

2.3. Methodology

This research utilized a quantitative method to analyze the collected data. Remote
sensing and GIS techniques were used during the pre-processing stage. The detection
of land use/cover change was conducted using the maximum likelihood supervised
classification (MLSC) method. One hundred and fifty samples were selected in each
Landsat image to apply MLSC using the Terrset software. Four land use/cover (LUC)
types were detected during the classification process, which were:

(1) Built-up;
(2) Vegetation;
(3) Water bodies;
(4) Others.

To assess the classification accuracy, 200 random points were selected and compared
to the corresponding location in Google Earth. For each of the observation years (1989,
2000, 2010, and 2020), the overall accuracy was calculated, which ranged from 85 percent
to 91 percent, while the kappa coefficient ranged from 0.80 to 0.90, which indicates a high
degree of accuracy [43,44].

In addition, the built-up features, which included industrial complexes, suburban
areas, informal settlements, etc., were extracted in order to examine the urban expansion
and later to calibrate the model. The urban expansion intensity (Iue) was calculated to
analyze the intensity of urbanization for each of the spatial units in Delhi NCT. The urban
expansion intensity was computed according to the following formula:

Iue =
∆Ui × 100
TLA× ∆t

(1)

where Iue is urban expansion intensity, ∆Ui is urban expansion during 1989–2020, TLA is
the total area of the metropolitan city of Delhi, and ∆t is 31 years (the period 1989–2020).

In order to identify the spatial lateral variation in the urban expansion rate during
1989–2020, the study area was split into eight regions at an interval of 45 degrees, taking
into account the centroid of the study area [45]. Then, every region was split into concentric
rings of a 2 km radius from the city’s center. These rings helped to visualize the growth of
the city at different distances from the city’s center.
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Twelve independent factors were derived based on previous literature and discussion
with experts to be included in the model [4,14,15,37,40,46,47]. Then, two factors (economic
activities and urban master plans) were excluded from the study due to a lack of data for
the study area. In addition, the slope factor was eliminated from the model because of the
low value of R2 statistics with this factor. Finally, the total number of independent factors
(variables) decreased from twelve to nine factors. These driving factors were proximity to
water bodies, proximity to the urban area, proximity to tourist places (most popular tourist
sites), proximity to the restricted area (airport zone), proximity to railways, proximity to
medical facilities (hospitals), proximity to major roads, proximity to industrial zones, and
proximity to higher education institutes. The influence of these nine factors was examined
using a logistic regression model (LRM).

To carry out the LRM, a map of urban expansion during the period 1989–2020 was
utilized as a dependent variable, which are dichotomous in nature [19,28]. The previous
map had two potential land use/cover types: urban expansion where y = 1 if urban
expansion exists, and y = 0 if not built-up and urban expansion does not exist [4,8]. The
nine driving factors were utilized as independent variables, which are continuous in nature.
The Distance command in the Terrset software was used to estimate the influence of the
proximity to each factor on the urban expansion process. Each factor was assigned a value
ranging from 0 to 1, indicating the weight of the factor’s effect on urban expansion. Table 3
shows the dependent and independent variables in the LRM.

Table 3. The dependent and independent variables in the LRM.

Factors Name

Dependent (Y) 0: No Urban Expansion; 1: Urban Expansion
Independent (X1) Proximity to Water Bodies
Independent (X2) Proximity to Urban Areas
Independent (X3) Proximity to Tourist Places
Independent (X4) Proximity to the Restricted Area
Independent (X5) Proximity to Railways
Independent (X6) Proximity to Medical Facilities
Independent (X7) Proximity to Main Roads
Independent (X8) Proximity to Industrial Areas
Independent (X9) Proximity to Higher Education Institutes

The probability of future urban expansion follows the logistic regression curve and
can be computed using Equation (2):

P = (Y = 1 |X ) =
exp ∑k

k =0 bk Xik

1 + exp ∑k
k =0 bk Xik

(2)

where P is the probability of urban expansion; X is the independent factors, x (0~k), which
might cause expansion; and b is the estimated parameters, b0~k, which are the coefficients
of driving factors. Figure 2 shows the methodological flow chart of the study.
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Figure 2. Methodological flow chart of the study.

3. Results and Discussion
3.1. Land Use/Cover Dynamics

The land use/cover (LUC) maps were derived from multi-temporal satellite images
and then analyzed to detect urban expansion in Delhi from 1989 to 2020. Table 4 shows the
characteristics and description of LULC feature classes.

Table 4. Characteristics and description of LULC feature classes.

Feature Class Description

Built-Up All Man-Made Structures Such as Residential Zones, Commercial Areas, etc.
Vegetation Agricultural Lands, Arable Land, Cropland, Parks, etc.

Water Bodies All Water Bodies Such as Rivers, Lakes, Ponds, etc.
Others Fallow Land and Degraded Areas, Vacant Spaces, etc.

The results revealed that the built-up area had risen dramatically from 195.30 sq. km
to 435.12 sq. km during 1989–2020. The periodic observation shows that the built-up
area was 195.30 sq. km in 1989, increased to 268.11 sq. km (17.73%) in 2000 and then to
351.21 sq. km in 2010, and finally increased to 435.12 sq. km in 2020, as shown in Table 5.

The vegetation area has slightly decreased from 130.56 sq. km in 1989 to 127.03 sq. km
in 2000, then to 120.92 sq. km in 2010, and finally to 111.39 sq. km in 2020. Moreover, the
water bodies have slightly decreased from 14.34 sq. km in 1989 to 13.84 sq. km in 2000,
then to 13.59 sq. km in 2010, then increased slightly in 2020 to 14.11 sq. km. The LUC
category of “others” decreased from 1171.90 sq. km in 1989 to 1103.12 sq. km in 2000, then
to 1026.37 sq. km in 2010, and finally to 951.48 sq. km in 2020. Figures 3 and 4 show the
LUC changes between 1989 and 2020.
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Table 5. Land use/cover dynamics from 1989 to 2020.

LUC Change
Category

Area of 1989 Area of 2000 Area of 2010 Area of 2020 Change (%)

sq. km % sq. km (%) sq. km (%) sq. km (%) 89/00 00/10 10/20

Built-Up 195.30 12.92 268.11 17.73 351.21 23.23 435.12 28.78 72.81 4.82 5.55
Veg. 130.56 8.63 127.03 8.40 120.92 8.00 111.39 7.37 −3.53 −0.23 −0.63

Water 14.34 0.95 13.84 0.92 13.59 0.90 14.11 0.93 −0.50 −0.03 −0.03
Others 1171.90 77.50 1103.12 72.95 1026.37 67.88 951.48 62.92 −68.78 −4.55 −4.95

Source: Authors.

Figure 3. The chord graph for the percentage of LUC changes between 1989 and 2020.

3.2. The Trend of Urban Expansion in Delhi from 1989 to 2020

To visualize the distance and direction of urban expansion in Delhi from 1989 to 2020,
the built-up features were extracted from the LULC maps and represented separately.
Multiple ring buffers were used to show the change in the built-up area at different
distances. These rings represented the variation in the built-up area from the center of
Delhi to the periphery of the city in order to represent the trend of urban expansion, as
shown in Figure 5.

The analysis showed that the buffer zones within 22 km of the center of Delhi contin-
ued to expand at a high rate. However, the outlying zones between 8 and 14 km from the
city center were considered the densest zones of urban expansion. In addition, there was
an inverse relationship between urban expansion and the distance from the center of Delhi
within the range of 2 km to 12 km, as shown in Table 6.
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Table 6. The trend of urban expansion according to the distance from the center of Delhi.

Distance from the
Center of Delhi (km)

% Built-Up Area

1989 2000 2010 2020

<2 1.43 2.20 2.35 1.85
4 4.62 5.44 4.58 4.26
6 6.98 8.46 8.12 8.11
8 12.23 10.57 11.52 10.44
10 10.88 10.69 9.16 9.67
12 9.46 9.75 11.78 11.20
14 9.01 8.26 9.17 7.75
16 6.27 6.85 8.24 8.60
18 9.86 8.44 8.98 9.51
20 10.94 8.51 7.75 7.45
22 8.50 7.25 6.58 6.46
24 4.36 4.92 4.10 4.51
26 4.11 3.94 3.17 3.68
28 0.94 2.40 1.97 2.84
30 0.86 1.04 1.07 1.79
32 0.95 1.26 1.43 1.70
34 0.02 0.01 0.02 0.16
36 0.00 0.02 0.02 0.02

Source: Authors.

Figure 4. Land use/cover dynamics from 1989 to 2020.



Sustainability 2021, 13, 10805 9 of 17

Figure 5. The trend of urban expansion in Delhi from 1989 to 2020.

During the period from 1989 to 2020, most of the urban expansion was observed in
the East South East (ESE) direction, followed by South South West (SSW) and West South
West (WSW). The high rate of urban expansion in such zones is most probably due to the
good urban infrastructure, such as roads, medical facilities, educational centers, etc. Table 7
shows the urban expansion intensity in each direction.

Table 7. Urban expansion intensity in each direction.

Direction 2020 2010 2000 1989 Urban Expansion Intensity (%)

North North West 16.40 14.05 4.75 3.91 0.0267
North North East 21.76 17.56 12.41 9.77 0.0256
East North East 56.57 52.68 38.07 27.34 0.0623
East South East 160.99 140.48 136.74 97.65 0.1351

South South East 65.27 52.68 48.26 37.11 0.0601
South South West 56.57 42.15 17.96 11.72 0.0957
West South West 39.16 21.07 7.24 5.86 0.0710
West North West 18.40 10.54 2.68 1.95 0.0351

Source: Computed by the authors.

It is worth mentioning that the urban complexes situated adjacent to the study area
(NCT area of Delhi), such as Ghaziabad, Noida, and Gurugram, which are part of the
broader NCR region, are also affected by massive urban expansion.



Sustainability 2021, 13, 10805 10 of 17

The nature of urban expansion in Delhi is noticeably different from that of developed
countries; in Delhi, the pattern of urban expansion is chaotic and dense, particularly in the
peripheral villages. This pattern has resulted in habitat fragmentation, deforestation, and
difficulties in running urban utility services effectively in the new extensions. In addition,
the rapid urban expansion has led the surrounding villages on the peripheries to become
incorporated into the urban boundary of Delhi. Currently, these villages are known as
urban villages and are characterized by informal housing, high population density, and a
lack of proper infrastructure. Furthermore, the urban expansion was mostly clustered in
Delhi’s eastern and central regions, close to the Yamuna River.

3.3. Lack of Spatial Planning in Delhi

Spatial planning is crucial for managing urban expansion, especially in developing
countries [48,49]. Watson argued that urban planning in Indian megacities gave little
attention to the spatial planning approach [50]. Due to poor spatial planning, various forms
of chaotic expansion have occurred in Delhi during the last decades [40,51,52]. Nallathiga
et al. and Sharma stated that poor spatial planning in Delhi has led to unplanned and
haphazard urban expansion, particularly in the peripheries [29,52]. Therefore, the factor
of spatial planning is considered one of the main factors that influence urban expansion
in Delhi. Jain et al. argued that managing the urban expansion in Delhi is still possible
if the government shifted from land use based master planning towards strategic spatial
planning [53].

3.4. The Logistic Regression Analysis

The urban expansion between 1989 and 2020 was extracted in a map to represent the
dependent variable in the logistic regression analysis. This map had two values: y = 1 if
urban expansion was present and y = 0 if urban expansion was not present. Figure 6 shows
urban expansion in Delhi from 1989 to 2020.

Figure 6. Urban expansion in Delhi from 1989 to 2020.
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Nine independent factors were examined in the LRM to estimate the influence of each
factor on urban expansion. The coefficients of independent factors clarified the nature of
the correlation between urban expansion and the driving factors in Delhi during 1989–
2020. A higher coefficient value for independent factors refers to a greater probability
of urban expansion, while the odds ratio refers to the percentage of success versus the
percentage of failure for the independent factor [54,55]. Table 8 shows the values of the
nine independent factors.

Table 8. The values of the nine independent factors.

Variable Coefficient Odds Ratio (OR)

1 Proximity to Water Bodies 0.095 0.780
2 Proximity to Urban Area 0.884 0.230
3 Proximity to Tourist Places 0.042 1.000
4 Proximity to Restricted Area 0.037 1.000
5 Proximity to Railways 0.109 0.850
6 Proximity to Medical Facilities 0.377 0.540
7 Proximity to Main Roads 0.475 0.360
8 Proximity to Industrial Areas 0.056 1.000
9 Proximity to Higher Education Institutes 0.027 1.000

Source: Computed by the authors.

The findings of the LRM revealed that the nine independent factors had varying
degrees of influence on urban expansion. The odds ratio (OR) for the factor of proximity
to water bodies was 0.780, which means that the predicted expansion in an area close to
a water body was estimated to be 1.28 times greater than the predicted expansion in an
area far from a water body. The OR of urban expansion around existing urban centers was
0.230, which means that the predicted expansion in an area near to an existing urban center
was estimated to be 4.35 times greater than the predicted expansion in an area far from an
existing urban center.

The OR was 1 for proximity to tourist places, proximity to a restricted area, proximity
to industrial areas, and proximity to higher education institutes, which means that there
was no impact of these factors on the urban expansion process within the study area. The
OR for distance to railways was 0.850, which means that the predicted urban expansion
in an area close to a railway was estimated to be 1.18 times greater than the predicted
urban expansion in an area further away from a railway. The OR for proximity to medical
facilities was 0.850, which means that the predicted expansion in an area close to medical
facilities was estimated to be 1.85 times greater than the predicted expansion in an area far
from medical facilities.

The OR for proximity to main roads was 0.360, which means that the predicted
expansion in an area near to main roads was expected to be 2.77 times greater than the
predicted urban expansion in an area far from main roads. Figure 7 shows the raster layers
of independent factors (driving factors) in the LRM.

The strong influence of the factor of proximity to main roads on urban expansion in
Delhi was similar to its influence in other cities, such as Cairo in Egypt and Atlanta in
Georgia [56–58]. This result is also in line with previous results presented by Sharma in
2013, who found that the ribbon growth pattern along roads was the dominant pattern of
urban expansion when monitoring the urban dynamics in Delhi from 1998 to 2011 [26].

On the other hand, many researchers have claimed that the population growth rate
is the most influential factor on urban expansion in all Indian metropolitan cities [30,32].
Therefore, we recommend analyzing the role of the population factor in future research.
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Figure 7. Raster layers of independent factors (driving factors) in the LRM.

3.5. Simulation of Future Urban Expansion

The simulation of future urban expansion was performed based on the LRM using
the following equation:

P = (Y = 1|X1, X2, . . . , XK) =
1

1 + e − (α+ ∑ ki = 1 βiXi)
(3)

where P = (Y = 1|X1, X2, . . . , XK) is the possibility of urban expansion in a cell, (X1, X2,
. . . , Xk), i.e., the likelihood of a cell being urban; Xi is a driving factor of urban expansion,
and βi is the coefficient of the driving factor.

The simulation of future urban expansion in Delhi was represented by color classi-
fication, as shown in Figure 8. The lighter white color indicates a higher probability of
expansion. According to Figure 8, the future urban expansion is predicted to occur close
to existing urban areas and parallel to major roads. Most of the cells that are predicted
to convert to urban use are currently arable land. In addition, the predicted pattern of
urban expansion is chaotic, scattered, and dense on the peripheries. This pattern of urban
expansion will cause further deforestation and habitat fragmentation.

The findings of the LRM could be used by local administrative authorities and policy-
makers in order to adjust the urban expansion on arable land in Delhi. In addition, local
administrative authorities should establish strict plans to avoid future informal settlements
on the periphery of Delhi. The results of this research will be helpful for local authorities to
recognize locations and patterns of future expansion, thus facilitating the implementation
of effective policies to achieve sustainable urban development in Delhi.
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Figure 8. Simulation of future urban expansion.

Our results are similar to the findings of Sarkar and Chouhan 2020, who predicted
urban expansion in Siliguri city in India, where they found that the most of the urban
expansion is located close to main roads [59]. In addition, the results are compatible with
the findings of Nallathiga 2018 and Tripathy 2019, who proved that most of the future
expansion in Delhi will take place in the peripheries [1,52].

3.6. Model Validation

Model validation was carried out to evaluate the model’s effectiveness in estimating
future urban expansion. The study utilized the relative operating characteristic (ROC)
method, which is extensively adopted to investigate the efficacy of a model. This method
depends on comparing the probability map of expansion with the actual expansion map
using a set of random points. In this study, the model validation was conducted by
comparing the simulation of future urban expansion with the actual urban expansion map
of 2020 using random samples of 500 cells in each map. The transition probability matrix
was computed by the contingency table displaying the relative frequencies of land change
at a certain period. From every contingency table, a single data point (x, y) was created,
where x and y were the rate of false positives and the rate of true positives, respectively.
The ROC value extended from 0.5 to 1.0, where the value of 1 signified an ideal fit, while
the value of 0.5 signified a random fit. The model’s ROC score was 0.8646, which means
that the expansion probability map was valid. Figure 9 shows the ROC curve of the LRM.
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Figure 9. ROC curve of the LRM.

3.7. Limitations and Future Research

The lack of strategic spatial planning and government control over the urban expan-
sion process in some areas in Delhi has led to a chaotic landscape in such areas [53,60].
However, due to the lack of planning documents in some areas, this factor has not been
investigated in this study. Thus, the study strongly recommends studying the effect of
spatial planning on urban expansion in Delhi in future studies.

Due to the dynamics of the urbanization process, the urban expansion crosses the
boundary of the NCT area towards the neighboring states of Haryana and Uttar Pradesh
(India) The other adjoining regions, such as Ghaziabad, Noida, and Gurugram (India),
which are part of the broader National Capital Region (NCR), are also affected by massive
urban expansion tendencies. Therefore, future studies can be directed towards exploring
the urban expansion tendencies in this region.

Despite the ability of the LRM to include several driving factors in the study, some
significant factors, such as political factors, cannot be included in the model. Furthermore,
the urban expansion probability map provided by the model reveals where urban expan-
sion would occur but does not provide a timeframe. Therefore, some previous studies
recommended integrating the Cellular Automata (CAM) Model with the LRM to overcome
the inability of the LRM in dealing with temporal dynamics [61,62]. Thus, this study
suggests the integration of CAM with the LRM in future research to predict urban expan-
sion. On the other hand, the LRM has a limitation in its ability to capture the non-linear
relationships between the dependent and independent factors [63]. Meanwhile, recently,
artificial intelligence-based models, i.e., fuzzy ANNs, fuzzy C means clustering (FCM),
and the fuzzy deep learning (FDL) model, have proven their accuracy and efficiency in
modelling complex nonlinear relationships [9,63,64]. In addition, these models are useful to
simulate urban expansion in areas without historical urban land use [65]. Thus, the study
recommends using these recent models in simulating urban expansion in future research.

4. Conclusions

Despite many previous studies devoted to exploring urban expansion, this study is
novel as it provides a comprehensive overview of urban expansion dynamics in Delhi,
including its driving factors, spatial patterns, trends, and intensity. The results have
revealed that a rapid urban expansion against urban sustainability has occurred in Delhi
during 1989–2020. The urban expansion intensity was calculated for each spatial unit
in Delhi, and the highest trend was observed on the East South East (ESE) direction,
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followed by South South West (SSW). The LRM was used to recognize and improve our
understanding of the physical forces that have driven this urban expansion and to detect
the most probable locations and patterns of urban expansion in Delhi. The findings of the
LRM revealed that proximity to urban centers and proximity to main roads were the most
influential factors on urban expansion in Delhi. Additionally, a simulation of future urban
expansion in Delhi was performed according to the results of the LRM. The ROC curve
was utilized to assess the effectiveness of the model in predicting urban expansion. Most of
the cells that were predicted to convert to urban use are currently arable land. In addition,
the predicted pattern of urban expansion is chaotic, scattered, and dense on the peripheries.
This pattern of urban expansion would cause the loss of large areas of arable land, habitat
fragmentation, and problems in operating urban utilities in the new expansions. Finally,
the relative operating characteristic (ROC) method was used to assess the accuracy of the
simulation. The high score of the ROC curve (0.8646) proved the validity of the model.
However, the study recommends using recent artificial intelligence-based models in future
research for analyzing and simulating urban expansion in Delhi. Future research can also
develop hybrid models, which benefit from the complementary advantages of different
models. Such integrations would allow the capture of various drivers and the production
of more precise urban expansion simulation models. In addition, future research can
be directed towards exploring the urban expansion in the broader scope of the National
Capital Region (NCR), which includes the urban centers adjacent to the NCT Delhi. Finally,
this research can help local authorities and decision-makers to formulate effective policies
to guide urban expansion in Delhi and other megacities, especially in developing countries.
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