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Abstract: The promotion of pollutant oxidation degradation efficiency by adding organic catalysts has
obtained widespread attention in recent years. Studies have shown that organic substances promote
the process of traditional oxidation reactions by accelerating the redox cycle of transition metals,
chelating transition metals, activating oxidants directly to generate reactive oxygen species such as
hydroxyl and sulfate radical, or changing the electron distribution of the target pollutant. Based
on the promotion of typical organic functional groups on the chemical oxidative process, a metal-
organic framework has been developed and applied in the field of chemical catalytic oxidation. This
manuscript reviewed the types, relative merits, and action mechanisms of common organics which
promoted oxidation reactions so as to deepen the understanding of chemical oxidation mechanisms
and enhance the practical application of oxidation technology.
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1. Introduction

Chemical oxidation technology has gradually become one of the mainstream tech-
nologies applied in water body and contaminated site restoration engineering due to its
good treatment effect and low application cost. Commonly used chemical oxidants include
potassium, ozone, Fenton and Fenton-like reagents, activated persulfate (PDS), and etc.
The traditional chemical oxidation technology has some deficiencies, such as low oxidation
efficiency, pH limitation, and sludge accumulation caused by iron salt [1–3]. Therefore,
a significant amount of research has begun to focus on exploring the technical means
to improve the efficiency of chemical oxidation or broaden the pH scope of application.
For example, the Fe3+, Cu2+, Co2+, and Mn2+ were used to replace Fe2+ to active H2O2,
which were feasible for broadening the oxidative pH but would often decrease the oxi-
dation rate [4,5], and solid Fe0 or ores could also activate H2O2 or PDS in near-neutral
condition [6,7]. In recent years, more and more studies have revealed that the introduc-
tion of organic substances into the system can serve such purposes, and some oxidation
intermediates of organic pollutants could also self-accelerate the reaction [8,9].

The organic substances which could improve the efficiency of chemical oxidation
mainly existed in three forms: organic small molecular form itself, organic chelant, and
metal-organic frameworks (MOFs) material. The recent research advances on the types of
organic substances, their environmental affinity, and action mechanisms that can effectively
improve the efficiency of oxidative degradation of pollutants were summarized in this
manuscript, which means to provide a reference for the further study on chemical oxidation
kinetics, application conditions, and mechanisms.
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2. Reaction Acceleration by Organic Small Molecular Substances
2.1. Accelerated the Metal Redox Cycle

Huang et al. showed that in the Fe2+/Fe3+ cycle, Fe2+ regeneration is the oxidation rate
control step [10]. Any method to improve the Fe3+ reduction efficiency will accelerate the
formation of hydroxyl radicals (•OH), which is also the key to affect the Fenton/Fenton-like
oxidation rate [11,12]. Compounds rich in nucleophilic groups such as carboxyl, hydroxyl,
carbonyl, and amino groups can accelerate the Fe2+/Fe3+ cycle due to their strong reducibil-
ity, thereby accelerating the generation of free radicals. Subramanian and Madras [13]
found that thioglycolic acid can effectively improve the Fe2+/Fe3+ cycle efficiency in the
Fenton system under near-neutral pH conditions, and accelerate the degradation efficiency
of organic pollutants. Moreover, Chen et al. showed that hydroxylamine can enhance the
production of •OH by promoting Fe3+ reduction, and it is still effective when the pH is 5.7.
Hydroxylamine was finally oxidized to NO3

− and N2O in the system [14].
Advanced oxidation technology based on sulfate radical (SO4

−•) has similar charac-
teristics [15,16]. For example, Yang et al. found that ascorbic acid (AA) can promote the
oxidation effect of the Fe2+/PDS system at a pH range of 2.0 to 6.2 [17]. Garcia et al. studied
the difference in the effect of tartaric acid (TA) and hydroxylamine hydrochloride added
into the Fe2+/PDS system on the degradation process of bisphenol A [18,19]; the results
showed that they both accelerated the efficiency of free radical generation and broadened
the pH range of the reaction. The difference is that hydroxylamine hydrochloride only
has a short-term promotion effect, while TA can promote the oxidation effect for a long
time. The Fe2+ activates PDS to generateSO4

−•, which reacts with TA to generate organic
compound radicals (R•), then Fe3+ reacts with R• slowly to generate Fe2+, forming a chain
reaction which promotes the oxidation reaction for a long time. This is consistent with the
results of Minisci et al. and Liang et al. [20,21].

Phenolic and quinone compounds have also been found to have the effect of accel-
erating Fenton/PDS oxidation. Xiao et al. found that phenolic compounds accelerated
the Fenton-like degradation of dimethyl phthalate (DMP), with an increased efficiency of
H2O2 utilization. The effect of phenolic compounds on the degradation of DMP followed
the order: catechol ≈ hydroquinone > resorcinol > phenol, which could be attributed to the
interaction between quinone-like substances and iron ions. Hydroquinone-like substances
accelerated the Fe(III)/(II) redox cycle. The formation of iron complexes between catechol-
like substances and iron ions facilitated the release of H+ and regeneration of Fe(II) [22].
Phenols and quinones are also typical intermediate oxidation products of aromatic com-
pounds [8]. Jiang et al. [9,23] found that hydroquinone and p-benzoquinone, which were
the oxidation intermediates of phenol and nitrobenzene, can promote the decomposition
of Fe(III)–hydroperoxy complexes, and promote the conversion of Fe(II)/Fe(III). Therefore,
the degradation of such aromatic compounds has an autocatalytic effect.

The promotion is also effective in heterogeneous oxidation system. Sun et al. found
that AA can significantly increase the Fe2+/Fe3+ cycle on the surface of magnetite (Fe3O4),
thereby accelerating the oxidation efficiency of the Fe3O4/H2O2 system on alachlor [24].
A Fenton-like system with MnOx-Fe3O4/biochar composite (FeMn/biochar) was con-
structed for pollutant degradation. Five well-characterized reducing agents (sodium
borohydride (SBH), sodium thiosulfate (STS), AA, hydroxylamine, and oxalic acid (OA))
were added respectively to investigate their performance to the system. The results re-
vealed that only OA and hydroxylamine obviously enhanced the catalytic capacity of the
Fenton-like process and HA increased ciprofloxacin degradation efficiency from 38.2%
to 92.8%, well in agreement with the accelerated Fe(III/II) cycle and Mn(III/II) cycle in
the Fe/Mn/biochar-H2O2-HA system. The accelerated metal redox cycle could enhance
the decomposition of H2O2 into •OH and •O2

−, which were the main reactive oxygen
species responsible for ciprofloxacin degradation [25]. Sang et al. found that proper ad-
dition of hydroxylamine greatly promoted the degradation of sulfamethoxazole in each
of the α-Fe2O3/peroxomonosulfate (PMS), Co2O3/PMS, and CuO/PMS systems. The
results suggested that •OH radical was the dominating reactive oxygen species in the
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α-Fe2O3/hydroxylamine/PMS and Co2O3/hydroxylamine/PMS systems, while in the
CuO/hydroxylamine/PMS system, the activated-PMS on the surface of CuO was con-
cluded to be responsible for SMZ degradation instead of free radicals [18].

2.2. Activated H2O2 or PDS to Construct Advanced Oxidation System

In addition to accelerating the transition metal cycle in the advanced oxidation system,
organic matter can also directly activate the oxidant to generate free radicals to build an
advanced oxidation system.

2.2.1. Organic Matters Activate H2O2

Studies have shown that organic matter can directly activate H2O2 to produce oxidiz-
ing active substances, such as •OH, O2− and 1O2, which strengthen the oxidation capacity.
The activation is generally related to the organic free radicals generated during the reaction
(see Figure 1) [26,27].
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In addition to being used as a promoter to improve oxidation efficiency, hydroxylamine
can also directly activate H2O2 to form an advanced oxidation system. Chen et al. proposed
that hydroxylamine activating H2O2 to produce •OH may be divided into two steps: the
first step is hydroxylamine ions to activate H2O2 to produce •OH [27]; the second step is
to produce •OH by the reaction of H2O2 with the protonated amino radical generated in
the first step. They also proposed that the reaction between hydroxylamine and H2O2 to
generate •OH may be related to the -OH group in hydroxylamine.

The quinone structure can also activate H2O2 and promote the generation of •OH.
Zhu et al. studied the production mechanism of •OH during the activation of H2O2 by halo-
quinone, and the results showed that •OH is generated by tetrachloro-1,4-benzoquinone
and H2O2 through a mechanism that has nothing to do with metals: the nucleophilic attack
of H2O2 on tetrachloro-1,4-benzoquinone forms a trichlorohydroperoxy-1,4-benzoquinone
(TrCBQ-OOH) intermediate, which is further cracked to produce •OH [28,29].

2.2.2. Organic Matter Activates PDS

With the rapid development of PDS activation technology, the new type of activation
technology for organic activation of PDS has received widespread attention. Studies have
shown that organic compounds such as quinone compounds, AA, hydroxylamine, phenols,
quercetin, and surfactants can activate PDS.

Fang et al. found that both quinone compounds and humic acid can effectively
activate PDS to degrade 2,4,4’-trichlorobiphenyl [30]. Its degradation rate could reach
88% in the p-benzoquinone/PDS system, while the degradation rates in a single PDS or
p-benzoquinone system were only 20% and 9%, respectively. Zhang et al. explored the
effects of different types of anthraquinone dissolved organic matter on the degradation
of Rhodamine B by PDS [31]. Since anthraquinone-dissolved organic matter contains
an oxidation-sensitive functional group structure, it not only transfers electrons in the
PDS activation reaction [32], but also generates reductive semiquinone radicals during
the activation process, which reduces S2O8

2− to SO4
−•and SO4

2− and can significantly
enhance PDS oxidation capacity [33].

When studying the activation of PDS by AA, Hou et al. used the AA/PDS system
to degrade atrazine. Compared with a single PDS oxidation system, after AA, SO4

−•
and •OH are generated in the system, the degradation rate of atrazine is increased by
29 times [34]. Cao et al. showed that when the pH of the AA/PDS system is between 3.5
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and 12.5, PDS is mainly activated by AA. When pH > 12.5, PDS is mainly activated by
alkali [35].

The activation effect of phenols on PDS is mainly achieved by phenates. When
the pH is 8.3, pentachlorophenol degrades pollutants by reducing PDS to generate ac-
tive free radicals [36]. Quercetin (QCR) is a flavonoid polyphenol organic compound
whose structure lacks electron delocalization and can release electrons to activate PDS,
and then produce SO4

−• and •OH. When the pH is 13, compared with a single PDS sys-
tem, the QCR/PDS system can effectively degrade 1,1-dichloroethane, 1,2-dichloroethane,
1,2-dichloropropane, and dibromomethane [37].

Surfactants are usually used for the desorption of pollutants and the dissolution of non-
aqueous liquids in in-situ chemical oxidation processes. The results of studies have shown
that anionic, nonionic, and cationic surfactants (docusate sodium, polyethylene glycol 400,
and N-tallow propylene diamine polyoxyethylene ether) can effectively activate PDS [38].
Among them, the cationic surfactant N-tallow-based propylene diamine polyoxyethylene
ether shows the strongest activation effect. It can generate •OH under alkaline conditions,
and can generate reducing or nucleophilic groups (superoxide radicals, hydroperoxide
anions, alkyl radicals, etc.) under acidic and alkaline conditions.

2.3. Other Effects

Except for Fenton, Fenton-like, and PDS, organic small molecular substances can
also enhance the oxidizing ability of other oxidants. Yang et al. showed that the removal
efficiency of phenol and bisphenol A (BPA) permanganate has a synergistic effect under
weak acid conditions (pH 4.0~6.0) [39]. Among them, the removal effect of phenol increased
with the increase of the initial concentration of BPA, but decreased with the pH. However,
under weakly alkaline (pH 7.5~8.5) conditions, the two had a competitive effect on the
degradation of permanganate. That is, the degradation of phenol was inhibited in the
presence of BPA, but the degradation efficiency of BPA was slightly improved in the
presence of phenol. The study speculated that the reason for the synergy is that bisphenol
A induced the production of manganese oxide in the system, and the reason for the
competition may be the formation of reactive manganese intermediates Mn5+ or Mn4+ in
the oxidation system.

Degradation of pollutants by ozonation in the presence of hydroxylamine has been
investigated in previous studies [40,41]. The results showed that the degradation rate could
be improved obviously in the presence of HA, which was attributed to the production of
•OH and singlet oxygen.

3. The Promotion of Organic Chelating Agents

Organic complexing agents can effectively prevent the precipitation of transition
metals in a non-acidic environment, and the formed coordination field often affects the
redox characteristics of Fe2+/Fe3+, thereby promoting the oxidation effect of the Fenton
(Fenton-like) system [42,43]. The main action mechanism of organic small molecular
substances and complexing agents are displayed in Figure 2. Commonly used organic
complexing agents include humic substances, carboxylic acid compounds, and amino
carboxylic acid compounds.
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3.1. Humic Substances

Humus widely exists in natural water bodies, soils, and sediments [44]. Metal ions
can form chelates with humic acid (HA) or fulvic acid (FA) by binding to carboxyl groups,
phenolic groups, and nitrogen-containing sites [45], and HAs and FAs can effectively reduce
Fe3+, thereby accelerating the Fenton system oxidation process [46,47]. Research results
show that different concentrations of humic acid in the pH range of 5~7 often have a good
effect on Fenton (Fenton-like) reaction [42,48]. However, when the pH is low, humic acid
often has no obvious effect on the Fenton (Fenton-like) reaction, and even exerts a certain
inhibitory effect. For example, Lipczynska-Kochany and Kochany found that adding
3000 mg L−1 humate to the Fenton system of pH 7 could greatly improve the removal
efficiency of pollutants. However, when the pH was 3.5, the addition of humic acid salt
actually inhibited the degradation [49]. FA presents similar performance [49,50]. Lindsey
et al. showed that the inhibitory effect of humus on the degradation of pollutants under
acidic pH conditions is related to the hydrophobicity of the substrate [51].

Humic acid can also promote the oxidation efficiency of permanganate and ozone.
He et al. found that humic acid could promote the removal of phenol by potassium
permanganate under the condition of pH 4~8, while it would inhibit the oxidation of phenol
by potassium permanganate under the condition of pH 9~10 [52]. Potassium permanganate
is an electrophilic reagent, and the oxidation rate increases with the increase of the electron
cloud density on the aromatic ring of the target pollutant [53]. The aromatic ring structure in
humic acid forms a π-π interaction with phenol, which increases the electron cloud density
of phenol, thereby promoting the oxidation capacity of potassium permanganate [26,54].
The macromolecular humic acid has a high C = C content, and the π-π interaction has a
good positive correlation with the C = C content. Therefore, the macromolecular humic acid
further promotes the oxidation ability of potassium permanganate. Yang et al. found that
adding low concentration (such as 1 mg L−1) humus to the manganese-catalyzed ozone
oxidation system can help improve the degradation rate of atrazine [55]. However, when
the concentration of humus is further increased, the degradation of atrazine is inhibited.
The reason is that the low concentration of humic acid helps to stimulate the formation
of •OH in the system, while the quenching of free radicals under the condition of high
concentration of humic acid plays a leading role.

3.2. Carboxylic Acid

Molecular molar ratio and pH are important factors that affect the catalytic effect
of Fe-carboxylic acid chelating agents. Generally, when the pH is in the range of acidic
to neutral, the Fe-carboxylic acid chelating agent has a better catalytic effect. Citric acid
(CA) is a commonly used carboxylic acid Fenton reaction complexing agent. Studies have
shown that when the molar ratio of Fe and CA molecules is 1:1, there are three main forms,
namely, [Fe(Cit)]◦, [Fe(Cit)]+, and [Fe(Cit)(OH)] [56,57]. Studies have also reported the
formation of a complex with a molar ratio of Fe and CA of 2:2 [58]. Lewis et al. showed
that the Fenton reaction modified by CA chelation can effectively reduce the usage amount
of Fe2+ under near-neutral (pH 6–7) conditions [59]. In addition, when the molar ratio of
CA and Fe molecules is between 1:1 and 4:1, increasing the molar ratio of molecules will
reduce the decomposition efficiency of H2O2. In addition, Li et al. pointed out that even
when the pH is greater than 5, the Fenton system with CA as a chelating agent can still
efficiently degrade 2,4,6-trichlorophenol. However, when pH > 8, a large amount of iron
precipitation is formed [60]. Trovo et al. showed that CA can extend the application range
of the photo-Fenton system to neutral pH conditions, and the degradation rate heavily
depends on the initial concentration of citrate [61]. When the pH is 5–8, the degradation
efficiency of diclofenac (DCF) in the photofenton method decreases with the increase of pH.

Except for CA, in recent years, some new carboxylic acid natural organic complexing
agents have also been found to not only promote the Fe2+/Fe3+ cycle, but also effectively
prevent the precipitation of iron ions. For example, Qin et al. found that adding proto-
catechuic acid (PCA) to the Fe3+/H2O2 Fenton-like system could effectively increase the
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degradation rate of alachlor when the pH was less than 7, but the degradation efficiency
decreased with the increase of pH; when pH ≥ 7, PCA no longer increased the degradation
rate of alachlor [62]. Ren et al. showed that rosmarinic acid (RA) could greatly enhance the
oxidation efficiency of 2,4-dichlorophenol in the Fe3+/H2O2 system when the pH is was
the range of 3–6 [63]. However, when the pH increased to 6.4 and 7.2, the promotion effect
gradually weakened. Generally, both the target pollutant and the organic complexing agent
can be effectively mineralized in the Fenton system, and this type of organic complexing
agent has good environmental friendliness [62,63].

3.3. Amino Carboxylic Acid

Because of its strong complexing ability, amino carboxylic acid can prevent iron
precipitation even under neutral pH conditions, and it is also a common organic com-
plexing agent [10,64]. Ethylenediamine tetraacetic acid (EDTA) is the most commonly
used aminocarboxylic acid complexing agent. The 1:1 organic ligand Fe2+ (EDTA) formed
by EDTA-2Na and Fe2+ can not only extend the time of Fe2+ participating in the Fenton
reaction, but also activate the dissolved oxygen in the system and spontaneously generate
H2O2 [65]. Brian et al. showed that when the molar ratio of EDTA-2Na to Fe2+ was 1:1,
the degradation effect of benzene and 1,2-dichlorobenzene was the best [66]. When the
concentration of EDTA-2Na is further increased and exceeds the requirement for complexa-
tion, it will consume •OH by itself to reduce the degradation rate. In the EDTA-Fe3+-H2O2
system, as the molar ratio of EDTA: Fe3+ (range 1:1~5:1) increases, the decolorization
efficiency of malachite green gradually increases. The degradation mechanism does not
follow the simple hydroxyl radical mechanism, and the intermediate valence iron (four or
five valence) that exists at the same time plays a major role in oxidation [67]. In recent years,
EDTA has also been found to promote the activation of H2O2 by heterogeneous oxidation
systems such as zero-valent iron or iron oxides [68–70]. However, EDTA has a strong
capacity to chelate heavy metals and poor biodegradability, which may exert an adverse
effect on the environment [71,72]. Therefore, in recent years, the search for biodegradable
EDTA substitutes has gradually attracted the attention of researchers [73–75], such as N,
N’-ethylenediamine disuccinic acid (EDDS), which is a structural isomer of EDTA and can
exist in [S,S’], [S,R/R,S], and [R,R’] configurations (see Figure 3). Among them, the [S,S]
configuration can be quickly and completely mineralized, and the other two configurations
can be partially biodegraded [76]. The isomeric mixture of EDDS contains statistically 25%
of (S,S)-EDDS, 25% of (R,R)-EDDS, and 50% of (R,S)/(S, R)-EDDS. Orama et al. proposed
that the suitable pH range of EDDS as a Fe3+ chelating agent is 3–9 [77]. When pH ≤ 7,
Fe3+-EDDS complex mainly exists in the form of Fe3+-EDDS-; when pH > 7, the Fe3+-EDDS
complex mainly exists in the form of Fe(OH)EDDS2− and Fe(OH)2EDDS3−. Huang et al.
found that in the Fenton reaction driven by EDDS, under neutral or alkaline conditions, due
to the generation of •HO2 or •O2

− radicals and the presence of various forms of complex
iron, the oxidation efficiency was much higher than that of acidic conditions [8]. EDDS
can not only keep iron in a soluble form, but also promote the generation of superoxide
radicals, thereby promoting the generation of Fe2+ and •OH. Nitrilotriacetic acid (NTA)
is also an amino carboxylic acid complexing agent that has been frequently studied in
recent years. Sun and Pignatello tested 50 kinds of structurally diverse organic and inor-
ganic polydentate chelators for their ability to solubilize Fe(III) at pH 6 and catalyzed the
oxidation of 0.1 mM 2,4-dichlorophenoxyacetic acid by 10 mM H2O2 in aerated aqueous
solution [78]. The result showed that NTA was one of the most active chelates that promote
the degradation. The reactivity of the Fe3+-NTA system would not be affected by excessive
NTA [79]. There is only one N atom in the NTA molecule, and it could be degraded by
microorganisms under hypoxic conditions, which has a small risk of causing environmental
problems [80].
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Moreover, some other N-containing organic complexing agents have also been proven
to have better Fe3+ complexing and the capacity to promote H2O2 decomposition.
In addition to the production of hydroxyl radicals, the oxidation process is often accompa-
nied by the production of high-valent iron compounds [78,81].

The promoting effect of organic matters on the Fenton-like system is also related to
the type of transition metal. For example, Ghiselli et al. found that at pH 5.5, EDTA, NTA,
and CA could inhibit the degradation of organic pollutants in the Fenton-like reaction
catalyzed by copper [82], while TA could promote the degradation. The reason may be
that EDTA, NTA, and CA have strong complexing capacity with Cu2+ and high stability
constants, which prevented the interaction between the effective sites of Cu ions and H2O2.
TA itself has strong reducibility and can reduce Cu2+ existing in a complex state to Cu+. The
reaction of Cu+ with H2O2 can increase the production of •OH and promote the oxidative
degradation of organic pollutants.

The characteristics of different types of chelating agents are listed in Table 1, and
the application of typical organic small molecular substances and chelating agents in
promoting oxidation reaction is summarized in Table 2.

Table 1. The merits and demerits of different chelators.

Chelator Merit Demerit

Humus Ubiquitous in nature No obvious influence and even inhibition
when pH is low

Carboxylic acid Suitable for acid to neutral range; Chelating
agent can effectively degrade

Affected by pH and molar ratio to
transition metal

Amino carboxylic acid

The time of Fe2+ participation in Fenton
reaction can be extended; It can activate the

dissolved oxygen in the system and
produce H2O2 spontaneously; The effect is

better under neutral neutral or
alkaline conditions

The molar ratio of transition metal has
influence on the promoting effect;

Environmental degradation is poor
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Table 2. Chemical oxidation degradation of pollutants by organics.

Organics Class Organic
Substance Structure Oxidant Reaction

pH Target Pollutant Source

Phenols

Hydroquinone
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L−1) 
6.5~10.5 Nitrobenzene  

(1 mmol L−1) 
[36] 

AA 

 

H2O2 (1 mmol L−1), AA (0.5 
mmol L−1) and Fe3O4 (1 g L−1) 

4 Alachlor  
(20 mg L−1) 

[24] 

Na2S2O8 (40 mmol L−1) and 
AA (1.0 mmol L−1) 

7.2 Pentachlorophe-
nol (10 mg L−1) 

[35] 

Humus Humic 
Acid 

/ 

H2O2 (130 mmol L−1), Fe2+ (30 
μmol L−1) and HA (50~100 

mg L−1) 
5~7 

Benzene 
(25 μmol L−1) [42] 

H2O2 (50 mmol L−1), Fe2+ (5 
mmol L−1) and HA (10 mg 

L−1) 
6.5 

15 organic com-
pounds [48] 

Carboxylic 
Acid Com-

pounds 

CA 
 

H2O2 (50 mmol L−1), Fe2+ (10 
mmol L−1) and CA (10 mmol 

L−1) 
5~7 

2,4,6–trichloro-
phenol  

(1.5 mmol L−1) 
[60] 

Gallic 
Acid 

 

H2O2 (8 mmol L−1) and Fe3+ 
(0.1 mmol L−1) 

3.6 gallic acid  
(0.11 mmol L−1) 

[62] 

Amino Car-
boxylic Acids 

EDTA 
 

Na2S2O8 (5 mmol L−1), Fe0(1.0 
g L−1) and EDTA (1 mmol L−1) 

6.0 
Reactive Green 
19 (0.05 mmol 

L−1) 
[69] 

EDDS 
a mixture consisted of differ-

ent configurations 
H2O2 (5 mol L−1) and Fe3+-

EDDS (1 mol L−1) 6.2 
bisphenol A  
(20 μmol L−1) [10] 

H2O2 (10 mmol L−1), Fe3+

(0.5 mmol L−1) and
hydroquinone
(0.1 mmol L−1)

3.1~3.2 DMP
(1 mmol L−1) [22]

Pentachlorophenol
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(0.11 mmol L−1) 

[62] 

Amino Car-
boxylic Acids 
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19 (0.05 mmol 
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pounds 

CA 
 

H2O2 (50 mmol L−1), Fe2+ (10 
mmol L−1) and CA (10 mmol 
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5~7 

2,4,6–trichloro-
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(1.5 mmol L−1) 
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Gallic 
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H2O2 (8 mmol L−1) and Fe3+ 
(0.1 mmol L−1) 

3.6 gallic acid  
(0.11 mmol L−1) 

[62] 

Amino Car-
boxylic Acids 

EDTA 
 

Na2S2O8 (5 mmol L−1), Fe0(1.0 
g L−1) and EDTA (1 mmol L−1) 

6.0 
Reactive Green 
19 (0.05 mmol 

L−1) 
[69] 

EDDS 
a mixture consisted of differ-

ent configurations 
H2O2 (5 mol L−1) and Fe3+-

EDDS (1 mol L−1) 6.2 
bisphenol A  
(20 μmol L−1) [10] 

H2O2 (1 mmol L−1), AA
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Na2S2O8 (40 mmol L−1)
and AA (1.0 mmol L−1)

7.2 Pentachlorophenol
(10 mg L−1) [35]

Humus Humic Acid
/

H2O2 (130 mmol L−1),
Fe2+ (30 µmol L−1) and

HA (50~100 mg L−1)
5~7 Benzene

(25 µmol L−1) [42]

H2O2 (50 mmol L−1), Fe2+

(5 mmol L−1) and HA
(10 mg L−1)
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Carboxylic Acid
Compounds
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mg L−1) 
5~7 

Benzene 
(25 μmol L−1) [42] 

H2O2 (50 mmol L−1), Fe2+ (5 
mmol L−1) and HA (10 mg 

L−1) 
6.5 

15 organic com-
pounds [48] 

Carboxylic 
Acid Com-

pounds 

CA 
 

H2O2 (50 mmol L−1), Fe2+ (10 
mmol L−1) and CA (10 mmol 

L−1) 
5~7 

2,4,6–trichloro-
phenol  

(1.5 mmol L−1) 
[60] 

Gallic 
Acid 

 

H2O2 (8 mmol L−1) and Fe3+ 
(0.1 mmol L−1) 

3.6 gallic acid  
(0.11 mmol L−1) 

[62] 
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boxylic Acids 

EDTA 
 

Na2S2O8 (5 mmol L−1), Fe0(1.0 
g L−1) and EDTA (1 mmol L−1) 

6.0 
Reactive Green 
19 (0.05 mmol 

L−1) 
[69] 

EDDS 
a mixture consisted of differ-

ent configurations 
H2O2 (5 mol L−1) and Fe3+-

EDDS (1 mol L−1) 6.2 
bisphenol A  
(20 μmol L−1) [10] 

H2O2 (50 mmol L−1), Fe2+

(10 mmol L−1) and CA
(10 mmol L−1)

5~7
2,4,6–

trichlorophenol
(1.5 mmol L−1)

[60]

Gallic Acid
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5~7 

Benzene 
(25 μmol L−1) [42] 

H2O2 (50 mmol L−1), Fe2+ (5 
mmol L−1) and HA (10 mg 

L−1) 
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15 organic com-
pounds [48] 

Carboxylic 
Acid Com-

pounds 

CA 
 

H2O2 (50 mmol L−1), Fe2+ (10 
mmol L−1) and CA (10 mmol 

L−1) 
5~7 

2,4,6–trichloro-
phenol  

(1.5 mmol L−1) 
[60] 
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g L−1) and EDTA (1 mmol L−1) 

6.0 
Reactive Green 
19 (0.05 mmol 

L−1) 
[69] 

EDDS 
a mixture consisted of differ-

ent configurations 
H2O2 (5 mol L−1) and Fe3+-

EDDS (1 mol L−1) 6.2 
bisphenol A  
(20 μmol L−1) [10] 

H2O2 (8 mmol L−1) and
Fe3+ (0.1 mmol L−1)

3.6 gallic acid
(0.11 mmol L−1) [62]

Amino
Carboxylic Acids

EDTA
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5~7 

Benzene 
(25 μmol L−1) [42] 

H2O2 (50 mmol L−1), Fe2+ (5 
mmol L−1) and HA (10 mg 

L−1) 
6.5 

15 organic com-
pounds [48] 

Carboxylic 
Acid Com-

pounds 

CA 
 

H2O2 (50 mmol L−1), Fe2+ (10 
mmol L−1) and CA (10 mmol 

L−1) 
5~7 

2,4,6–trichloro-
phenol  

(1.5 mmol L−1) 
[60] 

Gallic 
Acid 

 

H2O2 (8 mmol L−1) and Fe3+ 
(0.1 mmol L−1) 

3.6 gallic acid  
(0.11 mmol L−1) 

[62] 
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EDTA 
 

Na2S2O8 (5 mmol L−1), Fe0(1.0 
g L−1) and EDTA (1 mmol L−1) 

6.0 
Reactive Green 
19 (0.05 mmol 

L−1) 
[69] 

EDDS 
a mixture consisted of differ-

ent configurations 
H2O2 (5 mol L−1) and Fe3+-

EDDS (1 mol L−1) 6.2 
bisphenol A  
(20 μmol L−1) [10] 

Na2S2O8 (5 mmol L−1),
Fe0(1.0 g L−1) and EDTA

(1 mmol L−1)
6.0 Reactive Green 19

(0.05 mmol L−1) [69]

EDDS a mixture consisted of
different configurations

H2O2 (5 mol L−1) and
Fe3+-EDDS (1 mol L−1)

6.2 bisphenol A
(20 µmol L−1) [10]

NTA
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NTA 

 

 

H2O2 (100 mmol L−1), Fe3O4 
(1.0 g L−1) and NTA (0.5 

mmol L−1) 
7 

Carbamazepine 
(63.5 μmol L−1) [73] 

Others 

Hydroxyl-
amine  

H2O2 (0.4 mmol L−1), Fe2+ 
(10.0 μmol L−1) and NH2OH 

(0.4 mmol L−1) 
2.0~5.7 

benzoic acid 
(40.0 μmol L−1) [14] 

1,4-benzo-
quinone 

 

Persulfate (5 mmol L−1) 7.4 PCB 28  
(0.5 mg L−1) 

[30] 

4. Metal-Organic Framework Materials 
In recent years, solid-phase catalytic materials have attracted extensive attention. The 

heterogeneous oxidation system composed of solid-phase catalytic materials and oxidants 
overcomes the disadvantages of homogeneous Fenton catalyst, such as difficult separa-
tion and repeated use, easy formation of iron sludge by Fe2+, increase of color in water, 
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4. Metal-Organic Framework Materials

In recent years, solid-phase catalytic materials have attracted extensive attention. The
heterogeneous oxidation system composed of solid-phase catalytic materials and oxidants
overcomes the disadvantages of homogeneous Fenton catalyst, such as difficult separation
and repeated use, easy formation of iron sludge by Fe2+, increase of color in water, and
narrow reaction pH range. Among them, metal-organic frameworks (MOFs) which have
intramolecular voids formed by self-assembly of organic ligands and metal ions or clusters
through coordination bonds [83–86], have a higher catalytic activity than traditional solid
catalytic material and have been used in advanced oxidation systems. MOFs combines
the excellent properties of organic and inorganic substances, so its effectiveness exceeds
the performance of simple mixing [87,88]. Due to the diversity of metal ion species and
the selection of organic ligands, MOFs materials have many advantages: high specific
surface area, functional groups such as -NH2, -OH, and -COOH which can be introduced
to the pore surface of MOFs material, high thermal and chemical stability, and etc. The
performance can be adjusted through the synergistic effect of metal ions and organic
functional groups, and post-synthetic modification can be performed to make it have
special properties [89]. A typical mechanism for pollutant degradation catalyzed by MOF
is shown in Figure 4.
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4.1. Fe-Based MOFs Catalytic Materials

Iron-based MOFs are porous materials assembled from iron ions or iron clusters and
organic ligands, which can promote the Fe3+/Fe2+ conversion rate in MOFs by means of
metal doping and organic ligand modification and improve the heterogeneity catalytic
H2O2 degradation efficiency of pollutants [91]. Fe-based MOFs were widely studied
because Fe was eco-friendly and cost efficient. So far, a large number of iron-based MOFs
using different types of organic ligands have been found. For example, MIL-53 (Fe),
MIL-88B(Fe), and MIL-100 (Fe) have been reported as Fenton-like catalysts to degrade
pollutants [92–94]. Li et al. prepared Fe2+-containing MOFs using 2, 2′-bipyridine-5,5′-
dihydroxy acid as ligand [95]. The material activated H2O2 to degrade organic pollutants
in near neutral conditions, and it had an excellent activity and stability. A high H2O2
utilization efficiency was also achieved. Lv et al. used Fe2+@MIL-100(Fe) Fenton catalyst to
study the effect of MB degradation. The experimental results showed that Fe2+@MIL-100
(Fe) demonstrated the highest Fenton catalytic ability compared with MIL-100 (Fe) and
Fe2O3 [94]. The Fe2+ and Fe3+ ions in Fe2+@MIL-100 (Fe) have a synergistic effect on the
production of •OH, thereby promoting oxidation efficiency.
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4.2. Copper- and Cobalt-Based MOFs Catalytic Materials

Other than Fe-based MOF, other metals such as copper and cobalt were also found to
have the ability to catalyze H2O2 to generate •OH [96,97]. Because of the appropriate price
and wide distribution, Cu was usually used in catalytic material. Lyn et al. synthesized
Cu-doped mesoporous silica microspheres (Cu-MSM) by the hydrothermal method, and
the Fenton-like process catalyzed by Cu-MSMs showed excellent performance in the degra-
dation of phenytoin sodium (PHT) and diphenhydramine (DP). The reaction mechanism is
that H2O2 was converted to •OH by the framework Cu+ in Cu-MSMs, and Cu+ was simul-
taneously oxidized to Cu2+. The generated •OH could cause the decomposition of PHT
and DP, while the generated phenolic intermediates could be adsorbed on the surface of
Cu-MSMs, complexed with the framework Cu2+ and form copper complexes. The complex
can interact with H2O2 and promote Cu2+ reduction, accelerate the Cu+/Cu2+ circulation,
generate •OH more efficiently, and thus promote the degradation of organic pollutants.

Cobalt ion is also a common heterogeneous Fenton oxidant, which can be used to
catalyze oxidants such as H2O2, PDS, and peroxymonosulfate [91]. Co has a higher
catalytic activity than Fe and Cu. For example, Racles et al. synthesized two kinds of
MOFs containing Cu and Co respectively at room temperature, and added them to H2O2
to degrade the azo dye congo red (CR) [98]. The results showed that the degradation
efficiency of the cobalt-based MOF material to CR reached 90% after reaction for 30 min,
which was greater than that of the copper-based MOFs material. This indicates that to a
certain extent the catalytic capacity of the cobalt-based MOFs material is greater than that
of the copper-based MOFs material.

4.3. Multi-Core MOFs Catalytic Materials

In recent years, MOFs doped with multiple metals have been widely concerned [99,100].
Li et al. studied and synthesized Fe-Co Prussian blue complexes as photo-Fenton catalysts,
and this material has high degradation efficiency for rhodamine B under the conditions
of pH 3.0–8.5 [101]. During the entire photo-Fenton reaction process, H2O2 molecules
replaced water molecules coordinated with Fe, and the resulting Fe2+–peroxide complex
could generate •OH. At the same time, Fe3+ in the catalyst was reduced by H2O2, and
the generated HOO• and •OH reacted to form 1O2, which directly participated in the
degradation of rhodamine B. Wang et al. showed that under the condition of pH 5, the
removal rate of 20 mg·L−1 MB by the MIL-101(Fe,Cu)/H2O2 system was 100% when the
reaction time was 20 min [102]. Compared with MIL-101(Fe)/H2O2 and H2O2 alone, it
increased by 43.1% and 88.9%, respectively. This is because Cu2+ doping introduces new
active sites, where Cu2+/Cu+ can synergize with Fe3+/Fe2+ cycles to produce more •OH
to improve the Fenton-like degradation effect.

5. Conclusions and Prospects

The oxidative degradation of pollutants in the water can be enhanced by adding
organic substances or preparing solid materials with organic substances. Organics con-
taining nucleophilic functional groups such as carboxyl, quinone, hydroxyl, and amino
groups can effectively accelerate the generation of free radicals and broaden the pH range
in Fenton, Fenton-like, and activated PDS systems by promoting the reduction of transition
metals, complexing transition metals, or inhibiting the hydrolysis of transition metals.
Some quinones, phenols and carboxylic acids can even directly activate H2O2/PDS to
generate free radicals. These organic substances can also improve the oxidation efficiency
of permanganate by changing the valence state of manganese. In addition, based on the
characteristics of organic compounds which promote chemical oxidation reactions, MOFs
materials are created to improve the oxidation effect of the advanced oxidation system,
which constructed a heterogeneous system to release the oxidizing species steadily or
re-utilize the catalysts.

However, at present, except traditional complexing agents such as CA and EDTA
which are often used to enhance the oxidation effect in actual water bodies, most organics
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and MOFs materials are applied only in the laboratories. As a result, for future development
of organics or organic-containing material in real environmental applications, more efforts
can be made on the following aspects: (1) to decrease the acquisition cost of the organic
materials; (2) to investigate their environmental risks; and (3) to clarify whether the organic
matter unremoved during the chemical oxidation can offer available carbon for further
microbiological deterioration of pollutants.
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