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Abstract: Modeling bicycle traffic assignment requires consideration of the various factors and
criteria that could play a role in a cyclist’s route decision-making process. However, existing studies
on bicycle route choice analysis tend to overlook the less tangible or measurable aspects of cyclist
route decision-making, such as a cyclist’s cognitive understanding of the network and a cyclist’s
biking experience. This study explores the applicability of space syntax as a route cognitive attribute
in a bicycle traffic assignment model. Since space syntax is a tool that links urban spatial layout
to human movement, the results of a space syntax model can be used as a cognitive attribute for
modeling bicycle movements with explicit consideration of the cognitive complexities of navigating
through the environment. In developing a bicycle traffic assignment model, we considered relevant
attributes such as route cognition, distance, and safety and integrated multiple user class analysis to
reflect different biking experience levels. Numerical experiments using the Winnipeg network are
conducted to demonstrate the applicability of the proposed bicycle traffic assignment model with
one or more user classes.

Keywords: bicycle traffic assignment; one or more user classes; route cognition; space syntax

1. Introduction

It is well known that cycling can improve urban mobility, livability, and public health
as an alternative mode of transportation. In addition, cycling can help to reduce impedance
among competitive modes and therefore can improve the integration of multi-modal
transportation networks [1,2]. Although the share of people who use bicycles as their
primary mode of transportation was slightly more than 1% in the 2017 National Households
Travel Survey (NHTS) in the United States [3], cycling is gaining popularity.

In terms of the route choice model, bicycle traffic route choice modeling requires more
affection factors compared to route choice modeling for motorized vehicles. Although
cyclist behavior is complex and not yet fully understood, the general consensus in the
research community indicates that cyclists choose routes based on distance, the number of
intersections, road grade, bicycle facility, safety, weather conditions, and land use [4–10].
However, existing bicycle studies tend to focus on observable attributes associated with
street segments and intersections, and some existing studies that do consider route cog-
nition are still in a preliminary stage. For example, Hood et al. [11], Ryu et al. [7], and
Wang et al. [12] considered turn frequency/delay in route utility functions, while Menghini
et al. [13], Broach et al. [4], and Ehrgott et al. [14] considered bicycle route signs or recom-
mended bike routes as a proxy for cyclist awareness, ease, and/or suitability to navigate
new/unknown neighborhoods. Conventional bicycle route choice set generation has also
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considered route complexity as a factor using a hypothesized cognitive structure in the
labeling technique [11,15]. They overlook the less tangible or measurable aspects of cyclist
route decision-making, such as a cyclists’ cognitive understanding of the network. In this
study, we explore space syntax as a route cognitive attribute along with route distance and
route safety and one or more user classes with varying levels of cycling experience in a
bicycle route choice model.

Space syntax can provide a measure of route cognition to help quantify cyclist percep-
tions of the network. Space syntax analyzes street networks to figure out how people move
in urban environments. Instead of using social activity to discern human movement pat-
terns in urban settings, space syntax focuses on the structure of the built urban environment.
This is a reverse approach to study urban morphology and human behavior [16,17]. Space
syntax is particularly applicable to bicycle traffic assignment because it is the analysis of the
configurations of space based on human spatial perceptions. The configurations of spatial
layouts hold meaning to the way people travel because people do not consciously analyze
configurations even though they can understand them [17]. This notion is highly relevant
for cyclist route choice decision-making, especially when considering route cognition as a
criterion in a bicycle traffic assignment model.

Although the primary objective of this study is to explore the applicability of space
syntax as a route cognitive attribute, we also consider other relevant criteria (route dis-
tance and route safety) and incorporate one or more user classes into the bicycle traffic
assignment model, as indicated by some studies that determined that cycling experience
and preferences can have an impact on cycle route choice to some extent (e.g., [8,18]).
Route distance is a composite measure of not only the sum of link distances along the
route but also the delays at signalized intersections. Route safety is based on the bicycle
level-of-service used in traffic engineering. It is also a composite measure of the segment
bicycle scores and intersection bicycle scores along the route. As for the analysis of one or
more user classes, we acknowledge that there are different types of cyclists with different
levels of biking experience and factor that information into the model.

2. Space Syntax Model

The space syntax model is a set of theories and technologies to derive and analyze
the spatial configuration of urban or architectural spaces [17]. Space syntax also calculates
the significance of space structure by using the accessibility of the total network [19]. In
space syntax analysis, a spatial layout can be broken down into an axial map featuring
two-dimensional convex spaces connected by a network of the least number of longest
axial lines. The importance of axial lines can be measured through a variety of network
centralities, such as depth and the least number of vertices between axial lines. Mean depth
is then selected to understand the relationship between the singular axial lines to the rest
of the network [20]. The ability of the space syntax model to quantify each axial line’s
network accessibility is one of its greatest advantages. Because of this advantage, space
syntax is applied to many different network models, such as the pedestrian model [21–24],
the bicycle model [20,25–27], and the vehicle model [28,29].

In the past, the space syntax model has been criticized for its treatment of turn angles
and for its translation incompatibility with transportation networks. Since space syntax
categorizes both slight turns and sharp turns as one step, it does not fully capture the
smoothness of a route as it transitions from one convex space to another. In addition, it is not
an easy task to create an axial map from a transportation network because a long straight
line on a GIS map could be composed of several transportation links (e.g., see Paul [30] for a
discussion on the limitations of axial analysis for modeling motorized vehicular movement
in the context of route choice analysis). To resolve this issue in a GIS network, Turner [31]
introduced the angular-based space syntax model, and Turner and Dalton [32] developed
the angular-based shortest path model. In essence, the model computes the turning effect
with the different angles between two links on a junction. Figure 1a provides an example
of the different turning types between two links. A 90-degree angle is assumed to represent
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one complete turn. Following the space syntax principle, spaces are first broadly perceived
as discrete components (i.e., a segment or a link in a transportation network). The depth
(or turning) from one segment (i.e., a link in a transportation network) to other links can be
directly measured by the sum of the angles between two links. The total depth (TD) of link
a to all other links can be measured by summing the angular-based depth to other links,
and the mean depth (MD) value is given by the total depth divided by the total number of
links minus 1 (N−1). This MD value measures an average depth of a particular link.

TDa = ∑
b ∈ A
a 6= b

d(a, b, θ), ∀a ∈ A (1)

MDa = TDa/(N − 1), ∀a ∈ A (2)

where TDa is the total depth of link a; A is the set of links; d(a, b, θ) is the angular-based
depth from link a to another link, link b, based on angle θ; MDa is the mean depth value of
link a; and N is the number of links.
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Figure 1. Example of computing TD and MD on the simple network (a) Example of turning with different angular,
(b) Example network, (c) Depth step on the link 1, (d) Computing TD and MD on the link 1.

Using the concept of angular-based turning from Figure 1a and the example network in
Figure 1b–d provides an example of computing TD and MD for Link 1. From Figure 1b, we
can observe that Link 2 has the lowest MD. This means that it takes an average of 1.25 turns
to go from Link 2 to other links. It also means that Link 2 has a higher accessibility or
cognitive link. For more details, the readers should refer to Turner [33].

Space syntax is highly applicable to bicycle traffic assignment analysis because it can
provide a route cognition attribute. People can subconsciously understand configurations
such as street networks, and this subconscious understanding may reveal their preferences
for routes. From space syntax analysis, transportation links are measured by their connec-
tivity to the other links, so the length of each link becomes irrelevant to the analysis. Thus,
cyclists are more concerned about the quantity of axial lines than the distance in any given
trip. In other words, if cyclists perceive that a certain route is smoother and requires fewer
turns than alternative routes, they may choose to travel along that route even if the trip
distance is not minimized on that route. Note that Hood et al. [11] and Broach et al. [4]
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incorporate the turning effect as an attribute in the utility function based on the observed
GPS data. Meanwhile, the space syntax concept adopted in this paper is the result of global
measurements with angles between two consecutive links based on the network topology.

3. Overview of Bicycle Traffic Assignment Model

The methodology for modeling bicycle traffic assignment using three criteria (i.e., route
cognition, route distance, and route bicycle level of service (BLOS)) is described in this
section. For bicycle traffic assignment, a two-stage model was adopted. In the first stage,
route generation is performed to determine available route sets for one or more user classes,
and then multi-criteria bicycle traffic assignment is performed. For the assignment, the
path-size logit (PSL) model is adopted in the second stage.

3.1. Criteria Affecting Cyclists’ Travel

Many empirical studies on bicycle travel analysis show that there are many factors
that are considered when cyclists choose routes. They include travel distance or time [4];
safety [5]; stress [34]; pollution [35]; travel distance/time and safety [7]; travel time and
suitability [14]; travel time and pollution [12]; travel distance, safety, and pollution [8];
and bikeability [36,37]. Due to the diverse set of influential factors that are at play during
bicycle travel, route planners provide a variety of bicycle routes based on different factors
(e.g., least elevation gain route, shortest distance route, safest route, bike friendly route,
etc.) to satisfy the requirements of different cyclists.

Figure 2 illustrates how diverse factors contribute to three key aggregated factors.
In the general criteria level, we categorized three motorized-related attributes, network-
related attributes, and observation-related attributes. The disaggregated criteria level
shows the detailed attributes related to the three general criteria area. A total of 10 criteria
(e.g., traffic volume, speed, turning penalty, roadside parking, etc.) is shown in the dis-
aggregated level. For simplification, these 10 factors are further combined into the three
key aggregated criteria for different user classes choice decisions. Although some factors
(e.g., intersection delay and roadside parking) are directly related on the three key aggre-
gated criteria, these factors can affect the criteria indirectly. For example, intersection delay
causes more traffic congestion, and drivers require more attention. Regarding roadside
parking, there may be traffic sight problems when drivers turn right or left. In this study,
route cognition attributes, route distance attributes, and route safety attributes are adopted
as three key criteria to develop a multi-objective approach for the generation of bicycle
route sets, as shown in Figure 2.
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3.1.1. Route Cognition

For route cognition, the sum of the link MD measures computed by the space syntax
model described in Section 2 is adopted as a surrogate measure. Route cognition is
computed as follows:

RCrs
k = ∑

a∈A
MDa·δrs

ka, ∀ k ∈ Km
rs, rs ∈ RS (3)

where RCrs
k is the route cognition on path k connecting O-D pair rs; MDa is the mean depth

on link a; δrs
ka is the path-link indicator: 1 if link a is on path k between O-D pair rs and 0

otherwise; Km
rs is the set of paths connecting the O-D pair rs of class m; and RS is the set of

O-D pairs. The obtained MD measurement is interpreted as of the route accessibility.

3.1.2. Route Distance

Route distance is a composite measure that includes the sum of the link distances
along the route and the turning movement delays at the intersections that the route passes
through. To solve the unit incompatibility problem (i.e., distance and delay), an appropriate
conversion factor is used to convert a delay to an equivalent distance unit. The route
distance can be computed as follows:

drs
k = ∑

a∈A
laδrs

ka + ∑
a∈INi

∑
b∈OUTi

c f t
i dt

i δ
rs
kaδrs

kb, ∀k ∈ Km
rs, rs ∈ RS (4)

where drs
k is the distance (in meters) on path k connecting the O-D pair rs; la is the length

(in meters) of link a; c f t
i is an appropriate conversion factor for turning movement t at

intersection i; dt
i is the delay (in seconds) of turning movement t at intersection i; INi and

OUTi are the sets of links terminating into and originating out of intersection i.

3.1.3. Route Safety

The safety aspect of bicycle facilities can be assessed by a variety of different measures.
For the safety measurement, the bicycle level of service (BLOS) measure introduced by the
Highway Capacity Manual (HCM) [38] is used as a surrogate measure. The route BLOS
can be computed as follows:

BLOSrs
k = 0.200·(ABSegrs

k ) + 0.030·(exp(ABIntrs
k )) + 0.050·(C f ltrs

k ) + 1.40, ∀k ∈ Km
rs, rs ∈ RS (5)

where BLOSrs
k is the bicycle level of service on path k between O-D pair rs; ABSegrs

k
is the length-weighted average segment bicycle score on path k between the O-D pair

rs (ABSegrs
k =

(
∑

a∈A
la·Bsega·δrs

ka

)
/
(

∑
a∈A

la·δrs
ka

)
); la is the length of link a (in meters);

ABIntrs
k is the average intersection bicycle score on path k between the O-D pair

rs (ABIntrs
k = ∑

i∈I
∑

a∈INi

∑
b∈OUTi

IntBLOSiδ
rs
kaδrs

kb/Nrs
k ); Nrs

k is the number of intersections on

path k between the O-D pair rs; and Cl f trs
k is the number of unsignalized conflicts per km

on route k between the O-D pair rs. Note that the segment and intersection bicycle scores
(Bseg and IntBLOS) are calibrated based on the flow and speed of motorized vehicles, the
width configuration of bicycle facilities, etc. Please refer to NCHRP Report 616 [39] for the
details of the BLOS development.

3.2. Route Generation

Solving the multi-criteria shortest path problem is different from solving the single
criterion shortest path problem; there may not be a single optimal path that dominates
all other paths in all of the criteria. Hence, solving multi-criteria shortest path problems
requires generating a set of efficient (or non-dominated) paths. In the literature, there are
several solution algorithms for solving the multi-criteria shortest path problem, including
the ranking method, the label setting approach, the two-phase method, and the label
correcting approach. In this paper, we adopted the ranking method proposed by Climaco
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and Martins [40] and appropriately modified the ranking method to handle the non-
additive route structure and one or more user classes in the bicycle traffic assignment
model. Of the three key criteria, route BLOS is non-additive (i.e., not a simple sum of the
link BLOS on the route), as it is a composite measure of four terms in Equation (5). Despite
the fact that the sum of these four terms is additive, the individual terms are non-additive,
which makes the overall route BLOS non-additive. In addition, efficient route sets will be
generated according to one or more user classes. Readers can refer to Ryu et al. [8] for the
detailed implementation procedure of the modified ranking method, which generates the
multi-criteria paths that form the efficient routes for bicycle traffic assignment with one or
more user classes.

3.3. Bicycle Traffic Assignment for One or More User Classes

After the generation of efficient routes in Section 3.2, we performed bicycle traffic
assignment based on the generated efficient routes for one or more user classes. For
the user classes, we used the cyclist classification by Geller [41], which includes three
types: strong and fearless, enthused and confident, and interested but concerned. The
percentages of each user class are based on data collected in Portland, Oregon, USA. For
network assignment, we adopted the path size logit (PSL) model as a route choice model
for bicycle traffic assignment. In bicycle traffic assignment literature, Menghini et al. [13]
and Hood et al. [11] adopted the PSL model on a path set using a link elimination approach
and a doubly stochastic shortest path. Broach et al. [4] also used the PSL model on a
pre-generated path set. With the PS value, the PS-logit (PSL) probability for the bicycle
traffic assignment problem with one or more user classes can be expressed as

Prs
k =

PSrs
k · exp

(
Urs

k
)

n
∑

j=1
PSrs

j · exp
(

Urs
j

) , ∀ rs ∈ RS, k ∈ Km
rs (6)

where PSrs
k is the PS factor of path k between the O-D pair rs PSrs

k = ∑
a∈k

(
la/Lrs

k
)
×
(

1/ ∑
l∈Krs

δrs
la

)
;

la is the length of link a; and Lrs
k is the length on path k between the O-D pair rs. Urs

k is the
utility of path k between the O-D pair rs. The utility is as follows:

Urs
k = −

C

∏
c=1

Xrs
kc, ∀rs ∈ RS, k ∈ Km

rs (7)

where Xrs
kc is the route attribute of criterion C on path k between the O-D pair rs; C is the

number of criteria.

4. Numerical Results

To demonstrate the applicability of the bicycle traffic assignment procedure with one
or more user classes, a real bicycle network in the city of Winnipeg, Canada, was used.

4.1. Network Characteristics

In Figure 3, the Winnipeg road network with bike lanes is shown. The network
structure, O-D trip table for motorized vehicles, and link performance parameters are
from Emme/4 (INRO Consultants, Montréal, QC, Canada) a commercial transportation
software. The bicycle network was assembled based on the information obtained from the
city of Winnipeg. Among the 2555 links, 541 links are bike paths or bike lanes. The bicycle
O-D demand was created based on the gravity model using 2006 Census data. Based
on the bicycle commute trip length measurements featured in Aultman-Hall et al. [42],
approximately 99% of trip distances are less than 5.6 miles (9 km). In this study, bicycle
trips with lengths greater than 10.0 km are excluded from the generation of the skim trees
for the gravity model. After excluding non-reasonable skim trees, 7368 O-D pairs were
used to generate the bicycle trip distribution (i.e., 5575 trips). Figure 4 shows the trip length
frequency distribution (TLFD) for bicycle trips.



Sustainability 2021, 13, 11078 7 of 15

Sustainability 2021, 13, x FOR PEER REVIEW  7  of  16 
 

where  rs
kPS   is  the  PS  factor  of  path  k  between  the  O‐D  pair  rs

 
K

/ 1 /
rs

rs rs rs
k a k la

a k l

PS l L 
 

 
   

 
  ;  la  is  the  length of  link a; and  rs

kL   is  the  length on path k 

between the O‐D pair rs.  rs
kU is the utility of path k between the O‐D pair rs. The utility is 

as follows: 

1

, RS, K
C

rs rs m
k kc rs

c

U X rs k


       (7)

where  rs
kcX is the route attribute of criterion C on path k between the O‐D pair rs; C is the 

number of criteria. 

4. Numerical Results 

To demonstrate the applicability of the bicycle traffic assignment procedure with one 

or more user classes, a real bicycle network in the city of Winnipeg, Canada, was used. 

4.1. Network Characteristics 

In  Figure  3,  the Winnipeg  road  network with  bike  lanes  is  shown. The  network 

structure, O‐D  trip  table  for motorized vehicles, and  link performance parameters are 

from Emme/4 (INRO Consultants, Montréal, QC, Canada) a commercial  transportation 

software. The bicycle network was assembled based on the information obtained from the 

city of Winnipeg. Among the 2555 links, 541 links are bike paths or bike lanes. The bicycle 

O‐D demand was created based on the gravity model using 2006 Census data. Based on 

the  bicycle  commute  trip  length measurements  featured  in Aultman‐Hall  et  al.  [42], 

approximately 99% of trip distances are less than 5.6 miles (9 km). In this study, bicycle 

trips with lengths greater than 10.0 km are excluded from the generation of the skim trees 

for the gravity model. After excluding non‐reasonable skim trees, 7368 O‐D pairs were 

used  to generate  the bicycle  trip distribution  (i.e., 5575  trips). Figure 4  shows  the  trip 

length frequency distribution (TLFD) for bicycle trips.   

 

Figure 3. Winnipeg road network with bike lanes. Figure 3. Winnipeg road network with bike lanes.

Sustainability 2021, 13, x FOR PEER REVIEW  8  of  16 
 

 

Figure 4. Bicycle trip length frequency distribution. 

4.1.1. Space Syntax Analysis 

As mentioned in Section 2, space syntax decomposes the large and continuous urban 

spaces into a set of the least number of the longest axial lines (axial map). Each axial line 

represents a cognitive small space, and all of the lines form a spatial network to model 

spatial cognition from the network perspective. To begin the space syntax model analysis, 

the Winnipeg geographical information system (GIS) network obtained from the Emme/4 

software was used as input for the model. We first computed the MD value in Eq. (2) of 

the spatial network using the space syntax software, which was Depth Map software, and 

then  the computed MD was  inputted  into  the network. Figure 5 visualizes  the  spatial 

network according  to  the computed MD value  in  the Winnipeg  road network. Longer 

distance links have relatively higher cognition values (less MD), whereas shorter distance 

links have  relatively  lower  cognition values  (more MD).  In  addition,  residential  areas 

(shown on  the west side of Figure 5) have  lower cognition values  (more MD) because 

more turning is required to approach the area.   

 

Figure 5. Space Syntax analysis of the Winnipeg road network. 

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6 7 8 9 10

C
u
m
u
la
ti
ve
 F
re
q
u
en

cy
 (
%
)

Fr
eq
u
en

cy
(%

) 
 

Route Distance (km)

Frequency

Cumulative Frequency

Figure 4. Bicycle trip length frequency distribution.

4.1.1. Space Syntax Analysis

As mentioned in Section 2, space syntax decomposes the large and continuous urban
spaces into a set of the least number of the longest axial lines (axial map). Each axial
line represents a cognitive small space, and all of the lines form a spatial network to
model spatial cognition from the network perspective. To begin the space syntax model
analysis, the Winnipeg geographical information system (GIS) network obtained from the
Emme/4 software was used as input for the model. We first computed the MD value in
Equation (2) of the spatial network using the space syntax software, which was Depth Map
software, and then the computed MD was inputted into the network. Figure 5 visualizes
the spatial network according to the computed MD value in the Winnipeg road network.
Longer distance links have relatively higher cognition values (less MD), whereas shorter
distance links have relatively lower cognition values (more MD). In addition, residential
areas (shown on the west side of Figure 5) have lower cognition values (more MD) because
more turning is required to approach the area.
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Figure 5. Space Syntax analysis of the Winnipeg road network.

In theory, the space syntax network is the urban spatial structure, which reflects
the way that people perceive the space. The imbalanced spatial structure of the cycle
network depicted by space syntax reflects how the space is self-organized in the same
way as a complex system: a large percentage of the routes (in green and yellow) possess
low cycling route cognition, while a small percentage of the routes (in red) have high
cycling route cognition according to the visualization in Figure 5. By nature, the way
people perceive space can be well represented by the complex spatial network structure
from the “global” perspective instead of the “local” turns. Therefore, the network-based
parameter MD can adequately depict the route cognition for cyclists in this network. As
shown in Figure 6, the probability distributions of the centrality degree in Winnipeg’s
spatial network demonstrate an exponential distribution, indicating the scaling property of
complex networks and is consistent with previous studies. The heavy-tailed distribution
further validates the imbalanced phenomenon of a complex system and supports the
applicability of space syntax in route cognition.
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4.1.2. Bicycle Level of Service

Figure 7a,b show the Bseg and IntBLOS distributions based on the first two terms of
Equation (5) from HCM. From these two measures, the route BLOS is calculated using
Equation (5).
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Figure 7. Segment and intersection LOS distributions of the Winnipeg road network (a) Segment LOS distribution,
(b) Intersection LOS distribution.

4.2. Single User Class Traffic Assignment

Four scenarios are set up for a single-user class. Scenarios 1 and 2 assume that users
use a single criterion to choose their travel paths (distance for Scenario 1 and cognition for
Scenario 2). Conversely, Scenarios 3 and 4 assume that users use multiple criteria to choose
their travel paths (distance and cognition for Scenario 3 and distance, cognition, and BLOS
for Scenario 4). Based on the setup, the bicycle traffic assignment procedure first generates a
set of efficient routes based on the adopted criteria in the four scenarios. Figure 8 provides
the results of the route distribution based on the four scenarios. Figure 8a–c show the results
of the single-criterion route distribution using cognition, distance, and BLOS, respectively,
while Figure 8d compares the total number of efficient routes and the average values for
each attribute in the four scenarios.
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Figure 8. Cont.
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Figure 8. Route distribution by route criterion for four scenarios and average measurements and total number of efficient
routes (a) Route distribution by cognition, (b) Route distribution by distance, (c) Route distribution by BLOS, (d) Average
route measurements and generated number of paths.

There are two major effects that occur when more criteria are added into the analysis:
(1) both the average values for route cognition and route distance increase, and (2) the
average values of the route BLOS decrease. The first major effect (increased route cognition
and route distance values) can be explained by the increase in the total generated routes
(i.e., from 7368 routes in the two single-criterion scenarios to 16,909 routes in the bi-criteria
scenario and 64,653 routes in the tri-criteria scenario). The second effect (decreased BLOS
values) can be explained by examining Scenarios 3 and 4. When the BLOS criterion is
finally included in the tri-criteria analysis of Scenario 4, the route measurement value of
BLOS is minimized. In the bi-criteria analysis of Scenario 3, which does not include route
BLOS, the average attribute measurements decrease because the route BLOS is negatively
correlated with route distance.

Using the efficient routes generated for one or more user classes in the four scenarios,
we performed the bicycle traffic assignment by loading the bicycle O-D trip tables according
to the PSL route choice probabilities. In this study, the following multiplicative utility
function was used:

Urs
k = −

(
(drs

k )
α·(BLOSrs

k )
β·(RCrs

k )γ
)

, ∀rs ∈ RS, k ∈ Km
rs (8)

with the parameters α = 0.862; β = 0.117(these two values are obtained from Kang and
Fricker [43] for route distance and route BLOS) and γ = 0.05 (this value is assumed for
route cognition).

Figure 9 depicts the link flow pattern for the four scenarios. As seen in the sub-
figures, the flow patterns are different, especially in the central business district (CBD)
area. Because the generated efficient routes and the route choice utility with different
criteria are different, the flow patterns are also shown differently. When a single criterion
is used (e.g., Scenario 1(a) and Scenario 2(b)), the flows are more concentrated on major
roads using the best path of the indicated criterion, while the flows in Scenario 3(c) and
Scenario 4(d) are more dispersed to multiple efficient routes generated according to the
bi-objective and tri-objective shortest path procedures. Table 1 shows the effects of using
different quantities of criteria with respect to the cognition measurement. As it can be
seen, when a certain criterion is used in the traffic assignment, the calculations result in the
lowest value for that criterion category (e.g., lowest values are marked in red). From these
values, we can observe how route cognition is related to other criteria. For example, we
can observe that the minimization of any one specific criterion could lead to increases in all
of the other criteria values for their respective criterion categories. However, the increasing
rate of the distance measurement and the BLOS measurement is relatively smaller when
route cognition is used in single criterion analysis. The BLOS is minimized to 3.85 when
the distance criterion was used, but the BLOS is even further minimized to 3.84 when the
cognition criterion was used. Likewise, the route distance under the BLOS criterion was
minimized to 6.18 but became further minimized to 5.04 under the cognition criterion.
This implies that route complexity (route cognition) is not an independent attribute; it is
correlated to other attributes in route choice decision-making.
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Table 1. Summary of assigned link flows.

Used Criteria Distance (km) BLOS Cognition

Distance 4.79 3.85 87.17
BLOS 6.18 3.31 110.61

Cognition 5.04 3.84 81.56

Distance/BLOS 5.18 3.61 95.17
Distance/Cognition 4.87 3.84 84.66

BLOS/Cognition 5.64 3.54 95.36

All 5.19 3.65 92.89

4.3. Multiple User Class Traffic Assignment

Based on the Portland study (Geller, 2006) [41], multi-class bicycle O-D trip tables
were created: (1) strong and fearless cyclists (1.5% of the population, 82 trips), (2) enthused
and confident cyclists (10.3% of the population, 574 trips), and (3) interested but concerned
cyclists (88.2% of the population, 4919 trips). The total number of trips in the dataset is
5575, which is the same as the single user class in Section 4.1, representing an average user
for all cyclists. There is a fourth user class (no way no how), but it is not considered in
the bicycle traffic assignment procedure. Dill and McNeil [44,45] explored this topic in
more detail and updated the percentage of cyclist types in the Portland metro area and
national metro area, respectively. For the purposes of this study, we assumed the following:
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the strong and fearless cyclist class (Class 1) is only concerned with route distance; the
enthused and confident cyclist class (Class 2) considers route cognition and route distance;
and the interested but concerned cyclist class (Class 3) adopts all criteria (route cognition,
route distance, and route BLOS). For the bicycle assignment, the same parameters used in
the single user class assignment were adopted.

Figure 10 presents the assigned link flow of each class. For the link flow pattern of
Class 1(a), which uses distance as its only criterion, the assigned demand is 82 trips (1.5% of
total demand). In contrast, Class 2(b) has assigned flows of 574 trips with its dual distance
and cognition attributes, and Class 3(c) has assigned flows of 4919 trips with its distance,
cognition, and BLOS attributes. The link flow patterns of the three classes (a)–(d) are quite
different since different trips and route utilities are being used to assign the O-D demand
of each class.
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In Figure 10, we can observe the changes made to average travel characteristics
(cognition, distance, and BLOS), as different criteria are used in the route choice model.
Class 1 has the minimum distance value (i.e., 4.79 km), but its other values are higher
compared to the other two classes. Class 2 has lower cognition and BLOS values compared
to Class 1, but its distance is a little bit longer, while Class 3 has a much lower BLOS
compared to either Class 1 or 2, but its distance and cognition values are relatively large
due to the addition of BLOS as one of the route choice criteria. These results imply that:
(1) route cognition and route distance have a slight negative correlation and that (2) route
BLOS has a relatively stronger negative correlation with route cognition and route distance.
This makes intuitive sense because route cognition is a form of route difficulty (such as
distance and slope); it is not the physical measure of route difficulty but rather the perceived
measure of how much effort the cyclist may need to provide to make their trip successful.
Since route cognition and route distance are both forms of route difficulty, they would not
share a strong negative relationship. This is proven in the data: when route cognition was
added into the analysis (comparing Class 1 with Class 2), route cognition decreased from
87.17 to 84.66 while route distance increased from 4.79 to 4.87. These route cognition and
distance differences from Class 1 and 2 are much smaller than in Class 3 or Class 4. As for
route BLOS, it makes sense that the routes with the highest values of BLOS would avoid
excessive turning (route cognition) because collisions are intuitively more likely to occur
during turning.

However, routes with more turns may be relatively shorter in distance. Thus, in
avoiding turns, the routes that concentrate on BLOS are longer. Table 2 presents the average
traveled distance, BLOS, and cognition values between single user classes and multiple
user classes. As it can be seen, the average traveled values are slightly different. In the
all-criteria analysis, using multi-class assignment resulted in better performance in terms
of traveled distance and the traveled cognition compared to the single class case study.
However, the traveled BLOS increased slightly from 3.65 to 3.67.

Table 2. Average traveled distance, BLOS, and cognition with different combinations of criteria.

Used Criteria Distance (km) BLOS Cognition

Single-userclass

Distance 4.79 3.85 87.17
Distance/BLOS 5.18 3.61 95.17
Distance/cognition 4.87 3.84 84.66

All 5.19 3.65 92.89

Multiple-user class 5.15 3.67 91.96

5. Conclusions

The cognition effect may not be observed from traditional tangible data sources
(e.g., count data, GPS data, etc.), but the cognition factor is important in decision making.
In this paper, we presented the route cognition effect using the space syntax theory in a
multi-class and multi-criteria bicycle traffic assignment model. The route cognition factors
were obtained from network topology. To consider other affected factors, we incorporated
route distance and route safety as route choice decisions. The overall procedure consists
of route generation and flow allocation using a path size logit model. A real network in
Winnipeg, Canada, was used to demonstrate its applicability. The Winnipeg experiment
revealed three main outcomes: First, minimizing one specific criterion led to increases in
all of the other criteria values. Second, the flow allocations were highly sensitive to the
number of criteria. Finally, the flow patterns between the single-class model and multi-class
model are significantly different. This implies that route cognition is not an independent
attribute; it is correlated to other attributes in the route choice decision-making of each user
class. From the model, we can infer which links or segments have more bicycle flows, and
this information could help policymakers determine what policies or plans to implement
for cyclists based on the estimated flows. In addition, this information will help cyclists
determine which route is suitable for them. Hence, the proposed model will contribute
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to the following bicycle network models: (a) bicycle facility design problems, (b) bicycle
network planning models, and (c) bicycle route planning and cycling navigation.

Future research concerning route cognition models should incorporate traveler charac-
teristics into the analysis and should conduct more tests with different network topologies
and bicycle facilities. Observed route and count data should also be attained to help
support the modeled route cognition results. In addition, the proposed model could be
extended to consider other bike types (e.g., e-bikes) and other modes of transportation (e.g.,
walking). However, there is another variable, electric charging, and it is necessary to set up
other criteria to solve this problem. For walking, it is useful to apply the proposed model
after setting the criteria that are considered when walking.

Author Contributions: Conceptualization, S.R. and A.C.; methodology, S.R. and A.C.; formal analy-
sis, S.R. and A.C.; investigation, X.L. and J.Y.; writing—original draft preparation, S.R., A.C. and J.S.;
writing—review and editing, A.C. and J.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Ministry of Science, ICT, Republic of Korea (K-21-L01-
C05-S01), the Smart Cities Research Institute (P0036472), and the Research Institute for Sustainable
Urban Development (1-BBWF and P0038289) at the Hong Kong Polytechnic University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available, upon request, from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martens, K. Promoting bike-and-ride: The Dutch experience. Transp. Res. Part A 2007, 41, 326–338. [CrossRef]
2. Nam, D.; Yang, D.; An, S.; Yu, J.G.; Jayakrishnan, R.; Masoud, N. Designing a transit-feeder system using multiple sustainable

modes: Peer-to-Peer (P2P) ridesharing, bike sharing, and walking. Transp. Res. Rec. 2018, 2672, 754–763. [CrossRef]
3. 2017 NHTS Data User Guide; Federal Highway Administration and Westat: Washington, DC, USA, 2018.
4. Broach, J.; Dill, J.; Gliebe, J. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp.

Res. Part A 2012, 46, 1730–1740. [CrossRef]
5. Fernández-Heredia, Á.; Monzón, A.; Jara-Díaz, S. Understanding cyclists’ perceptions, keys for a successful bicycle promotion.

Transp. Res. Part A 2014, 63, 1–11. [CrossRef]
6. Bauer, M.; Kisielewski, P. The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of

Tarnow. Sustainability 2021, 13, 5922. [CrossRef]
7. Ryu, S.; Chen, A.; Su, J.; Choi, K. Two-stage bicycle traffic assignment model. J. Transp. Eng. Part A: Syst. 2018, 144, 04017079.

[CrossRef]
8. Ryu, S.; Chen, A.; Su, J.; Choi, K. A multi-class, multi-criteria bicycle traffic assignment model. Int. J. Sustain. Transp. 2021, 15,

524–540. [CrossRef]
9. Guo, X.; Lu, C.; Sun, D.; Gao, Y.; Xue, B. Comparison of Usage and Influencing Factors between Governmental Public Bicycles

and Dockless Bicycles in Linfen City, China. Sustainability 2021, 13, 6890. [CrossRef]
10. Nikitas, A.; Tsigdinos, S.; Karolemeas, C.; Kourmpa, E.; Bakogiannis, E. Cycling in the Era of COVID-19: Lessons Learnt and Best

Practice Policy Recommendations for a More Bike-Centric Future. Sustainability 2021, 13, 4620. [CrossRef]
11. Hood, J.; Sall, E.; Charlton, B. A GPS-based bicycle route choice model for San Francisco, California. Int. J. Transp. Res. 2011, 3,

63–75. [CrossRef]
12. Wang, J.Y.T.; Dirks, K.N.; Ehrgott, M.; Pearce, J.; Cheung, A.K.L. Supporting healthy route choice for commuter cyclists: The

trade-off between travel time and pollutant dose. Oper. Res. Health Care 2018, 19, 156–164. [CrossRef]
13. Menghini, G.; Carrasco, N.; Schussler, N.; Axhausen, K.W. Route choice of cyclists in Zurich. Transp. Res. Part A 2010, 44, 754–765.

[CrossRef]
14. Ehrgott, M.; Wang, J.; Raith, A.; van Houtte, A. A bi-objective cyclist route choice model. Transp. Res. Part A 2012, 46, 652–663.

[CrossRef]
15. Broach, J.; Gliebe, J.; Dill, J. Calibrated labeling method for generating bicyclist route choice sets incorporating unbiased attribute

variation. Transp. Res. Rec. 2010, 2197, 89–97. [CrossRef]
16. Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984.
17. Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 1996.

http://doi.org/10.1016/j.tra.2006.09.010
http://doi.org/10.1177/0361198118799031
http://doi.org/10.1016/j.tra.2012.07.005
http://doi.org/10.1016/j.tra.2014.02.013
http://doi.org/10.3390/su13115922
http://doi.org/10.1061/JTEPBS.0000108
http://doi.org/10.1080/15568318.2020.1770906
http://doi.org/10.3390/su13126890
http://doi.org/10.3390/su13094620
http://doi.org/10.3328/TL.2011.03.01.63-75
http://doi.org/10.1016/j.orhc.2018.04.001
http://doi.org/10.1016/j.tra.2010.07.008
http://doi.org/10.1016/j.tra.2011.11.015
http://doi.org/10.3141/2197-11


Sustainability 2021, 13, 11078 15 of 15

18. Aldred, R.; Dales, J. Diversifying and normalising cycling in London, UK: An exploratory study on the influence of infrastructure.
J. Transp. Health 2017, 4, 348–362. [CrossRef]

19. Batty, M.; Rana, S. The automatic definition and generation of axial lines and axial maps. Environ. Plan. B Plan. Des. 2004, 31,
615–640. [CrossRef]

20. McCahil, C.; Garrick, N. The applicability of space syntax to bicycle facility planning. Transp. Res. Rec. 2008, 2074, 46–51.
[CrossRef]

21. Hillier, B.; Burdett, R.; Peponis, J.; Penn, A. Creating life; or, does architecture determine anything? Arch. Comport. Arch. Behav.
1987, 3, 233–250.

22. Hillier, B. The common language of space: A way of looking at the social, economic and environmental functioning of cities on a
common basis. J. Environ. Sci. 1999, 11, 344–349.

23. Eisenberg, B. Space syntax on the waterfront: The Hamburg case study. In Proceedings of the 5th International Space Syntax
Symposium, Delft, The Netherlands, 13–17 June 2005; pp. 342–353.

24. Dhanani, A.; Tarkhanyan, L.; Vaughan, L. Estimating pedestrian demand for active transport evaluation and planning. Transp.
Res. Part A 2017, 103, 54–69. [CrossRef]

25. Manum, B.; Nordstrom, T. Integrating bicycle network analysis in urban design: Improving bikeability in Trondheim by
combining space syntax and GIS-methods using the place syntax tool. In Proceedings of the 9th International Space Syntax
Symposium, Seoul, Korea, 31 October–3 November 2013; pp. 28.1–28.14.

26. Law, S.; Sakr, F.; Martinez, M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax
perspective. Behav. Sci. 2014, 4, 278–300. [CrossRef] [PubMed]

27. Liu, Z.; Song, Z.; Chen, A.; Ryu, S. Exploring Bicycle Route Choice Behavior with Space Syntax Analysis; Report 15–13; Transportation
Research Center for Livable Communities (TRCLC): Kalamazoo, MI, USA, 2016.

28. Dawson, P. Analysing the effects of spatial configuration on human movement and social interaction in Canadian Arctic
communities. In Proceedings of the 4th International Space Syntax Symposium, London, UK, 17–19 June 2003; pp. 37.1–37.14.

29. Lee, S.; Ryu, S. Multiple path-finding models using Kalman filtering and space syntax techniques. Transp. Res. Rec. 2007, 2029,
87–95. [CrossRef]

30. Paul, A. Reviewing the axial-line approach to capturing vehicular trip-makers’ route-choice decisions with ground reality.
Transportation 2013, 40, 697–711. [CrossRef]

31. Turner, A. Angular analysis. In Proceedings of the 3rd International Space Syntax Symposium, Atlanta, GA, USA, 7–11 May 2001;
pp. 30.1–30.11.

32. Turner, A.; Dalton, A.T.N. A simplified route choice model using the shortest angular path assumption. In Proceedings of the 8th
International Conference on GeoComputation, Ann Arbor, MI, USA, 5–8 October 2008; Volume 31.

33. Turner, A. From axial to road-centre lines: A new representation for space syntax and a new model of route choice for transport
network analysis. Environ. Plan. B Plan. Des. 2007, 34, 539–555. [CrossRef]

34. Mekuria, M.; Furth, P.; Nixon, H. Low-Stress Bicycling and Network Connectivity; Mineta Transportation Institute, San José State
University: San José, CA, USA, 2012.

35. Tran, P.T.M.; Zhao, M.; Yamamoto, K.; Minet, L.; Nguyen, T.; Balasubramanian, R. Cyclists’ personal exposure to traffic-related air
pollution and its influence on bikeability. Transp. Res. Part D 2020, 88, 102563. [CrossRef]

36. Castañon, U.N.; Ribeiro, P.J. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability
2021, 13, 2394. [CrossRef]

37. Schmid-Querg, J.; Keler, A.; Grigoropoulos, G. The Munich Bikeability Index: A practical approach for measuring urban
bikeability. Sustainability 2021, 13, 428. [CrossRef]

38. Highway Capacity Manual; Transportation Research Board: Washington, DC, USA, 2011.
39. Dowling, R.G.; Reinke, D.B.; Flannery, A.; Ryus, P.; Vandehey, M.; Petritsch, T.A.; Landis, B.W.; Rouphail, N.M.; Bonneson, J.A.

Multimodal Level of Service Analysis for Urban Streets Multimodal Level of Service Analysis for Urban Streets; Report 616; National
Cooperative Highway Research Program: Washington, DC, USA, 2008.

40. Climaco, J.C.N.; Martins, E.Q.V. A bicriterion shortest path problem. Eur. J. Oper. Res. 1982, 11, 399–404. [CrossRef]
41. Geller, R. Four Types of Cyclists. Portland Bureau of Transportation, Portland, OR. 2006. Available online: http://www.

portlandoregon.gov/transportation/article/264746 (accessed on 13 December 2014).
42. Aultman-Hall, L.; Hall, F.; Baetz, B. Analysis of bicycle commuter routes using geographic information systems implications for

bicycle planning. Transp. Res. Rec. 1997, 1578, 102–110. [CrossRef]
43. Kang, L.; Fricker, J. Bicycle route choice model incorporating distance and perceived risk. J. Urban Plan. Dev. 2018, 144, 09018001.

[CrossRef]
44. Dill, J.; McNeil, N. Four types of cyclists? Examination of typology for better understanding of bicycling behavior and potential.

Transp. Res. Rec. 2013, 2387, 129–138. [CrossRef]
45. Dill, J.; McNeil, N. Revisiting the four types of cyclists: Findings from a national survey. Transp. Res. Rec. 2016, 2587, 90–99.

[CrossRef]

http://doi.org/10.1016/j.jth.2016.11.002
http://doi.org/10.1068/b2985
http://doi.org/10.3141/2074-06
http://doi.org/10.1016/j.tra.2017.05.020
http://doi.org/10.3390/bs4030278
http://www.ncbi.nlm.nih.gov/pubmed/25379282
http://doi.org/10.3141/2029-10
http://doi.org/10.1007/s11116-012-9436-3
http://doi.org/10.1068/b32067
http://doi.org/10.1016/j.trd.2020.102563
http://doi.org/10.3390/su13042394
http://doi.org/10.3390/su13010428
http://doi.org/10.1016/0377-2217(82)90205-3
http://www.portlandoregon.gov/transportation/article/264746
http://www.portlandoregon.gov/transportation/article/264746
http://doi.org/10.3141/1578-13
http://doi.org/10.1061/(ASCE)UP.1943-5444.0000485
http://doi.org/10.3141/2387-15
http://doi.org/10.3141/2587-11

	Introduction 
	Space Syntax Model 
	Overview of Bicycle Traffic Assignment Model 
	Criteria Affecting Cyclists’ Travel 
	Route Cognition 
	Route Distance 
	Route Safety 

	Route Generation 
	Bicycle Traffic Assignment for One or More User Classes 

	Numerical Results 
	Network Characteristics 
	Space Syntax Analysis 
	Bicycle Level of Service 

	Single User Class Traffic Assignment 
	Multiple User Class Traffic Assignment 

	Conclusions 
	References

