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Abstract: PM2.5 concentration prediction is an important task in atmospheric environment research,
so many prediction models have been established, such as machine learning algorithm, which shows
remarkable generalization ability. The time series data composed of PM2.5 concentration have
the implied structural characteristics such as the sequence characteristic in time dimension and
the high dimension characteristic in dynamic-mode space, which makes it different from other
research data. However, when the machine learning algorithm is applied to the PM2.5 time series
prediction, due to the principle of input data composition, the above structural characteristics can
not be fully reflected. In our study, a neighbor structural information extraction algorithm based on
dynamic decomposition is proposed to represent the structural characteristics of time series, and a
new hybrid prediction system is established by using the extracted neighbor structural information
to improve the accuracy of PM2.5 concentration prediction. During the process of extracting neighbor
structural information, the original PM2.5 concentration series is decomposed into finite dynamic
modes according to the neighborhood data, which reflects the time series structural characteristics.
The hybrid model integrates the neighbor structural information in the form of input vector, which
ensures the applicability of the neighbor structural information and retains the composition form
the original prediction system. The experimental results of six cities show that the hybrid prediction
systems integrating neighbor structural information are significantly superior to the traditional
models, and also confirm that the neighbor structural information extraction algorithm can capture
effective time series structural information.

Keywords: PM2.5 concentration prediction; dynamic decomposition; neighbor structural information
extraction; hybrid prediction model

1. Introduction

In 2015, PM2.5 was considered the fifth leading risk factor of death, which has caused
4.2 million deaths worldwide [1,2]. Being an essential index to describe the quality of
atmospheric environment, the higher the PM2.5 concentration is, the more serious the
air pollution is [3]. PM2.5 mostly stems from the burning of fossil fuels and industrial
production processes, which often carry toxic organic ingredients and heavy metals, posing
serious health problems to human beings [4–6]. Many research studies and investigations
have confirmed that PM2.5 is an important inducer of cardiovascular diseases, lung can-
cer and respiratory system diseases and so on [5,7,8]. It is noteworthy that particulate
matter induces oxidative stress leading to potential cell damages [9]. With high PM2.5
concentration, North China is a representative city cluster with poor air quality, which has
aroused great concern of the public and the government [10,11]. Therefore, for the purpose
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of mitigating its impacts on human health and welfare, accurate and effective prediction of
PM2.5 concentration is an important means [12].

At present, the Air Quality Forecast (AQF) Systems is mainly divided into determin-
istic and empirical models in terms of techniques [7,8,13,14]. Relevant research shows
that the deterministic models, based on physicochemical process to simulate the highly
complex transport and diffusion process of air pollutants, can not fully explicate the high
dimensional nonlinearity of the correlated substances forming air pollutants in that the
pollution sources and model parameters are uncertain, which leads to the result that the
prediction accuracy of the deterministic models are lower than that of the well-developed
data-driven empirical models [7,15,16]. However, the empirical models, especially the
machine learning models with large amount of research data as modeling elements, can
simplify the modeling process and accurately represent the complicated non-linear rela-
tionships between the predicted pollutant concentration and potential influencing factors
and have a good generalization ability [7,15,17]. The artificial neural network (ANN)
with self-learning mechanism and support vector machine (SVM) aiming at structural
risk minimization can accurately simulate the nonlinear characteristics of atmospheric
motion and widely apply to the single-step and multi-step prediction of atmospheric
pollutant concentration [3,7,18–21]. Qi et al. [12] put forward a hybrid prediction model
for the PM2.5 concentration, which is a combination of deep learning methods and the
long-short memory (LSTM) with historical pollutant concentration, meteorological data,
spatial and temporal terms as system inputs. MA et al. [22] constructed a new interpola-
tion/extrapolation algorithm using LSTM neural network, which had been successfully
used in PM2.5 prediction. Suleiman et al. [18] analyzed the emission reduction effect of
traffic-related PM10 and PM2.5 of 19 stations in London by using the evaluation system built
by ANN, BRT (boosted regression tree) and SVM. Zheng et al. [2] extracted the dynamic
variation characteristics of daily satellite images based on the convolutional neural net-
work, and then applied random forest regression to achieve ground-level PM2.5 estimation.
Zhou et al. [23] integrated copula function into a hybrid model composed of multiple
deterministic ANN and Bayesian models, effectively eliminating data conversion and error
correction process in order to obtain accurate ensemble probability prediction of PM2.5.
Zhou et al. [15] probed into a new multi-objective SVM which could effectively solve the
error accumulation problem and effectively enhance the forecasting accuracy of PM2.5 in
Taipei City. Yang et al. [24] proposed a space-time SVM that could tackle spatial heterogene-
ity with performance superior to the benchmark model on Beijing’s PM2.5 concentration
prediction task. Biancofiore et al. [25] compared the results of PM10 and PM2.5 simulation
experiments of the recursive neural network, the multiple linear regression and traditional
ANN in the Adriatic coast for three years, which showed that the improved model presents
superior generalization ability. Niu et al. [3] constructed a mixed system with daily PM2.5
concentration decomposed by empirical mode decomposition as input information of tradi-
tiong SVM to significantly improve the precision of single-step prediction and the ability of
direction judgment. Neto et al. [26] extracted the "deterministic" component in time series
by decomposition, which is combined with four ANNs to improve the prediction accuracy
of PM2.5 and PM10.

From the above research, we can find out that machine learning algorithm is very
appropriate for PM2.5 time series analysis, especially its combination with other different
intelligent algorithms can significantly improve the applicability of general model for
specific data. Whether ANN or SVM is used to process time series prediction, its principle
is to determine the nonlinear relationship between the independent variable x composed
of lags information and the dependent variable y representing the future value [27]. It can
also be understood that the information needed for time series prediction comes from the
observation values close to the prediction point. To a large extent, how to fully mine the
information representation ability of neighbor data is the key to gain better performance
for prediction tasks. In many prediction systems based on machine learning models, the
neighbor structural information is expressed as input-matrix consisting of the lags in the
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past domain, which can be identified by partial auto-correlation functions (PACF) [28–30].
The input structure of the prediction model only depends on the lag term and can not
reflect the structural information of the sequence composed of the neighbor data used for
prediction. For example, this leads to the loss of temporal correlation between adjacent data
at different time points that is a very important feature of time series data. Undoubtedly,
this disadvantage is the shackle to improve the generalization ability of prediction model.
We believe that time series data constitute an implicit function, so the observation value
of a prediction time point is determined by the implicit function of its neighbor sequence.
Because of the dynamic and complexity of the time series, the function of the neighbor
sequence is likely to be different for the prediction target at different time. Therefore, it is
hoped that the best approximation function can be constructed according to the neighbor
sequence of different prediction time points to reflect the internal structure of data as much
as possible, so as to fully represent the neighbor structural information.

In our study, we put forward a new hybrid prediction system combining the neigh-
bor structural information, which is characterized by time series structure based on the
principle of dynamic decomposition. It solves the issues such as the difficulty to determine
the lag order and the unexpressed sequence characteristics of the time series data in the
time dimension when the traditional machine learning algorithm is applied to time series
prediction. The innovations of this paper can be described as follows: (1) a novel neighbor
structural information extraction model is put forward by means of dynamic decompo-
sition, which embodies the time structural characteristics in the dynamic-mode space
and uses the optimal combination to construct the neighbor structural information series;
(2) a new hybrid prediction system is constructed, which is based on machine learning
algorithms and integrates neighbor structural information in a simple way to obtain higher
PM2.5 concentration prediction accuracy.

2. Study Area and Available Data

North China is embedded in an area with Yan Mountain in the north and Taihang
Mountain in the west, which contributes to the accumulation of aerosols and leads to
frequent pollution incidents [31]. Because North China, including the political and eco-
nomic center of China, is one of the most polluted areas, Beijing, Tianjin, Shijiazhuang,
Taiyuan, Zhengzhou and Jinan, being representative cities of North China, are selected as
the sampling sites for atmosphere pollution analysis[31,32].

Figure 1 exhibits the distribution of sampling sites above. The research data include six
pollutants monitored at a frequency of one hour [33]. The observation time of the research
data spans from 1 January 2019 to 31 January 2019, including 744 observation samples,
each of which is a vector composed of PM2.5, PM10, SO2, NO2, O3 and CO. Compared with
daily or monthly data, hourly concentration data displays the stronger dependence in time
dimension, that is, the prediction pollutant concentration is closely related to the neighbor
samples. Therefore, it is very reasonable and meaningful for such data set to be selected to
study the series neighbor structural information.
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Figure 1. DEM map of the studied area with data acquisition sites (solid black circle).

3. Methods

When machine learning algorithms are applied to time series prediction, it is inevitable
to determine the functional relationship y′ = f (X, Y) between the independent variable
X, which is composed of the past time series, and the dependent variable Y (predicted
values), where f represents the prediction model and y′ is the prediction result. The
normalized input variables of the prediction system are measured in equal interval obser-
vation, which can include both the historical values of the prediction target and the related
influence factors. The task of the machine learning models is to build prediction model
y′t+1 = f (Xt, . . . , Xt−n) in essence that uses the n-dimensional features with n lagged vari-
able to interpret the input variables Xi = {xi,1, . . . , xi,m}. From the above analysis, we can
find that in the modeling process of machine learning model, there is not enough attention
to the structural characteristics, such as the sequence feature of time series data in time
dimension and the noise interference of time series. We can think that the value of a certain
time point in the time series is closely related to its adjacent data in its neighborhood,
which is determined by the fitting function of the historical data in the neighborhood.
Accordingly, for the sake of higher accurate prediction accuracy, it can be regarded as an
effective means to mine the neighbor structural information.

3.1. Neighbor Structural Information Extraction Algorithm Based on Time Series
Dynamic Decomposition

This paper proposes a method of extracting neighbor structural information based
on dynamic decomposition, which can make full use of the unrevealed dynamics of time
series. We first divide the time series into several parts to separate the dynamic modes
that are helpful to the forecasting, then the optimal combination of the decomposed time
series is carried out to extract the neighbor structural information. For any given series
r(t), it is well known that the prediction of t f time point mainly depends on the time series
information before t f . Further more, the value of t f is more sensitive to the time series
data closer to it, that is, the data that are closer to t f in time dimension show stronger
correlation. The dependence decays asymptotically to zero as the distance dist(t, t f )→ ∞.
This characteristic will be reflected in the newly developed method.

We give an example to show the main idea of dynamic decomposition of the time series.
For clear understanding, we consider the continuous time series. Let r be a sinusoidal
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signal with frequency ω and amplitude α, i.e., r(t) = α sin ωt. Injecting r into two stable
first order systems with zero initial state, we have

ẋj(t) = −λjxj(t) + r(t), xj(0) = 0, λj > 0, j = 1, 2. (1)

A simple computation shows that

xj(t) =
αλ2

j

λ2
j + ω2

(
1
λj

sin ωt− ω

λ2
j

cos ωt +
ω

λ2
j

e−λjt

)
(2)

and thus
r ∈ span{x1 − ε1, x2 − ε2}, λ1 6= λ2, (3)

where

ε j(t) =
αλ2

j

λ2
j + ω2

ω

λ2
j

e−λjt → 0 as t→ ∞, j = 1, 2. (4)

As a consequence of Formula (3), there exist two constants k1 and k2 such that

r(t) = k1[x1(t)− ε1(t)] + k2[x2(t)− ε2(t)], (5)

which implies that, when t or λj is large enough,

r(t) ≈ r̄(t) = k1x1(t) + k2x2(t). (6)

The Formula (6) shows that the projection of r on the space span{x1 − ε1, x2 − ε2} can
approximate r in some sense. Notice that

xj(t) =
∫ t

0
e−λj(t−s)r(s)ds =

∫ t

0
e−λjsr(t− s)ds, (7)

xj(t) is a weighted mean value of r with respect to the weight function e−λjt. Since the
weight function is exponentially stable, the time series decomposition mainly uses the
neighbor structural information before t. Moreover, since system Equation (1) is stable, the
high frequency noise added in r can be filtered. In other words, such an approximation is
robust to the high frequency noise.

To sum up, there are four highlights for the dynamic series decomposition:

• Separate the dynamic modes hidden in the time series itself so that we can use the
neighbor structural information sufficiently by optimized combination;

• We are able to choose the neighbor structural information by the tuning the parameter
λj, j = 1, 2, that reflects the characteristic of the time series we mentioned above;

• Compared with machine learning models, the structural characteristics of time series
data in time dimension are preserved;

• The white noise in the time series are filtered. So such a decomposition is robust to
the white noise.

Now, we return to the general case. Suppose that (A, B) is controllable with state
space Rn and input space R. Let r(t) be a general time series. We divide the series r by the
following system

ẋ(t) = Ax(t) + Br(t). (8)

We solve Equation (8) to get

x(t) = (x1(t), x2(t), · · · , xn(t))> =
∫ t

0
eA(t−s)Br(s)ds, (9)

which implies that the information of the injection r(t) is decomposed into n parts and is
contained in the components xj(t), j = 1, 2, · · · , n. Inspired by the aforementioned example,
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the projection of r̄ on span{x1, x2, · · · , xn} can approximate r effectively. Moreover, such
an approximation is robust to the white noise in some sense because the high frequency
noise can be filtered by the integral in Equation (9) provided A is Hurwitz.

The choice of A, B and the order n depends on the prior information of time se-
ries r. The tuning parameter −λ(A) is the largest real part of eigenvalue of A, i.e.,
λ(A) = max{Res | s ∈ σ(A)}, where σ(A) is the spectrum of the matrix A. Roughly speak-
ing, the criterion of the order n is that guarantee n is lager than the modes that contained in
r. The choice of λ(A) is depends on the sampling frequency of the time series. The higher
the frequency is, the larger the parameter λ(A) is required.

3.2. The Hybrid Model Based on Neighbor Structural Information for PM2.5
Concentration Prediction

In order to utilize the neighbor structural information effectively, a hybrid model
which combines the neighbor structural information with the traditional machine learning
algorithm is proposed. The basic idea of the hybrid model is to integrate the neighbor
structural information into the modeling data set in the form of input vector elements.
Compared with the traditional modeling process, although the steps of neighbor structural
information extraction will increase, the efficiency of the prediction system will not be
reduced considering the simple implementation of the neighbor structural information
extraction algorithm. It can be seen that the effectiveness of neighbor structural information
is the key to improving the generalization ability of hybrid prediction system. The modeling
flow of the hybrid system is illustrated by Figure 2, and the specific process based on
neighbor structural information is shown via the following Algorithm 1.

Algorithm 1 PM2.5 concentration prediction hybrid model based on neighbor structural information

Require: the data set {(xi, yi)}t
i=1, where xi = (PM2.5i−1 , PM10i−1 , SO2i−1 , NO2i−1 , O3i−1 , COi−1) is the input vector com-

posed of influence factors at time i, and yi is the output formed by the concentration value of PM2.5 at the correspond-
ing time.

Ensure: the prediction value f (x
′
t+1) of PM2.5 at time t + 1.

1: Composing one-dimensional time series r(t) = {PM2.51 , . . . , PM2.5t} with PM2.5 concentration values, and then
obtaining the neighbor structural information {r̄1, . . . , r̄t} via the neighbor structural information extraction algorithm.

2: Forming the training data set {(x
′
i , yi)}t

i=1, where x
′
i = (r̄i−1, PM2.5i−1 , PM10i−1 , SO2i−1 , NO2i−1 , O3i−1 , COi−1) entails

the neighbor structural information r̄i−1 and yi is the PM2.5 concentration at time i.

3: According to the principle of the previous step, the input vector x
′
t+1 = (r̄t, PM2.5t , PM10t , SO2t , NO2t , O3t , COt) of

prediction model is constructed at time t + 1.

4: Training the traditional machine learning algorithm on the previously constructed data set {(x
′
i , yi)}t

i=1, the optimal
parameters are selected according to 10-fold cross validation.

5: Inputting the vector x
′
t+1 at time t + 1 into the prediction system of preceding training, the prediction result f (x

′
t+1)

is obtained.

The prediction results f (x
′
t+2), . . . , f (x

′
t+n) at t + 2, . . . , t + n time can be obtained by iterating the above steps.
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Figure 2. The hybrid model based on neighbor structural information construction framework.

3.3. Performance Evaluation Index of Prediction Model

To prove the generalization ability of the hybrid prediction system with neighbor
structural information, the measures describing system performance from different per-
spectives are applied in this study. They show how close the prediction values are to the
observations. The measures used to evaluate performance here are: Mean Absolute Error
(MAE), Mean Square Error (RMSE), Index of Agreement (IA), Direction Accuracy (DA),
Mean Fractional Bias (MFB) and Mean Fractional Error (MFE).

MAE =
1
n

n

∑
i=1
| y
′
i − yi |, (10)

RMSE =

√
1
n

n

∑
i=1

(y′i − yi)2, (11)

IA = 1− ∑n
i=1(y

′
i − yi)

2

∑n
i=1(|y

′
i − ȳ|+ |yi − ȳ|)2

, (12)

DA =
1
n

n

∑
i=1

wi, wi =

{
1, i f (yi+1 − yi)(y

′
i+1 − yi) > 0,

0, otherwise,
(13)

MFB =
2
n

n

∑
i=1

(
y
′
i − yi

y′i + yi
)× 100%, (14)

MFE =
2
n

n

∑
i=1

(
|y′i − yi|
y′i + yi

)× 100%, (15)

in which, n is the sample size, yi means the observations, while y
′
i represents the prediction

result obtained by the forecasting system.
MAE and RMSE display the error between the prediction values and the observed

ones, which can also be understood as the closer to zero, the higher the forecasting accuracy
of the algorithms. IA represents the correlation between the forecasts and the observations
and DA indicates the prediction accuracy of the forecast results for the time series trend, of
which larger values mean better prediction performance. The MFB and MFE values closing
to zero represent better generalization ability of the prediction model.

4. Results and Discussion
4.1. Data Statistics and Analysis

Table 1 lists the statistic results of monitoring concentration of six atmospheric pol-
lutants used for atmospheric environment assessment, which are completed by Eviews
software. The mean value of PM2.5 concentration in Shijiazhuang is the largest among
those of the six research sites, reaching 136.7097 µg/m3, which is far beyond the limit value
75 µg/m3 of 24-hour average concentration issued by the National Ambient Air Quality
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Standard of China (GB 3095-2012) [34]. It is followed by Taiyuan with a PM2.5 concentration
of 130.3347 µg/m3. The main reason why PM2.5 concentration in these two cities exceeds
the standard seriously is that there are more coal combustion for power and indoor heating
supply in winter, accompanied by higher SO2−

4 , and some coal-related ions such as NH+
4

and CL− than other seasons [35–37]. In addition, PM2.5 concentration is further aggravated
during the heating period. In particular, Beijing has the lowest mean PM2.5, but it shows
the maximum monitoring value of 428.0000 µg/m3 on 12 January 2019, which experienced
a haze event. Generally, the high PM2.5 concentration of the six cities in North China prove
that aerosol pollution in this area is an urgent problem. Further, it can be seen that the
maximum of mean values of PM10, NO2 and CO appear in Shijiazhuang, the maximum
value of SO2 is produced in Taiyuan, and the maximum value of O3 is represented in
Beijing. According to the national standard, PM2.5 is the primary air pollutant currently
monitored in most cases. Furthermore, Std.Dev. (Standard Deviation) demonstrates the
degree to which the prediction values deviate from the mean value, and the maximum
Std.Dev is obtained from the Shijiazhuang data set.

Table 1. Summary statistics for hourly air pollutants concentration (PM2.5, PM10, SO2, NO2, O3 and CO) from 1 January
2019 to 31 January 2019 in six monitoring sites.

Station Air Pollutant Mean Median Maximum Minimum Std.Dev.

PM2.5 (µg/m3) 50.20565 30.00000 428.0000 3.000000 57.88467
PM10 (µg/m3) 77.31048 65.00000 418.0000 5.000000 58.53817

Beijing SO2 (µg/m3) 8.561828 6.500000 48.00000 1.000000 6.011335
NO2 (µg/m3) 47.51747 50.00000 130.0000 6.000000 27.53585
O3 (µg/m3) 28.67070 23.50000 70.00000 2.000000 20.96675
CO (mg/m3) 0.933587 0.750000 3.742000 0.209000 0.630729

PM2.5 (µg/m3) 74.29704 53.00000 264.0000 11.00000 60.94219
PM10 (µg/m3) 102.0175 87.00000 326.0000 27.00000 54.85783

Tianjin SO2 (µg/m3) 24.25269 23.00000 63.00000 12.00000 8.944761
NO2 (µg/m3) 62.98118 65.00000 109.0000 20.00000 21.53334
O3 (µg/m3) 25.21237 17.00000 67.00000 8.000000 16.87227
CO (mg/m3) 1.531824 1.432000 3.706000 0.633000 0.645200

PM2.5 (µg/m3) 136.7097 121.0000 398.0000 8.000000 88.25823
PM10 (µg/m3) 220.4261 195.5000 558.0000 41.00000 111.2739

Shijiazhuang SO2 (µg/m3) 38.38978 39.00000 89.00000 4.000000 16.39194
NO2 (µg/m3) 76.67473 76.00000 150.0000 9.000000 27.84390
O3 (µg/m3) 19.95027 13.00000 70.00000 4.000000 15.83976
CO (mg/m3) 2.239602 2.063000 5.563000 0.386000 1.163192

PM2.5 (µg/m3) 130.3347 109.0000 417.0000 16.00000 85.56525
PM10 (µg/m3) 211.0081 189.0000 597.0000 46.00000 104.2559

Taiyuan SO2 (µg/m3) 40.59812 37.00000 157.0000 7.000000 21.78152
NO2 (µg/m3) 72.69220 73.00000 137.0000 11.00000 25.47325
O3 (µg/m3) 18.66801 10.00000 88.00000 2.000000 18.33893
CO (mg/m3) 2.145191 2.033000 6.225000 0.350000 1.103918

PM2.5 (µg/m3) 121.5551 120.5000 347.0000 18.00000 74.17929
PM10 (µg/m3) 168.6075 164.0000 384.0000 50.00000 74.15855

Zhengzhou SO2 (µg/m3) 16.93011 16.00000 56.00000 6.000000 7.428471
NO2 (µg/m3) 65.97043 67.00000 122.0000 12.00000 23.79673
O3 (µg/m3) 21.71371 14.00000 85.00000 3.000000 18.55841
CO (mg/m3) 1.376922 1.282500 3.489000 0.383000 0.584595

PM2.5 (µg/m3) 94.49597 74.00000 331.0000 7.000000 69.41096
PM10 (µg/m3) 167.6237 143.0000 451.0000 30.00000 87.85827

Jinan SO2 (µg/m3) 28.67339 26.00000 90.00000 5.000000 15.59996
NO2 (µg/m3) 66.82796 67.00000 137.0000 11.00000 26.02158
O3 (µg/m3) 27.22312 19.00000 109.0000 4.000000 20.94018
CO (mg/m3) 1.262667 1.125000 3.537000 0.338000 0.593352
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By analyzing the statistical results of monitored pollutants concentration, the distribu-
tion attributes at different stations are explored. PM2.5, owning the properties of mixed
pollutants, has obvious correlation with other monitoring pollutants in theory. To explain
more accurately the influence degree of PM2.5 by other air pollutants, Equation (16) is used
to calculate the mutual information, which is described as follows.

I(XPM2.5 ; Yi) = ∑
x∈XPM2.5

∑
yi∈Yi

p(x, yi)log
p(x, yi)

p(x)p(yi)
, (16)

where XPM2.5 and Yi denote PM2.5 and a certain air pollutant, respectively. Table 2 shows
the results calculated according to Formula (16). The analysis results clearly show that
PM2.5 of all sites possesses the largest mutual information with PM10, which verifies that
the two variables have the strongest correlation. This is mainly due to the fact that PM2.5
and PM10 are both particulate pollutants, except for the difference in particle diameter. In
terms of monitoring, PM10 concentration value covers the concentration value of PM2.5,
so it is self-evident that they show a very strong coherence. Due to the same sources of
pollution, PM2.5 is a large fraction (the majority) of PM10, ranging typically from 60% to
80% of PM10 [38]. Among the single pollutants, the mutual information values of NO2 in all
data sets are greater than 3.8, which means that NO2 has a profound impact on PM2.5. Cities
in North China are facing serious NO2 pollution, so the treatment of NO2 is beneficial for
controlling PM2.5 concentration. Next, the air pollutant expressing strong correlation with
PM2.5 is SO2 in Tianjin, Shijiazhuang, Taiyuan and Jinan, and O3 in Beijing and Zhengzhou.
Although CO has the weakest influence on PM2.5 among all monitored pollutants, it is
also an indispensable and important factor for PM2.5 forecasting. In addition, scatter plot
(Figure 3) composed of features shows that PM2.5 represents a strong linear correlation
with PM10 and CO; the relationship between PM2.5 and SO2, NO2 is more obvious linear
relationship; while PM2.5 and O3 show a logarithmic correlation. It can be concluded
that other pollutants have a great impact on PM2.5. The high correlation between air
pollutants is due to the fact that they are affected by the same sources and experience the
same meteorological influence (mainly transport and dispersal). It is very reasonable and
scientific to select the above air pollutants as the input data of the prediction system.

Table 2. Results of mutual information between PM2.5 and other air pollutants (PM10, SO2, NO2, O3

and CO) during 1 January 2019 to 31 January 2019 study period in six monitoring sites. (The number
in bold is the maximum mutual information value of the same monitoring site.)

Station PM10 SO2 NO2 O3 CO

Beijing 4.4168 2.4362 3.8214 3.2117 1.0719
Tianjin 4.9867 3.0341 3.9941 2.9370 1.2865

Shijiazhuang 6.5212 4.2861 4.9755 3.6171 1.8261
Taiyuan 6.2537 4.4374 4.7564 3.5635 1.5286

Zhengzhou 5.7939 2.9521 4.5603 3.5413 1.1790
Jinan 5.7808 3.7637 4.5853 3.7543 0.9348

4.2. Neighbor Structural Information Extraction

For extracting the neighbor structural information and mining the structural char-
acteristics of the original time series, this paper exploits neighbor structural information
extraction algorithm based on dynamic decomposition that decomposes the original PM2.5
series into the dynamic modes, and then forms the neighbor structural information series
by optimal combination. Figure 4 demonstrates that the original PM2.5 sequences are de-
composed into three dynamic model subseries DFi, i = 1, 2, 3 with very similar frequencies
and gradually increasing amplitudes, which are values in different feature directions in the
dynamic modes space. NI is the series representing the neighbor structural information
obtained by the optimal combination of the dynamic model subseries. Table 3 lists the mu-
tual information values between the extracted neighbor structural information and PM2.5,
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which are all greater than 4.2, indicating that the neighbor structural information has a
strong correlation with PM2.5. It can be concluded that the neighbor structural information
effectively covers the structural information in the fields adjacent to the prediction points
and has potential ability to improve the prediction accuracy.

0 100 200 300 400
0

500

P
M

2
.5

0 100 200 300 400
0

50

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

0 100 200 300 400
0

2

4

0 100 200 300
0

200

400

P
M

2
.5

0 100 200 300
0

50

0 100 200 300
0

50

100

0 100 200 300
0

50

0 100 200 300
0

2

4

0 100 200 300 400
0

500

P
M

2
.5

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100

150

0 100 200 300 400
0

50

0 100 200 300 400
0

5

0 100 200 300 400
0

500

P
M

2
.5

0 100 200 300 400
0

100

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100

0 100 200 300 400
0

5

0 100 200 300 400
0

200

400

P
M

2
.5

0 100 200 300 400
0

50

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100

0 100 200 300 400
0

2

4

0 100 200 300 400

PM
10

0

500

P
M

2
.5

0 100 200 300 400

SO
2

0

50

100

0 100 200 300 400

NO
2

0

50

100

0 100 200 300 400

O
3

0

50

100

0 100 200 300 400

CO

0

2

4

Beijing

Tianjin

Taiyuan

Jinan

Shijiazhuang

Zhengzhou

Figure 3. Scatter plots of relationship between PM2.5 and impact factors (PM10, SO2, NO2, O3 and CO) during 1 January
2019 to 31 January 2019 study period in six monitoring sites.

Table 3. Results of mutual information between PM2.5 and neighbor structural information during
21 January 2019 to 31 January 2019 test period in six monitoring sites.

Mutual
Information Beijing Tianjin Shijiazhuang Taiyuan Zhengzhou Jinan

value 4.2167 4.9123 5.7812 5.6822 5.7278 4.9012

4.3. Results of the Hybrid Model Based on Neighbor Structural Information

In order to prove that the extracted neighbor structural information can be effectively
integrated into the traditional machine learning algorithms, the representative single model
ANN and SVM are selected as the basic models to construct the hybrid prediction system.
The first 480 data in the experimental data set are allocated as training-validation data set,
while the rest of data (264 samples) are used for testing.

4.3.1. Prediction Results Comparison between ANN and ANNNI

In the process of establishing ANNNI model, the input layer comprises 7 nodes, the
hidden layer contains 4 nodes, and the output layer is PM2.5 concentration. The logistic
sigmoid function, as the well behaved function, is selected to realize the connection of
hidden layer nodes. In addition, the parameters optimization in the models is implemented
by cross validation method for the best prediction results.
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Figure 4. Dynamic decomposition results of six monitoring sites for the test period (21–
31 January 2019). DFi, i = 1, 2, 3 is dynamic model subseries and NI is the neighbor
structural information series.
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The prediction performance assessment of ANN and ANNNI is shown in Table 4. The
ANNNI model integrates the neighbor structural information, and contains the implied
structural characteristics of the PM2.5 series in the neighbor domain of the prediction points,
so it can obtain better results under the indicators given in this paper. Table 4 lists the
prediction errors of six data sets during the test period. MAEs of the hybrid ANNNI models
for different test sets are 4.2307, 4.3846, 8.5755, 11.8033, 6.8320 and 5.4676, respectively,
which are significantly reduced compared with the 6.5432, 5.3457, 9.3995, 12.6996, 8.5289
and 7.0559 obtained by the basic model ANNs. Similarly, the same results can be obtained
according to the values of RMSE. In addition, compared with ANNs, ANNNI models have
larger IA and DA, which means that ANNNI ’s prediction values show stronger correlation
with observed values and reflect more accurate trend judgment ability. Figure 5 shows
the time series plots composed of test set prediction results and observations. We can
observe from the graph that the predicted values of ANN and ANNNI are very close
to the observed values, indicating that the above prediction results are of high accuracy.
However, at the extreme points and their adjacent points, ANNNI models have more
sensitive prediction ability, which benefits from their incorporation into the structural
information of the neighbor domain. It is particularly noteworthy that the ANNNI models
need to determine the span of the neighbor domain in the process of extracting neighbor
structural information, which is an application of the lags to a certain extent. By combining
ANN with neighbor structural information, the prediction model not only obtains the
ability to express the spatial characteristics of high-dimensional dynamic modes provided
by neighbor structural information, but also helps to solve the problem that the lag order
of ANN model is difficult to determine.

Table 4. Evaluation of prediction results of artificial neural network (ANN), ANNNI , support vector
machine (SVM) and SVMNI model for PM2.5 concentration for the test period (21–31 January 2019).

Data Set Index ANN ANNN I SVM SVMN I

MAE 6.5432 4.2307 4.3235 3.2980
RMSE 8.2703 5.4690 6.4945 4.8231

Beijing IA 0.9831 0.9923 0.9899 0.9944
DA 0.6539 0.6996 0.6083 0.7034
MFB 28.7589 13.0001 −2.2404 −1.4396
MFE 31.4533 20.1745 19.9293 16.2861

MAE 5.3457 4.3846 4.7683 3.4534
RMSE 7.2581 5.9939 7.5332 5.1871

Tianjin IA 0.9968 0.9979 0.9967 0.9984
DA 0.5969 0.7262 0.6463 0.7756
MFB 8.0473 1.5814 1.4136 1.2793
MFE 11.5828 10.8061 10.3902 8.0389

MAE 9.3995 8.5755 7.5206 7.3754
RMSE 11.9466 10.9822 10.9781 10.5875

Shijiazhuang IA 0.9967 0.9972 0.9972 0.9974
DA 0.6045 0.6501 0.6958 0.6996
MFB 3.1221 1.9686 −0.7779 −0.3174
MFE 13.9759 12.1579 9.8720 9.7932
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Table 4. Cont.

Data Set Index ANN ANNN I SVM SVMN I

MAE 12.6996 11.8033 9.2276 9.0214
RMSE 17.0390 16.3416 14.0130 13.7118

Taiyuan IA 0.9938 0.9943 0.9962 0.9963
DA 0.5513 0.5551 0.6083 0.6387
MFB −14.0013 −8.5046 2.0742 1.3526
MFE 18.6110 14.8266 11.0819 10.8000

MAE 8.5289 6.8320 5.9189 5.1456
RMSE 13.6918 11.5107 12.7212 10.8639

Zhengzhou IA 0.9965 0.9975 0.9970 0.9978
DA 0.5399 0.5893 0.6996 0.7604
MFB −8.5200 −7.7578 1.7476 0.9751
MFE 13.2950 10.4419 7.0435 6.0181

MAE 7.0559 5.4676 5.7105 4.8441
RMSE 10.1595 8.4438 9.2179 8.2711

Jinan IA 0.9949 0.9964 0.9957 0.9965
DA 0.5741 0.6844 0.6121 0.7642
MFB 6.9710 4.2608 1.0488 0.6914
MFE 11.8254 9.5674 9.7819 8.2137

4.3.2. Prediction Results Comparison between SVM and SVMNI

SVMNI is a hybrid system based on SVM, which contains neighbor structural infor-
mation. SVM with structural risk minimization as the goal has a global optimal solution.
However, when SVM is applied to time series prediction, the input vector is usually com-
posed of historical data and influence factors, and then it is mapped to high-dimensional
space by kernel function to obtain the optimal regression function. Therefore, the structural
information of time series data cannot be reflected in the traditional SVM model. In the
process of modeling, the gridsearch method is used to optimize the parameters. With opti-
mal parameters, the prediction results of SVM and SVMNI are given in Table 4 respectively.
The MAE of SVMNI on the Tianjin data set is 27.58% lower than that of SVM if performed
best, which is followed by a 23.72% decline in Beijing. In terms of the Shijiazhuang data,
SVMNI demonstrates an ability to reduce MAE by 1.93%, which is not impressive enough
though. For most data sets, SVMNI can significantly improve the model accuracy, but it
should be noted that the effect on individual data sets may not be obvious, on the premise
of not reducing the generalization ability of the original model at least. Compared with
SVM, the improvement of SVMNI ’s IA index is not very effective, but the DA index has
been greatly improved, indicating that SVMNI can achieve more accurate trend prediction.
Furthermore, Figure 6 shows the frequency distribution of prediction errors with different
error ranges on each site test set, from which it can be observed that more prediction errors
of SVMNI model are around 0, compared with SVM model. In general, SVMNI ’s prediction
results are closer to the observed values, showing a higher prediction accuracy. Moreover,
the applicability of the neighbor structural information to the SVM model further proves
the robustness of the neighbor structural information extraction algorithm proposed in
this paper.
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Figure 5. Time series plots of forecasts and the original values of the PM2.5 concentration, calculated by the ANN model
and the ANNNI model for the test period (21–31 January 2019).
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Figure 6. Histograms of the frequency distribution of prediction error (PE) for the PM2.5 concentration, calculated by the
SVM model and the SVMNI model for the test period (21–31 January 2019).

4.3.3. Prediction Results Comparison between ANNNI and SVMNI

In this paper, the PM2.5 hybrid models ANNNI and SVMNI are based on the traditional
ANN and SVM respectively, which can improve the generalization ability greatly. It is
concluded that the proposed bybrid theory can improve the forecast system in many
aspects, such as prediction accuracy, direction discrimination and correlation in accordance
with the results of several performance criteria given in Table 4. Therefore, there is no
doubt that the combination of neighbor structural information is helpful for mining the
missing structural characteristic when machine learning algorithm is applied to time series
forecast task. In addition, it is proved that the proposed neighbor structural information
extraction algorithm based on dynamic decomposition is a significant technique to analyze
the structural characteristics in time dimension. However, due to the difference of the
basic models, the generalization ability of hybrid prediction system based on different
machine learning algorithms is also different. As shown in Table 4, SVMNI ’s prediction
results are superior to the ANNNI model in evaluation indexes. Due to the dynamics and
timeliness of time series prediction, the capacity of training data set will not be large, so the
SVM model for structural risk minimization is more appropriate for the case of small data
set. In Figure 7, the prediction error range of the prediction models is shown by boxplots
described by quartile values. According to the distribution characteristics of the prediction
error results of different models, we notice that forecasting errors of hybrid systems are
closer to 0. However, SVMNI model is more accurate than ANNNI model. In particular,
it is worth paying attention to the fact that the outliers of SVMNI are closer to 0, which
means that SVMNI can effectively correct outliers prediction. Figure 8 is the soccer plot
composed of MFB and MFE indexes. The MFB and MFE values of the models fall into the
continuous box, indicating that the prediction results are acceptable. Further more, they are
in the dashed box, which means that the prediction model has good generalization ability.
Figure 8 also clearly shows that the SVMNI model’s statistical index results are closer to 0
than ANNNI ’s. Especially for the MFB index of Beijing site, the result obtained by SVMNI
model strides into the area marking the accurate prediction results. Table 5 gives the mean
test of model residuals with or without neighbor structural information. We notice that
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there is a significant difference between ANN and SVM, which may lead to the difference
of prediction performance between ANNNI and SVMNI .
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Figure 7. Boxplot of the prediction error of PM2.5 concentration using ANN, ANNNI , SVM and
SVMNI for the test period (21–31 January 2019).
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Table 5. Mean test of residual series of prediction models with or without neighbor structural information of six monitor-
ing sites.

ANN-SVM ANNN I-SVMN I
Data Set Mean Std.Dev. t-Statistic Mean Std.Dev. t-Statistic

Beijing 2.219670 *** 3.807447 9.47236 0.932633 *** 2.347678 6.454671
(0.0000) (0.0000)

Tianjin 0.577466 ** 4.044578 2.3198 0.931189 *** 2.158192 7.010516
(0.0211) (0.0000)

Shijiazhuang 1.878932 *** 6.838889 4.464033 1.200080 *** 5.994610 3.252753
(0.0000) (0.0013)

Taiyuan 3.472034 *** 9.939056 5.675979 2.781905 *** 9.295694 4.862532
(0.0000) (0.0000)

Zhengzhou 2.609981 *** 5.281503 8.029376 1.686462 *** 4.162686 6.582713
(0.0000) (0.0000)

Jinan 1.345375 *** 3.760126 5.813570 0.623489 *** 3.679429 2.753278
(0.0000) (0.0063)

Note: The number in the brackets is the p-Value, *** indicates the significance level of 1%, and ** indicates the significance level of 5%.
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Figure 8. Soccer plot composed of Mean Fractional Bias (MFB) and Mean Fractional Error (MFE)
indexes of ANNNI and SVMNI prediction results. The shapes represent the prediction results of
different sites from 21–31 January 2019.

5. Conclusions

Time series prediction of PM2.5 concentration is an essential and practical topic in
the field of atmospheric research. Time series data has distinct characteristics in data
structure, and its effective use is very helpful for the prediction system to obtain higher
prediction accuracy. According to the modeling principle of machine learning algorithm,
this paper proposes an algorithm of extracting neighbor structural information based
on dynamic decomposition, and integrates it into machine learning model to construct
a hybrid prediction model based on neighbor structural information. We use dynamic
decomposition to decompose the original series into multiple dynamic modes to realize the
structural information represented by the neighbor data, and then construct the neighbor
structural information series through optimal combination. The simulation results of six
groups of experimental data all show that the prediction model combined with neighbor
structural information can obtain more accurate prediction results.

Therefore, the following conclusions can be drawn: (1) The method of time dynamic
decomposition is suitable for the extraction of neighbor structural information representing
the structural characteristics of time series. (2) The hybrid prediction model integrates
the neighbor structural information to make up for the lack of structural characteristics
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of time series when machine learning models perform time series prediction. (3) The
neighbor structural information extraction algorithm based on dynamic decomposition
is generally applicable to traditional machine learning models. However, different basic
machine learning algorithms lead to variant prediction ability of hybrid models. (4) The
structural characteristics are inherent features of time series. Therefore, the algorithm
proposed in this paper is also made available for other time series forecasting tasks in
addition to PM2.5 concentration prediction.
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