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Abstract: An economic assessment of different geothermal power cycle configurations to generate
cost models is conducted in this study. The thermodynamic and exergoeconomic modeling of
the cycles is performed in MATLAB coupled to Refprop. The models were derived based on
robust multivariable regression to minimize the residuals by using the genetic algorithm. The cross-
validation approach is applied to determine a dataset to examine the model in the training phase
for validation and reduce the overfitting problem. The generated cost models are the total cost rate,
the plant’s total cost, and power generation cost. The cost models and the relevant coefficients are
generated based on the most compatibilities and lower error. The results showed that one of the
most influential factors on the ORC cycle is the working fluid type, which significantly affects the
final economic results. Other parameters that considerably impact economic models results, of all
configurations, are geothermal fluid pressure and temperature and inlet pressure of turbine. Rising
the geothermal fluid mass flow rate has a remarkable impact on cost models as the capacity and
size of equipment increases. The generated cost models in this study can estimate the mentioned
cost parameters with an acceptable deviation and provide a fast way to predict the total cost of the
power plants.

Keywords: cost model; power plant; geothermal; optimization; ORC

1. Introduction

Probably one of the most vital parts of designing a power plant is determining the
execution of the project. The cost estimation of a project defines whether the stakeholders
and industries progress with the project. Power plant cost estimating is one of the most
critical steps in project management. A cost assessment builds the baseline of the project
cost at diverse stages of the project’s development. A cost estimation at a particular step of
project development expresses a prediction based on available data. In the cost estimation
process, there may generally be some uncertainties that can affect the decision of industries.
However, the accuracy of cost model estimation can improve using more reliable data and
optimization methods. Every power plant project needs a more accurate cost estimation to
help investors decide about the investment amount. Every project manager is dependent
on realistic cost assessments to allow for successful cost management. Budgeting and cost
control is very critical but also challenging under uncertainty. Uncertainty means we do
not have all the information about the future, and the suspicions we make today may come
out differently as the project progresses [1].

There are downsides to imprecise approximations as they could be overestimated or
underestimated; they have adverse effects either way. By correct guesstimates, investors
can make sure that the allocated resources can support a specific project. The up-front
estimation of the investment costs of a new plant is a challenging task, iterating as the
design evolves to increased detail. Underestimation of capital costs occurs mainly due
to incomplete listing of all the equipment needed in the process [2]. Applying the whole
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procedure of exergoeconomic assessment of power plants could be time-consuming and
complex, especially for some researchers who want to reach the final results as soon as
possible. Then, introducing a fast cost model to predict the economic parameters of the
cycle could be helpful. The costs of the major equipment items are generally estimated
from publicly available equipment cost correlations, which have been established for many
commonly used industrial equipment. For ORC systems, the major equipment items are
the main components: the evaporator, expander and generator, condenser, and pump.
Because there is little information about the component costs of existing ORC systems,
most researchers use publicly available correlations for standard equipment items. The
application of geothermal energy and its potential in power generation has been considered
by some researchers [3–5]. One of the most valuable tools for researchers is the exergy
concept that could be implemented to assess geothermal power cycles more precisely to
find the critical exergy destruction points [6,7]. This practical tool leads to an increase in
the exergetic efficiency of geothermal power plants. El Haj Assad et al. [8] performed an
energy and exergy assessment and numerical study of different geothermal power cycles.
Dincer and Rosen [9] conducted energy and exergy analysis performance for different
renewable energies such as geothermal, solar, and so on.

Some researchers have carried out several studies in order to generate cost models
for different equipment or projects. Williams [10] estimated heat exchanger costs by
comparing equipment pieces of the same model. Hamilton et al. [11] presented a practice
of cost estimation comprised of information and quality. For cost evaluation, they divided
the project into three steps: concept, development, and execution. Max et al. [12] conducted
equipment sizing and cost estimations for process equipment based on computer-aided
design and optimization. They analyzed ten different methods in cost evaluation. Yang [13]
proposed a generic method to combine correlations between cost factors within the cost
estimating process. The presented method checks correlation feasibility first to see if it
requires any adjustment or not. Turton et al. [2] introduced cost correlations of several
chemical process devices based on different equipment types, materials, and pressure
ranges. Caputo and Pelagagge [14] compared parametric function and artificial neural
networks to calculate the cost of large and complex-shaped pressure vessels.

Blankenship and Mansure [15] employed the Sandia National Laboratory database to
normalize costs for geothermal wells, based on data for thirty-three wells, and generated
the cost correlation of geothermal wells as an exponential function of depth. Ogayar
and Vidal [16] developed a series of correlations to estimate the cost of a small hydro-
power plant’s electro-mechanical equipment using basic parameters such as power and
head. Feng and Rangaiah [17] compared five capital cost estimation programs for several
types of equipment. They investigated seven case studies relevant to the petroleum
refining, petrochemical, and biopharmaceutical processes. Brotherson et al. [18] tried
to identify the best practice in capital cost assessment through interviews with leading
corporations and financial advisors. Additionally, their study outlined the varieties of
practice with the capital pricing model application, the discussions in favor of diverse
approaches, and the practical indications of differing choices. Gunduz and Sahin [19]
developed two cost estimation models to evaluate hydroelectric power plant project costs
by implementing neural networks and multiple regression assessments in the early project
planes. Symister [20] performed capital cost estimations for chemical processing using
Aspen capital cost estimator for different equipment types in his thesis.

Caputo et al. [21] expanded an analytical-generative cost estimation procedure by
promoting a mathematical model for shell and tube heat exchangers. Torp and Klakegg [1]
identified some practical challenges with cost estimation under uncertainty for the de-
commissioning of the Barsebäck nuclear power plant. They demonstrated some practical
solutions for cost estimation and uncertainty investigation in complex projects. Luyben [22]
presented a simple method to estimate compressor costs using Aspen. However, he did
not implement an optimization method. Gul and Aslanoglu [23] made a numerical study
of wells’ drilling and testing cost to predict the drilling cost. They applied the drilling
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data of twenty wells to estimate the drilling cost trend. Amorim Jr et al. [24] reviewed
the previous statistical methodology to estimate the cost of prospective wells. They used
a database from an onshore field in Brazil to show the advantages of their approach
to developing new drillings. Malhan and Mittal [25] applied a polynomial regression
model base to generate cost correlations for the main components in micro hydropower
plants. Shamoushaki et al. [26] generated cost models of equipment purchasing for sev-
eral geothermal power plant components such as pumps, compressors, heat exchangers,
air coolers, and pressure vessels. Their proposed cost models were derived based on
robust multivariable regression to minimize the residuals using the genetic algorithm.
Shamoushaki et al. [27] proposed cost and time models for geothermal well drilling in
different world regions. The presented drilling cost models were generated based on the
well depth and the number of wells. They also compared various drilling cost portions
such as equipment, material, construction, design and project management, insurance and
certification, and contingency expenses of different world regions.

The cost models for estimating the total cost rate, plant’s total cost, and power gen-
eration cost for different geothermal configurations are generated in this study. The
thermodynamic and exergoeconomic modeling of all systems is performed in a MATLAB
environment, coupled to Refprop 9.1 (NIST, Gaithersburg, MD, USA) [28]. The most up-
dated equipment costs are applied to generate these models, which are related to the 2020
database that has been presented by Shamoushaki et al. [26]. Other applied cost correlations
are updated based on the CEPCI index to consider the inflation rate [29]. The cost data are
collected and calculated based on changing the main operational parameters of the cycle
and considering their impact on the economic results. The optimization method is applied
to reduce the uncertainty and deviations of coefficients and statistical measurements. The
generated cost models in this study are able to estimate the mentioned cost parameters
with an acceptable deviation and provide a fast way to predict them. This kind of study has
not been evaluated before and could be a helpful tool for other researchers and industries
to have a fast approximation.

2. Modeling Process
2.1. Energy and Exergy Modeling

The system modeling of the cycles is performed based on the first and second laws
of thermodynamic. The mathematical modeling is expanded in MATLAB using Refprop
9.1 [28]. The considered system is modeled under steady-state conditions. Mass and energy
balance equations applied for all configurations’ evaluation are as follows:

∑
.

mi = ∑
.

me (1)

∑
( .
mh

)
i − ∑

( .
mh

)
e =

.
Qcv −

.
Wcv (2)

In the above equations, in and out refer to inlet and outlet, respectively.
.

m, h,
.

Q and
.

W are mass flow rate kg/s, specific enthalpy kJ/kg, heat transfer, and work, respectively
kW. In this study, the kinetic, chemical and potential are presumed ignorable, and just
physical exergy are considered in analyzing these systems. The exergy balance equations
are written as below [30]:

∑
( .
m.ex

)
i +

.
Exq = ∑

( .
m.ex

)
e +

.
Exw +

.
ExD (3)

Here, ex is the specific exergy of each stream kJ/kg.
.
ExQ,

.
ExW and

.
ExD are the exergy

of heat transfer, work, and exergy destruction of each component kW, respectively. The
same procedure has been performed for all considered configurations. The comprehensive
considerations, configurations and equations of the geothermal cycles have been presented
by DiPippo [31].
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2.2. Exergoeconomic Modeling

Exergoeconomic is a powerful tool that has been created by combining the exergy
and economic concepts. The Specific Exergy Costing (SPECO) approach is applied for the
exergoeconomic assessment of the cycles [32]. For exergoeconomic modeling of this system,
cost balance and auxiliary equations are applied in all evaluated cycles. The equation of
cost balance for whole equipment is as [30]:

.
Cq,k + ∑

.
Ci,k +

.
Zk =

.
Cw,k + ∑

.
Ce,k (4)

In this equation,
.
Cq,k is unit cost rate of heat transfer $/s,

.
Cw,k is unit cost rate of

work $/s and
.
Zk is capital cost rate.

.
Ci,k and

.
Ce,k are the inlet and outlet cost units $/s,

respectively. The total cost rate of the cycle is the sum of capital investments (CI) and
operating and maintenance (O&M) cost, then [30]:

.
Zk =

.
Z

CI
k +

.
Z

OM
k =

Zk × CRF × ϕ

N × 3600
(5)

In this equation, Zk, ϕ and N are investment cost of the kth component ($), mainte-
nance factor, and annual plant working hours (which is considered 7446 h [33]), respectively.
CRF is capital recovery factor that its formula has been presented in ref [30]. The purchas-
ing cost correlations and their constant values are brought in Table 1. Here, i is the interest
rate, which is considered 10% [34], and n is the power plant’s lifetime that is supposed to
be 30 years. In the exergoeconomic evaluation, by introducing each component product
and fuel, the product and fuel cost of components can be calculated. Moreover, the cost
rate related to exergy destruction can be obtained by multiplying specific fuel cost and
exergy destruction of each piece of equipment [30].

.
CD,k = cF,k

.
ExD,k (6)

Here, cP,k and cF,k are the specific cost of product and fuel $/kJ, respectively.
.
CD,k is

exergy destruction cost rate of the kth component $/s.
The purchasing cost estimation has a direct impact on the cost models and prediction.

Implementing the most accurate and updated equations can reduce errors. The thermody-
namic and exergoeconomic analyses of different power plant configurations are carried out
by many researchers [34–40]. After completing the system modeling from energy, exergy,
and exergoeconomic points of view, the following economic parameters are calculated [41]:

TCR =
.
Zk +

.
CD,k (7)

PTC =
.
Cdirect +

.
Cindirect (8)

PC =
TCI

Generated power
(9)

In the above equations, PTC is total plant cost which is the sum of direct and indirect
costs of the power plant such as equipment cost, insurance, O&M, etc., and TCI is total
capital investment ($). The applied purchasing equipment cost equations are presented in
Table 1. In this table, the unit for power

( .
W

)
is kW, for the area (A) is m2, for mass flow

rate
( .
m
)

is kg/s and for the intensity of the water flow (
.

V) is m3/s.
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Table 1. The equipment purchasing cost correlations.

Component Cost Correlation Coefficients Ref.

Pump Z = log
( .

WP

)
+ a

( .
WP

)2
+ b

( .
WP

)
+ c

a = −0.03195
b = 467.2

c = 2.048 × 104
[26]

Turbine

log C0 =[
K1 + K2

(
log

.
WT

)
+ K3

(
log

.
WT

)2
]

Z = C0 × FM

K1 = 2.6259
K2 = 1.4398

K3 = −0.1776
[2]

HEs Z = log(A) + a(A)2 + b(A) + c
a = 0.2581
b = 891.7

c = 2.605 × 104
[26]

EV Z = 114.5 × .
m - [42]

Cond Z = log(A) + a(A)2 + b(A) + c
a = 0.01764
b = 617.4

c = 3.31 × 104
[26]

CT Z = a
( .

V
)3

+ b
( .

V
)2

+ c
.

V + d

a = −10−10

b = −10−5

c = 70.552
d = 61609

[43]

Sep Z = 280.3 ×
( .
m
)0.67 - [44]

Gen Z = 2447 ×
( .

WGen

)0.49 - [45]

2.3. Methodology

The cost estimation process has common characteristics. The most common features
are levels of outline, demands, and methods used. Cost estimation can be applied to any
project. It may include consideration of project type (power plant construction, building,
etc.), definition level (amount of information available), estimation methods (parametric,
definitive). The cost evaluation range (lower and upper ranges) could be defined by
assessing each cost factor’s lower and upper spine independently. In the primary steps
of establishing and assessing a project, attempts should be directed towards building a
better design basis than concentrating on utilizing more detailed estimating methods. A
parametric model could be a helpful instrument for developing preliminary conceptual
estimates when there is little scientific data to implement a basis for using more precise
estimating purposes. A parametric estimation involves cost estimating relations and
other cost estimating functions that provide logical and repeatable relationships between
independent variables. Capacity and equipment factors are simple examples of parametric
estimates; however, sophisticated parametric models typically involve several independent
variables. Parametric estimating relies on collecting and analyzing previous project cost
data to develop the cost estimating relationships.

In this study, different geothermal configurations are evaluated to generate the eco-
nomic models based on the net power, area of heat exchangers, and intensity of the water
flow of the cooling tower as dependent variables. The considered configurations are simple
ORC, single flash, double flash, regenerative ORC, and flash-binary cycles. The schematic
diagram of evaluated power cycles can be found in [31]. To obtain the cost data to generate
the models, the thermodynamic and exergoeconomic modeling of the power cycles are
performed. The cost models presented for binary cycles are generated based on the net
power and area. For the flash cycles, three different options are presented for cost models
prediction based on different dependent variables. One option is based on the area and net
power, the second is based on the area and water flow of the cooling tower, and the third,
net work and water flow. The sensitivity assessment showed that these parameters have
more significant direct impacts on economic parameters.
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Step 1—Primary design: The different geothermal configurations have been designed
and selected at the first step. For ORC cycles, different working fluids are chosen to apply
in system modeling. The main input parameters to apply in system modeling are selected
based on the cycle’s specifications. The input parameters applied in thermodynamic
modeling for all cycles are presented in Table 2. The value of these parameters has been
presented in Appendix A section (Table A1). Three different economic parameters are
considered to estimate according to these variables. These parameters are the total cost
rate, the plant’s total cost, and the power generation cost. The total cost rate includes the
cost rate related to capital and exergy destruction costs.

Table 2. Input parameters applied in thermodynamic modeling.

Parameter SORC SF DF RORC FB

Ambient temperature 4 4 4 4 4

Ambient pressure 4 4 4 4 4

Turbine Inlet pressure 4 4 4 4 4

Quality of pump inlet 4 4 4

Working fluid selection 4 4 4

EV pressure ratio 4 4 4

PW pressure 4 4 4 4 4

PW temperature 4 4 4 4 4

Efficiency of turbine 4 4 4 4 4

Efficiency of pump 4 4 4

Geofluid mass flow rate 4 4 4 4 4

Cold fluid temperature
of condenser 4 4 4 4 4

Step 2—Thermodynamic modeling: The second step is thermodynamic modeling
of all configurations. In this part, the thermodynamic properties of all streams (pressure,
temperature, enthalpy, entropy, and mass flow rate) are calculated. By completing the
energy and exergy modeling and applying mass and energy balance equations, all equip-
ments’ heat and power capacity and the net power of cycles are calculated. The heat
exchangers’ area is calculated using thermodynamic values of each point, and log mean
temperature difference (LMTD) definition. For ORC cycles, the modeling is performed
according to different main operational parameters such as geothermal temperature and
pressure, turbine inlet pressure, condensation temperature, and equipment efficiencies.
Additionally, the assessment is performed for different ORC working fluids as the impact
of each working fluid on the exergetic and economic performance of the power plants is
different. However, for flash cycles, the only working fluid is water. Additionally, based on
exergy definition and exergy balance equations for each component, the exergy of each
stream, exergy destruction, and efficiency of each component have been calculated.

Step 3—Exergoeconomic modeling: The results obtained from the previous step are
applied for exergoeconomic modeling. The most updated purchasing cost model presented
by Shamoushaki et al. is applied to calculate the equipment cost. These cost models are
generated based on the equipment cost related to the 2020 database. In addition, to estimate
the purchasing cost of some of the equipment such as the turbine, expansion valve, and
cooling tower, other cost correlations are applied. For these components, the CEPCI factor
is applied to consider the inflation rate. The cost of each stream has been calculated using
cost balance and auxiliary equations. In addition, exergies and costs of fuel and product
have been defined for each piece of equipment. At the end of this step, the economic
parameters (three considered parameters) have been obtained, which are implemented for
cost model generations. These parameters significantly depend on the design variables
and suppose which apply in cycle modeling. Some limitations are defined for operational
parameters in modeling and running the cycles’ programming to avoid deviated results.

Step 4—Data collection and lookup table generation: After running code for differ-
ent operational conditions, the obtained cost data from exergoeconomic assessment are
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collected as a lookup table to generate the cost models (statistical data in Table 3). By
changing the input parameters of each cycle and other relevant parameters, the program
has been run iteratively, and output economic results have been put in these lookup tables.
The lookup table is produced for each configuration separately. However, to reduce the
deviation and data scattering issues, some approaches are applied as the next step.

Step 5—Optimization and model generation: The cross-validation approach is used
to examine the collected dataset to decrease the errors. Then, applying the curve fitting
process, the most compatible and fitted lines are generated base on the available data.
However, a genetic algorithm is implemented to optimize the generated cost correlations
and models to minimize the residuals. Finally, the cost models are generated based on the
dependent variables. These parameters depend on the input variables values adopted for
the simulation of the cycles.

2.4. Optimization

The optimization problems are obtaining responses or responses on a set of possible
possibilities to optimize the criterion or criteria of the problem [46]. Genetic algorithms are
randomized search algorithms promoted to imitate the mechanics of natural determination
and natural genetics [47]. A genetic algorithm is applied to minimizing the independent
errors [48]. The considered objective function is as follows [26,48]:

Min :
m

∑
j=1

n

∑
i

((
xi,j − x/

i,j

)2
)

(10)

Here, xi,j and x/
i,j are calculated as calculated and reference values, respectively.

There is no restriction of correlation form and coefficient number in this minimization
method [26,48]. The optimization process convergence is obtained within the 5000 itera-
tion limitation. There is no restriction of correlation form and coefficient number in this
minimization method [48]. The selected population is different for each configuration,
and the generation was considered 300. The mutation and crossover fraction factors were
considered to be 0.2 and 0.8, respectively. The genetic algorithm was chosen because
of its particular advantages: agreeable convergence rate, suitability for a wide diversity
of optimization problems, wide solution space searchability, and facility in determining
global optimums and avoiding trapping in local optimal [26]. The flowchart of the genetic
algorithm is shown in Figure 1.

2.5. Cross-Validation Approach

When data has been feeding into a machine learning algorithm, the algorithm utilizes
the data to distinguish patterns and discover how to reach a more reliable solution. Many al-
gorithms have performance metrics that can be applied to evaluate how robust the model’s
learning of the data. Nevertheless, one of the best methods for assessing performance is
to run identified data through the trained model and see how it works compared to the
known value of the objective variable. Cross-validation avoids overfitting risk by assessing
the model’s performance on an independent dataset. Meantime, it improves the confidence
that the influences obtained in specific research will be replicated, instantiating a simulated
replication of the original research [49].
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operations
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Yes

Figure 1. Flowchart of the genetic algorithm.

A common option for evaluating machine learning models is cross-validation. Cross-
validation is a valuable method to evaluate how the results of a statistical examination
could be generalized to an independent dataset. The main aim of the cross-validation
approach is to determine a dataset to examine the model in the training phase for validation.
This approach should be performed to reduce some problems such as overfitting. In this
study, hold-out cross-validation is applied. The available data is divided into training and
test/validation parts in the hold-out method to get the most optimal model. The model
should be trained on the training dataset and assess on the test/validation dataset. The
model evaluation techniques should be applied to validate the dataset to calculate the
errors. The flowchart are shown in Figure 2. The flowchart of each cycle modeling is
illustrated in Figure 3.
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Figure 2. Flowchart of cross-validation process.
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3. Results

After applying the curve fitting tool and optimizing the generated models and coeffi-
cients to reduce the errors, the most compatible correlation is obtained. It has been tried
to generate the most reliable cost models according to the available cost results; however,
the deviation in different models and parameters is different. Among the evaluated con-
figurations, the regenerative ORC cycle had the highest deviation and scattered points.
Additionally, among considered cost parameters, power generation cost had the highest
deviation, so that for ORC cycles, these deviation is higher than flash cycles. The average
tolerance of cost estimation of whole models is around 20%. This tolerance for ORC cycles
mainly depends on working conditions and main operational parameters and the effect of
working fluid on the main working condition and parameters of the system. However, this
tolerance for flash cycles is less than ORCs as the working fluid is the same for all of them.

The hold-out validation can have different percentages of data being held out for
examination [50]. In this study, 20% of all data are separated to validate other 80% cost
data. It has been done to investigate how much the remained cost data (20%) are close
to the generated fitting line. The statistical values of cost parameters and relevant design
variables are presented in Table 3. The generated cost models and relevant coefficients for
all considered configurations are brought in Tables 4–6. The R-square value related to each
correlation is presented too that for all configurations expect regenerative ORC is higher
than 90%. The cost data showed that these data are more scattered for regenerative ORC,
increasing the error probability in model estimations. For flash cycles, three options are
proposed, estimation of the cost models based on heat exchanger’s area and net power, heat
exchanger’s area and volumetric flow of cooling tower fluid and net power, and cooling
tower fluid’s volumetric flow. The cooling tower plays the main role in flash cycles’ total
cost, and the only area value is related to the condenser. This parameter is considered
separately as a design variable. The examination of cost models showed that all three
offered options for flash cycles estimated the cost models with little difference.
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Table 3. Statistical parameters of all considered configurations.

Cycle Type Parameter Number of
Data Mean Median Standard

Deviation
Confidence

Interval

SORC

Area (m2) 3550 4274.2 3991.9 3808.6 ±2.9%
Net work (kW) 3550 8525.1 6855.8 6848.4 ±2.6%

TCR (S/s) 3550 0.0910 0.0878 0.0463 ±1.7%
PTC ($) 3550 1,664,026.5 1,627,391.4 936,843.8 ±1.9%

PC (S/kW) 3550 2465.4 2405.5 896.6 ±1.2%

SF

Area (m2) 1550 1164.9 699.5 1280.1 ±5.5%
Net work (kW) 1550 2407.1 1594.1 2499.2 ±5.2%

VCT (m3/s) 1550 0.279 0.168 0.307 ±5.5%
TCR (S/s) 1550 0.0474 0.0384 0.0356 ±3.7%

PTC ($) 1550 751,877.5 713,788.4 556,478.1 ±3.7%
PC (S/kW) 1550 8912.9 4563.6 7482.8 ±4.2%

DF

Area (m2) 2750 2606.5 2220.2 2307 ±3.3%
Net work (kW) 2750 5378.2 4445.7 4994.5 ±3.5%

VCT (m3/s) 2750 0.6252 0.5326 0.5534 ±3.3%
TCR (S/s) 2750 0.1068 0.1057 0.0699 ±2.4%

PTC ($) 2750 1,615,940.5 1,664,920.2 1,079,097.1 ±2.5%
PC (S/kW) 2750 7550.4 4155.4 6276.1 ±3.1%

RORC

Area (m2) 4115 16,775.1 12,158.6 13,312.2 ±2.4%
Net work (kW) 4115 16,596.7 12,972.1 12,368.1 ±2.3%

TCR (S/s) 4115 0.2519 0.1696 0.2279 ±2.8%
PTC ($) 4115 5,094,807.1 3,375,450.1 4,794,940.1 ±2.9%

PC (S/kW) 4115 3182.9 3002.1 1144.2 ±1.1%

FB

Area (m2) 7450 1730.9 1327.8 1578.1 ±2.1%
Net work (kW) 7450 3700.1 2716.9 3487.1 ±2.1%

TCR (S/s) 7450 0.0690 0.0669 0.0346 ±1.1%
PTC ($) 7450 1,364,011.6 1,350,956.2 762,586 ±1.3%

PC (S/kW) 7450 7563 5512.5 5513.2 ±1.7%

Table 4. Total Cost Rate model (TCR) for all configurations.

Cycle Correlation a b c R2

SORC TCR = a. log(A) + b.
.

Wnet
2 + c.A 0.00487 −3.924 × 10−11 1.316 × 10−5 0.977

SF
TCR = a. log(A) + b.

.
Wnet

2 + c.A 0.003284 −4.833 × 10−11 2.434 × 10−5 0.997

TCR = a. log(A) + b.
.

VCT
2 + c.A 0.00334 4.409 × 10−4 2.352 × 10−5 0.997

TCR = a. log
( .

Wnet

)
+ b.

.
VCT

2 + c.
.

Wnet 0.003563 0.05294 6.08 × 10−6 0.968

DF
TCR = a. log(A) + b.

.
Wnet

2 + c.A 0.004913 −1.242 × 10−10 3.053 × 10−5 0.995

TCR = a. log(A) + b.
.

VCT
2 + c.A 0.004816 −0.01255 3.157 × 10−5 0.994

TCR = a. log
( .

Wnet

)
+ b.

.
VCT

2 + c.
.

Wnet 0.005701 −0.005531 1.265 × 10−5 0.965

RORC TCR = a. log(A) + b.
.

Wnet
2 + c.A 0.002851 −1.008 × 10−10 1.741 × 10−5 0.839

FB TCR = a. log(A) + b.
.

Wnet
2 + c.A 0.006424 1.633 × 10−10 1.231 × 10−5 0.946
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Table 5. Plant total cost models (PTC) for all configurations.

Cycle Correlation a b c R2

SORC PTC = a. log(A) + b.
.

Wnet
2 + c.A 7.632 × 104 −0.00056 260.4 0.990

SF
PTC = a. log(A) + b.

.
Wnet

2 + c.A 5.91 × 104 −0.002135 373.9 0.985

PTC = a. log(A) + b.
.

VCT
2 + c.A 4.955 × 104 −6.049 × 105 486 0.991

PTC = a. log
( .

Wnet

)
+ b.

.
VCT

2 + c.
.

Wnet 5.265 × 104 3.083 × 105 147.7 0.965

DF
PTC = a. log(A) + b.

.
Wnet

2 + c.A 7.359 × 104 −0.002078 471.1 0.990

PTC = a. log(A) + b.
.

VCT
2 + c.A 6.377 × 104 −3.183 × 105 537.8 0.993

PTC = a. log
( .

Wnet

)
+ b.

.
VCT

2 + c.
.

Wnet 7.106 × 104 −3.332 × 105 245.4 0.977

RORC PTC = a. log(A) + b.
.

Wnet
2 + c.A 126.4 −0.001308 352.1 0.856

FB PTC = a. log(A) + b.
.

Wnet + c 4.93 × 105 74.3 −2.349 × 106 0.983

Table 6. Power cost (PC) for all configurations.

Cycle Correlation a b c R2

SORC PC = a. log(A) + b.
.

Wnet
−0.5 + c 1459 3.934 × 105 −1.441 × 104 0.935

SF
PC = a. log

(
A ×

.
Wnet

)
+ b.

.
Wnet

2 + c −2304 8.961 × 10−5 3.737 × 104 0.961

PC = a. log(A) + b.
.

VCT
−0.5 + c.VCT 303.2 1568 −2047 0.949

PC = a. log
( .

Wnet

)
+ b.

.
VCT

−0.5 + c.VCT 236 1573 −1497 0.947

DF
PC = a. log

(
A ×

.
Wnet

)
+ b.

.
Wnet

2 + c −2243 1.233 × 10−5 4.089 × 104 0.912

PC = a. log
(

A ×
.

VCT

)
+ b.

.
VCT

2 + c −1934 1151 1.758 × 104 0.984

PC = a. log
( .

Wnet ×
.

VCT

)
+ b.

.
VCT

2 + c −1944 1231 1.894 × 104 0.988

RORC PC = a. log(A) + b.
.

Wnet
−0.5 + c 310.4 2.212 × 1010 0.002443 0.525

FB PC = a. log(A) + b.
.

Wnet
−0.5 + c −845.6 1.655 × 105 8396 0.986

In addition, the fitting diagrams with some data for different configurations are shown
in Figure 4. This fitting validation is performed using the remained examination data
to determine how much the presented fitting model matches the data. According to the
results obtained, the generated fitting surfaces present good compatibility with cost data.
The proposed cost models in this study have several advantages. First, the generated
models are related to the 2020 database (the most updated cost correlation applied), which
means they are the most recently updated models for estimating the power plant cost. Most
significantly, the benefit of this work is in applying optimization methods after generating
the cost correlations and relevant coefficients. These models are presented for the different
geothermal power cycles.
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Additionally, the trends of cost models of different configurations for net power of
3000 kW based on the total area of heat exchangers variations are illustrated in Figures 5 and 6.
According to the results, increasing the total cost rate of double flash has occurred with
the highest rate than others. Single flash has the second growing rate after double flash.
Furthermore, the changing pattern of the single flash and simple ORC cycles for 400 to
3000 square meters stands close. The regenerative ORC has the lowest plant total cost
among the cycles, mainly due to reduced condenser area by adding a regenerator and
consequently a condenser with lower capacity. These trends present the differences in cost
models based on just one dependent variable (heat exchanger’s area); however, estimating
both dependent variables more accurately should be applied with cost models.
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In order to validate the modeling, the obtained results were compared with other
studies that showed good compatibility of our model with them which are presented in
Table 7. In a parametric study [51], it has been proved that the maximum power of a single
flash cycle could be obtained when the working temperature of the separator is the mean of
condenser and geofluid temperatures. The present study has investigated that the optimal
energy or exergy point is not necessarily economically viable.

Table 7. Comparing present economic results and other references [52–54].

Parameter Unit Geothermal Cycle Type Ref Value Present Study Diff (%)

TCR $/s DF 0.008 0.0078 −2.5
TCR $/s FB 0.0181 0.0201 +11
TCR $/s FB 0.0215 0.0236 +9.7
PC $/ kW SORC 1687 1723 +2.1
PC $/ kW SORC 1341 1399 +4.3
PC $/ kW RORC 1847 1957 +5.9
PC $/ kW RORC 1615 1711 +5.9

PTC $ SF 3.27 × 106 3.02 × 106 −7.6
PTC $ DF 9.97 × 106 1.04 × 107 +4.3

4. Discussion

This study considers several operational parameters and main elements that may
impact the selected cost functions. It has been concluded that two main parameters
(net power and heat exchangers’ area) have the most significant impact on the economic
results as they directly affect the equipment purchasing costs. Net power arising from the
turbine, pump, compressor, etc., and heat exchangers area is one of the main parameters
in determining equipment capacity. Then, these two factors play the most vital role in
the economic evaluation of the power plant. In addition, for flash cycle cases, it has been
found that cooling towers could be another dominant element in final cost assessments.
In addition to the two previous options, this element has been considered for generating
cost models. The cost models in this study have been divided and presented based on the
different geothermal plants and configurations to reduce the deviation of their application.
That is why it has been avoided to present just a single cost correlation for all configurations.
The generated economic models and their relevant coefficient is calibrated carefully by two
practical approaches. The methodology and model presented in this study followed an
optimization method to reach the maximum reliability of model compatibility with data.
The cross-validation approach, in addition to the optimization algorithm, has enhanced the
capability of the generated models. Researchers could assess these configurations based on
the first and second thermodynamic laws and quickly implement the generated economic
models to find the results without spending too much time on exergo-economic modeling
and writing code in the programming software. The studied geothermal cycles are the
most common configurations. These economic models could be applied for the geothermal
cycle integrating with other systems by adding the obtained economic results from the
ORC or flash part of the system with other coupled systems.

5. Conclusions

The present study derived the models based on robust multivariable regression to
minimize the residuals using the genetic algorithm. The cross-validation approach is
applied to determine a dataset to examine the model in the training phase for validation
and reduce the overfitting problem. According to the results obtained, the deviation in
various models and parameters is different. Among the evaluated configurations, the
regenerative ORC cycle had the highest deviation and scattered points. One of the main
influential factors on economic results in ORC cycles is the working fluid type. Based on
the model generation results, the working fluid could affect economic results significantly.
In addition, as the critical pressure and temperature of various working fluids differ widely,
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the input parameters for thermodynamic modeling should be compatible with those values.
Another effective parameter is the thermodynamic properties of the geothermal fluid, and
after that, turbine inlet pressure and temperature were the most dominant parameter on
the final obtained results. These elements lead to more deviation for the ORC cycle than
flash technology. Additionally, among considered cost parameters, power generation cost
had the highest deviation, so that for ORC cycles, these deviation is higher than flash
cycles. Power cost can be affected by several parameters such as net generated power
and equipment costs, leading to considerable changes in power generation cost. Among
these cycles, flash-binary has the most significant power cost reduction with increasing
the electricity generation capacity of the cycle. However, increasing the power generation
capacity increases the investment cost at a higher rate than other cycles for the double
flash cycle. The generated cost models are related to the 2020 database (the most updated
cost correlation applied), which means they are the most recently updated models for
estimating the power plant cost. Most significantly, the benefit of this work is in applying
optimization methods after generating the cost correlations and relevant coefficients. The
generated models are the robust cost models that can help researchers and stakeholders to
estimate the economic parameters of the geothermal power plants.

Future recommendation: According to the results obtained in the present study, it
is recommended that researchers should make a normalized balance between the power
production and capacity of the equipment. This can be achieved by optimizing the process,
selecting critical design variables such as the inlet and outlet condition of the heat ex-
changer, and selecting an excellent working fluid (for ORC) compatible with the economic
performance of the cycle.
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Nomenclature

A Area of heat exchanger, m2

c Specific exergy cost, $/kJ
.
C Cost rate associated with exergy transfer, $/s

CEPCI Chemical Engineering Plant Cost Index
Cond Condenser
CRF Capital Recovery Factor
DF Double Flash
ex Specific exergy, kJ/kg
.

Ex Exergy rate, kW
EV Expansion valve
Eva Evaporator
FB Flash-Binary

Gen Generator
h Specific enthalpy, kJ/kg

HE Heat exchanger
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i Rate of interest
LMTD logarithmic mean temperature difference

.
m Mass flow rate, kg/s
N Annual plant operation hours

ORC Organic Rankine cycle
P Pump

PC Power cost, $/ kW
PTC Plant Total Cost, ($)

.
Q Heat transfer rate, kW

Reg Regenerator
RORC Regenerative ORC

s Specific entropy, kJ/Kgk
Sep Separator
SF Single Flash

SORC Simple ORC
T Temperature, (K)

TCI Total capital investment, ($)
TCR Total Cost Rate, $/s

U Heat transfer coefficient, W/Km2
.

V Intensity of the flow, m3/s
.

W Power, kW
Z Capital cost of components, ($)
.
Z Capital cost rate of components, $/s

Greek Symbols
ϕ Maintenance factor
η Efficiency, (%)

Subscripts
CT Cooling Tower
D Destruction
e Exit
F Fuel
i Inlet
P Product
0 Ambient

Appendix A

Table A1. Main input values related to the cycles’ simulations.

Parameter Unit
Cycle Type

SORC SF DF RORC FB

Ambient temperature K 298 298 298 298 298
Ambient pressure kpa 101.3 101.3 101.3 101.3 101.3

Production well temperature K 453 230 230 453 230
Production well pressure kpa 1000 2800 2800 1000 2800
Geofluid mass flow rate kg/s 50 50 50 50 50

Production well temperature K 363 363 323 363 333
Turbine isentropic efficiencies % 80 80 80 80 80
Pump isentropic efficiencies % 85 85 85 85 85

Regenerator isentropic efficiencies % - - - 80 80
Inlet pressure of ORC turbine kpa 3130 - - 3130 -

Pressure after HP EV kpa - 276 665 - 400
Pressure after LP EV kpa - - 96 - -
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Table A1. Cont.

Parameter Unit
Cycle Type

SORC SF DF RORC FB

Heat transfer coefficients of HXs kW/m2K 1.1 1.1 1.1 1.1 1.1
Pinch point of HXs K 10 10 10 10 10

Quality of pump inlet fluid - 0 - - 0 0
Inlet cold fluid temperature of condenser K 298 298 298 298 298

Outlet cold fluid temperature of condenser K 308 308 308 308 308
ORC working fluid - R1233ZD - - R1233ZD R1233ZD
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