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Abstract: Extreme weather and climate events are becoming increasingly frequent and have gained an
increasing amount of attention. Extreme cooling (EC) events are a major challenge to socioeconomic
sustainability and human health. Based on meteorological stations and NCEP/NCAR reanalysis
data, this study analyzed the temporal and spatial distributions of EC events in winter in China by
using the relative threshold and the relationship between EC events and the Arctic Oscillation (AO)
index during the period of 1961–2017. The results show that the frequency of EC events in China
decreased by 0.730 d in these 57 years, with a trend of −0.1 d/10 y. Northeast China had the highest
frequency of EC events in winter, with an average of 4 d. In addition, EC events are significantly
negatively correlated with the AO index in China, with a correlation coefficient of −0.5, and the
AO index accounts for approximately 21% of the EC event variance. The strongest correlations are
mainly located in Northwest China. Our research shows that significant changes in the mid–high
latitude atmospheric circulation anomalies, which are associated with the AO, are responsible for EC
events. These findings provide theoretical guidance for the prediction and simulation of EC events.

Keywords: extreme cooling events; Arctic Oscillation; winter in China; atmospheric circulation

1. Introduction

According to the sixth assessment report of the IPCC, the global surface temperature
has shown an upward linear trend, increasing by 0.99 ◦C since the 21st century compared
to the preindustrial period [1]. Changes in extreme weather and climate events, which have
caused serious impacts on society, the ecological system, and public health [2–5], are more
sensitive to global warming than the mean climate [6,7]. The frequency and intensity of
extreme weather and climate events are also increasing [8,9]. However, the impact of these
changes is directly felt by people in the form of day-to-day temperature changes. Extreme
cooling (EC) events represent a sharp decrease in temperature between contiguous days,
and such events may be a major challenge to socioeconomic sustainability and human
health. Several studies have found that EC events can easily lead to the onset of disease [10].
EC events are strongly associated with nonaccidental deaths, cardiovascular deaths, and
respiratory deaths, especially for elderly individuals [11,12]. For example, Guo et al. [11]
showed that for every drop of 3 ◦C on two consecutive days, there was a 15.7% increase in
nonaccidental deaths in the population. Furthermore, studies have shown that EC events
are associated with the onset of infectious diseases. EC events can significantly increase the
number of infectious diseases, such as hand, foot, and mouth disease [12,13], respiratory
tract infections [14], and pneumonia [15]. In addition, EC events affect industrial and
agricultural production and transportation conditions. In 2008, an extreme cold surge
invaded central and southern China, causing economic losses of more than USD 22 billion,
and 129 people lost their lives [16]. China has complex climatic conditions and a large
population. Therefore, it is of great practical significance to clarify the spatial and temporal
characteristics of EC events in China and their possible mechanisms and thereby improve
the prediction of these events and reduce human casualties and property losses.
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The spatial and temporal patterns of EC events in winter have become the focus
for many researchers. Studies have shown that global cooling events above 10 ◦C are
decreasing [17]. As one of the more influential EC events in winter in China, cold waves
have also received widespread attention due to their temporal and spatial variability. In
recent decades, the frequency of cold surges in China has shown a decreasing trend [18].
However, most definitions are based on absolute thresholds [19–21]. China is a vast country,
and the climate varies greatly from region to region. Considering that people in different
regions have different adaptive capacities and emergency measures for EC events, the
definition of EC events for different regions should be defined by relative thresholds.
Xu et al. [22] used daily minimum temperature data and the rotating empirical orthogonal
function (REOF) method to divide China into seven regions, and different thresholds were
attached to each region. The results showed that the frequency of EC events is higher in
the north and lower in the south, and the overall trend of the change in the frequency of
EC events is decreasing. Zhai et al. [23] proposed using a certain percentile value as the
threshold for extreme weather events, and exceeding this threshold is considered to be the
definition of an extreme weather event. Cai et al. [24] defined EC events in eastern China
using the 90% quantile. The results showed that EC events are decreasing in eastern China.
Therefore, most scholars have concluded that EC events have decreased in China using
different definitions of EC events. However, the intensity and weakening trends of EC
event reduction in different regions still need further attention.

A dominant pattern of the Northern Hemisphere in winter is the Arctic Oscillation
(AO) [25,26]. The AO has a significant effect on climate variability and air temperatures
in the Northern Hemisphere at middle and high latitudes [27–29]. Therefore, quantifying
the relationship between EC events and the AO index can effectively improve EC event
prediction. Recent studies have shown a positive correlation between the AO and winter
temperatures in most parts of China [30]. The AO phase shift usually leads to weather and
climate anomalies at middle and high latitudes in the North Atlantic, North Africa, and
East Asia [31–33]. In addition, cold events occur more frequently in East Asia during the
negative phase of the AO, and the East Asian trough deepens with stronger East Asian
winter winds [34]. When El Niño and the positive-phase AO, or La Niña and the negative-
phase AO, are combined, the temperature anomaly in northern China accelerates [35].

Therefore, studies on the effects of the AO on winter temperatures in China have been
more extensive. However, few studies have been conducted to investigate the relationship
between the AO index and EC events in China; in particular, the effects of the AO index
on EC events in different regions are unclear. Given this situation, this study defined EC
events using observed and reanalyzed data, combined with the relative threshold method,
and analyzed the relationships between EC events and the AO index. The spatial and
temporal variation characteristics of EC events and the influencing mechanisms of the AO
index in China were also examined. The results of this study deepen our understanding
of cold-related extreme events and provide theoretical guidance for the prediction of
EC events.

2. Materials and Methods
2.1. Data

Daily mean surface air temperature data were obtained from the National Meteorolog-
ical Information Center of the China Meteorological Administration. We mainly considered
the average state of the daily temperature cycle and variations as the condition of EC
events, and the daily mean temperature was used instead of the maximum and minimum
temperatures. These data were subjected to strict quality control, and a total of 1115 meteo-
rological stations were finally selected. The winter months during the period of 1961–2017
were selected. To highlight the influence of different natural geographic conditions on EC
events, China was divided into seven regions: Northeast China, Northwest China, North
China, Central China, East China, South China, and Southwest China (Figure 1).
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Figure 1. Spatial distribution of the 1115 meteorological stations and elevation of the topography
over mainland China.

Monthly mean geopotential height, sea level pressure, and zonal and meridional
wind speed data were obtained from the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/NCAR) reanalysis product [36].
The spatial resolution was 2.5◦ × 2.5◦, and a total of 144 × 73 grid points were obtained glob-
ally. This study applied AO index data from the Climate Prediction Center (CPC) of the Na-
tional Oceanic and Atmospheric Administrator (NOAA); the data can be downloaded from
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml (ac-
cessed on 14 November 2020) [37,38]. The AO index was defined according to Thompson
and Wallace [25].

2.2. EC Event Definitions and Calculations

A day-to-day temperature change is estimated as the temperature change between
neighboring days (TCN) [39]:

TCN = Ti − Ti−1 (i = 1, 2, 3, . . . , n) (1)

where TCN denotes a change in the average daily temperature for day i, and Ti (Ti−1)
denotes the average daily temperature for day i (the previous day is denoted as i − 1). The
term n is the total number of days in winter. TCN < 0 indicates a cooling event.

The TCN data of a single station in winter were sorted from highest to lowest (except
for the positive TCN values), and the value of the 90th percentile was taken as the threshold
for EC events. Only TCN values exceeding this threshold were considered to be indicative
of an EC event. According to this method, the cooling thresholds of 1115 stations in China
were obtained as the criteria for EC events.

2.3. Correlation Analysis

The relationship between EC events and the AO index is calculated by correlation
coefficients and is often expressed as R:

R =
∑n

i=1(xi − xm)(yi − ym)√
∑n

i=1(xi − xm)
2·
√

∑n
i=1(yi − ym)

2
(2)

where n denotes the number of years, and xm and ym are the average values of x and y,
respectively. R assumes values in the range of [−1, 1]. Positive R values indicate a positive
correlation between x and y; negative R values indicate a negative correlation between
x and y. Significance levels of the correlation coefficient were estimated according to the
two-tailed Student t-test [40].

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
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2.4. Synthetic Analysis

In this paper, the conventional synthetic analysis method was used to analyze the
changes in each element when an AO event occurs. The results were tested for statistical
significance, and t-tests were used for two overall means, x, y.

t =
xm − ym√

(n1−1)s1
2+(n2−1)s2

2

n1+n2−2

√
1

n1
+ 1

n2

(3)

where n1 and n2 denote the sequence lengths of samples x and y, respectively; xm and ym
are the means; s1 and s2 are the variances; and n1 + n2 − 2 is the overall degree of freedom.
The t-distribution table was queried to determine if the results were significant.

2.5. Linear Trend Analysis

The long-term trend of the air temperature time series data was analyzed using the
linear tendency estimate method [41]. A simple linear regression was performed between
the temperature variable (y) and the corresponding time (x):

y = ax + b (4)

where a is a linear regression coefficient, which represents the rate of change in EC events.
A positive or negative value indicates an increasing or decreasing trend of EC events,
respectively. The trend results were tested for significance using the t-test at the 95%
confidence level.

3. Results
3.1. Temporal Variation and Spatial Pattern of EC Events

Figure 2h shows the time series of EC events in China from 1961 to 2017. The EC events
show an obvious interannual and interdecadal variability, but the trend is not significant,
with a decline of 0.730 d in these 57 years, and a trend of −0.128 d/10 y (p > 0.05). The
largest EC event occurred in 1965 at 7.803 d, and the smallest occurred in 2006 at 2.643 d,
with an average of 4.265 d. The interdecadal variability shows that the EC events in China
had a rapidly increasing trend from 1961 to 1970 and a decreasing trend from the 1970s to
the present, with the fastest decreasing trend in the 1990s at −0.038 d/10 y (p > 0.05).

To facilitate the analysis of the regional characteristics of the EC events, we calculated
the frequency and trend of winter EC events for each station in seven regions of China.
The results show that the frequency of EC events displays a spatial pattern of more in the
north and less in the south (Figure 3). Most EC events occurred in Northeast China, with
an average of 4.373 d, followed by Southwest China and Northwest China, with average
values of 4.335 d and 4.334 d, respectively. The lowest number of EC events occurred in
South China, at 4.059 d (Table 1).

In terms of the trend of winter EC events, obvious decreases were observed (Figure 2).
The statistical results of all meteorological stations show that 858 of the stations had a
decreasing trend of winter EC events. Among them, the trend of 240 stations reached the
90% confidence level (Figure 4). The trends of the EC events in the seven regions show that
the rate of decrease in Northeast China was the fastest, with an average of −0.196 d/10 y,
and approximately 31.1% of the stations showed a significant change. The regional average
trends of the frequency of EC events in North China, East China, and Northwest China
had values of −0.194 d/10 y, −0.162 d/10 y, and −0.127 d/10 y, respectively. Central
China, South China, and Southwest China had smaller decreasing rates, with averages of
−0.115 d/10 y, −0.075 d/10 y, and −0.040 d/10 y, respectively, and these values did not
pass the 90% confidence level. This result shows that Northeast China and North China
are the regions with the most EC events and the fastest decreasing trends.
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Table 1. Frequency and trends of EC events in different regions of China (Column 2 and Column 3 represent the range; in
Column 4 and Column 5, the number in parentheses indicates the number of meteorological stations that passed the 90%
significance test).

Mean (d) Trends (d/10 y) Positive Negative

Northeast China 4.373 (4.105~4.632) −0.196 * (−0.720~0.354) 18 (1) 117 (42)
Northwest China 4.334 (3.930~4.667) −0.127 * (−1.081~0.450) 48 (6) 120 (43)

North China 4.240 (3.719~4.456) −0.194 * (−0.691~0.310) 19 (2) 94 (37)
East China 4.221 (3.789~4.579) −0.162 (−0.544~0.231) 32 (0) 207 (64)

South China 4.059 (3.702~4.333) −0.075 (−0.373~0.338) 30 (1) 81 (7)
Central China 4.250 (3.860~4.509) −0.115 (−0.384~0.419) 26 (2) 130 (17)

Southwest China 4.335 (3.895~4.719) −0.040 (−0.785~0.480) 82 (17) 109 (30)
China 4.265 (3.702~4.719) −0.128 (−1.081~0.480) 255 (29) 858 (240)

* indicates significance at the 0.1 level.

3.2. Correlation between EC Events and the AO Index

As shown in Figure 5, the AO and EC events were significantly negatively correlated,
with a correlation coefficient of −0.459 (p < 0.01). When the AO was strong, the number of
EC events in China was low, and the AO can explain 21.1% of the variation in EC events in
China. To detach EC events from the global warming environment, this study detrended
EC events and the AO index. The results show that regardless of whether EC events and
the AO index were detrended separately or simultaneously, EC events and the AO index
in China still had a highly significant negative correlation (Table 2).
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Table 2. The correlation between EC events and the AO index in different regions.

Northeast
China

Northwest
China

North
China

East
China

South
China

Central
China

Southwest
China China

R(AOIdetrend, EC) −0.237 −0.471 *** −0.374 *** −0.390 *** −0.285 ** −0.389 *** −0.302 ** −0.421 ***
R(AOI, ECdetrend) −0.237 −0.471 *** −0.374 *** −0.386 *** −0.278 ** −0.381 *** −0.295 ** −0.418 ***

R(AOIdetrend, ECdetrend) −0.244 −0.485 *** −0.385 *** −0.398 *** −0.286 ** −0.392 *** −0.303 ** −0.431 ***
R(AOI, EC) −0.286 ** −0.514 *** −0.421 *** −0.427 *** −0.301 ** −0.408 *** −0.315 ** −0.459 ***

** and *** indicate significance at the 0.05 and 0.01 levels, respectively.

Spatially, the correlation coefficient between EC events and the simultaneous AO
index was mainly negative, and the correlation was positive only in Southwest China
(Figure 6). From the regional perspective, the frequency of EC events in the seven regions
was significantly negatively correlated with the AO index. The Northwest China region
had the strongest correlation, and the correlation coefficient exceeded −0.5.
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Figure 6. Climatological distribution of the correlation coefficient between EC events and the
simultaneous AO index.

In addition, the relationship between the AO and EC events was closely related to the
variation in atmospheric circulation anomalies associated with the AO in different climate
contexts. Therefore, further analysis of the variability of atmospheric circulation anomalies
associated with the AO is needed.

3.3. Possible Mechanisms of AO Affecting EC Events

The above results illustrate that EC events in China have a significant negative correla-
tion with the AO. To further study the mechanisms by which the AO influences EC events
in China, we selected the first eight years with the highest and lowest anomaly values from
the winter AO index change series from 1961 to 2017 to define strong and weak AO index
years, respectively. Among them, the strong AO index years were 2006, 2016, 1972, 1991,
1999, 1989, 1992, and 1988, and the weak AO index years were 2009, 1976, 1968, 1962, 1969,
1985, 1965, and 2000. As shown in Figure 7, the frequency of EC events was consistently
lower when the AO index was strong, except for the southwestern station and some other
stations. A total of 24.9% of these meteorological stations passed the 0.05 significance test,
indicating that the typical years selected were representative of the anomalies of EC events
in China.

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 12 
 

 
Figure 7. Climatological distribution of winter EC events in China during AO index anomaly years 
(AO-strong minus AO-weak years). 

Figure 8 shows the spatial distribution of the difference between the sea level pres-
sure, 850 hPa and 500 hPa geopotential heights, and wind fields in the strong and weak 
years. From the spatial distribution of the sea level pressure and wind fields (Figure 8a), 
the air pressure was significantly lower at high latitudes and higher in China, indicating 
that the Siberian high and Aleutian low were weak at this time, and that the near-surface 
northerly wind became weaker, which was not conducive to the occurrence of EC events 
in China. The 850 hPa geopotential height and wind field in the positive anomaly year 
(Figure 8b) were further analyzed. When the AO index was strong, the geopotential height 
in the high-latitude region was higher, and the geopotential height in the middle- and 
low-latitude regions was lower. The colder airflow activity range was limited to the polar 
region, and China was affected by warm airflow from the Pacific Ocean in the south. From 
the 500 hPa geopotential height and wind field (Figure 8c), the geopotential height was 
significantly higher in China when the AO index was strong. At this time, the East Asian 
trough was weak, and China was controlled by anomalous anticyclonic circulation. Therefore, 
there were fewer EC events in China. Significant changes in the mid–high latitude atmos-
pheric circulation anomalies associated with the AO led to the occurrence of the EC events. 

 
Figure 8. The difference in (a) sea level pressure, (b) 850 hPa and (c) 500 hPa geopotential heights, and wind fields between 
strong and weak AO index years (dotted areas indicate the areas that passed the 0.05 significance test; the wind field grid 
passes the significance test when u, v, and w pass 0.05). 

4. Discussion 
The purpose of this study was to use observational data to calculate the temporal and 

spatial variation in EC events in China under the 90th percentile threshold and to deter-
mine the relationship between EC events and the AO index in different regions. To assess 
the consistency of different EC event definitions with the conclusions of this study, the 
following discussion is presented. 

EC events are defined using three relative threshold methods (90th, 95th, and 99th 
percentiles) and an absolute threshold (cold surge) method. A cold surge is defined as a 
temperature decrease within a 24-h period greater than 8 °C, a 48-h period greater than 10 
°C, or a 72-h period greater than 12 °C, where the minimum temperature is less than 4 °C [42]. 

Figure 7. Climatological distribution of winter EC events in China during AO index anomaly years
(AO-strong minus AO-weak years).

Figure 8 shows the spatial distribution of the difference between the sea level pressure,
850 hPa and 500 hPa geopotential heights, and wind fields in the strong and weak years.
From the spatial distribution of the sea level pressure and wind fields (Figure 8a), the air



Sustainability 2021, 13, 11491 8 of 11

pressure was significantly lower at high latitudes and higher in China, indicating that the
Siberian high and Aleutian low were weak at this time, and that the near-surface northerly
wind became weaker, which was not conducive to the occurrence of EC events in China.
The 850 hPa geopotential height and wind field in the positive anomaly year (Figure 8b)
were further analyzed. When the AO index was strong, the geopotential height in the high-
latitude region was higher, and the geopotential height in the middle- and low-latitude
regions was lower. The colder airflow activity range was limited to the polar region, and
China was affected by warm airflow from the Pacific Ocean in the south. From the 500 hPa
geopotential height and wind field (Figure 8c), the geopotential height was significantly
higher in China when the AO index was strong. At this time, the East Asian trough was
weak, and China was controlled by anomalous anticyclonic circulation. Therefore, there
were fewer EC events in China. Significant changes in the mid–high latitude atmospheric
circulation anomalies associated with the AO led to the occurrence of the EC events.
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4. Discussion

The purpose of this study was to use observational data to calculate the temporal
and spatial variation in EC events in China under the 90th percentile threshold and to
determine the relationship between EC events and the AO index in different regions. To
assess the consistency of different EC event definitions with the conclusions of this study,
the following discussion is presented.

EC events are defined using three relative threshold methods (90th, 95th, and 99th
percentiles) and an absolute threshold (cold surge) method. A cold surge is defined as a
temperature decrease within a 24-h period greater than 8 ◦C, a 48-h period greater than
10 ◦C, or a 72-h period greater than 12 ◦C, where the minimum temperature is less than
4 ◦C [42]. The results show that the frequency of EC events in China based on all four
methods from 1961 to 2017 showed a decreasing trend of −0.128 d/10 y (90th percentile),
−0.089 d/10 y (95th percentile), −0.028 d/10 y (99th percentile), and −0.132 d/10 y
(cold surge) (Figure 9). Both the relative and absolute threshold methods using different
percentile definitions showed a decreasing trend of EC events in China, which is in line
with the findings of most studies [21]. In addition, the decreasing trend in the frequency of
EC events is defined using the 90th percentile, and the cold surge is the closest.

To test the consistency of the correlation between different EC event definitions and the
AO index, the correlation between the AO index and EC events before and after detrending
was calculated. The results show that EC events, as defined by all four methods, were
highly significantly correlated with the AO index, regardless of the detrending treatment.
Among them, the EC events defined according to the 90th percentile were above the highest
correlation coefficient of −0.459 to −0.418 (Figure 10).
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It should be noted that the analysis of the AO mechanisms influencing EC events
mainly began when the AO in the main circulation systems affected the winter temperature
in China. However, the entire weather process by which the AO affects EC events in China
is not discussed in detail here. Furthermore, in addition to the AO, the factors affecting
the average winter temperature in China include ENSO [43], Arctic sea ice [44], and the
East Asian winter monsoon [45]. The relationship between these factors and EC events and
their mechanisms will be the focus of our future work.

5. Conclusions

The results of this study show that EC events in China exhibit an obvious interannual
and interdecadal variability. EC events decreased by 0.730 d in the 57 years from 1961 to
2017, with a rate of −0.128 d/10 y. Most winter EC events occurred in Northeast China,
with an average of 4.373 d.

The AO was significantly negatively correlated with EC events, with a correlation
coefficient of –0.459. After detrending EC events and the AO index, EC events still had a
highly significant negative correlation with the AO index in China.

When the AO was strong, the Siberian high and Aleutian low were weak, and the
near-surface northerly winds became weaker. The East Asian trough in the middle tropo-
sphere obviously weakened. Thus, the propagation of cold polar air was limited by the
atmospheric circulation situation in the middle and high latitudes. China has had fewer
EC events influenced by warmer Pacific Ocean currents. In addition, the occurrence of EC
events due to other factors should be considered in future research.
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