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Abstract: As the protection layer of world natural heritage sites, the buffer zone should enable
economic development while protecting the environment. To carry out agricultural activities in
the buffer zone, it is necessary to balance agricultural development and environmental protection.
In addition, the development of agroforestry has the benefits of developing the economy, maintaining
biodiversity, and protecting the environment. In order to promote the coordination of environmental
protection and community economic development, it is particularly important to scientifically select
agroforestry planting patterns in the buffer zone of world natural heritage sites. This study utilized a
mixed-methods research approach that included qualitative and quantitative research. Taking the
buffer zone of Shibing Karst Heritage Site in southern China as an example, based on the seven
agroforestry planting patterns surveyed in the buffer zone of the world natural heritage site, the four
dimensions of net output value, carbon emission, environmental cost, and comprehensive livelihood
score of different agroforestry planting patterns were calculated. The sorting scores of the values
were calculated as Borda numbers. The sorting scores of the seven agroforestry planting patterns
were B(A1) = 17, B(A2) = 18, B(A3) = 8, B(A4) = 8, B(A5) = 14, B(A6) = 12, and B(A7) = 7. The results
showed that the priority sequence of seven agroforestry patterns was A2 > A1 > A5 > A6 > A3 = A4 >
A7. A2 was the best among the seven agroforestry planting patterns, and A7 ranked last. The results
can provide a quantitative evaluation basis for scientific optimization of agroforestry development
planting patterns, and provide a reference for promoting the protection of world natural heritage.

Keywords: world natural heritage; protection; livelihood capital; borda count

1. Introduction

World heritage sites constitute valuable human wealth and have outstanding universal
value. Buffer zones, which serve as the protection layer of the heritage site, are closely
related to the heritage site. However, the management of buffer zones often does not take
into account the needs of resource exploitation by local populations [1]. The buffer zone
must maintain a balance between agriculture development and protection of nature. The
primary goal of the agroforestry system is to minimize resource competition and maximize
ecological and economic benefits [2]. Agroforestry systems can improve environmental
quality and promote biodiversity conservation [3]. Agroforestry systems are considered to
be one of the most promising means to enhance land use in the buffer zone. Where there has
been a history of tree crop cultivation in the vicinity of a protected area, the environment
outside the boundary develops ecologically favorable characteristics for protection, and
even extension, of the biological diversity of the park itself [4]. The protection of world
natural heritage for agroforestry in the buffer zone can be described in terms of direct
protection and indirect protection [5].

In part, the ecological integrity of a world natural heritage site depends on the connec-
tion of the wider landscape [6]. The environmental degradation around a world natural

Sustainability 2021, 13, 11544. https://doi.org/10.3390/su132011544 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su132011544
https://doi.org/10.3390/su132011544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132011544
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132011544?type=check_update&version=2


Sustainability 2021, 13, 11544 2 of 16

heritage site reduces its area and increases edge effects, which are an important determi-
nant of the persistence of biodiversity [7]. Some of these edge effects can lead to habitat
changes [8]. The degradation that occurs around the protected area can easily lead to
similar degradation within its territory [9]. The agroforestry system is the best choice to
improve biodiversity and ecosystem services in degraded areas [10]. Although agroforestry
systems are unlikely to provide a habitat for specialist forest species that require large
tracts of undisturbed forest or woodland, they can support biodiversity in otherwise open
landscapes and allow movement of species between habitat remnants, and buffer protected
areas from the impacts of more intensive systems [11]. Humans may have negative effects
on the environment due to inappropriate agricultural activities. The negative effects on
the environment are rarely considered in the profitability analysis of agricultural systems
because of the lack of market value [12]. Tiezzi studied agricultural chemical pollution
and calculated the loss of nitrogen, phosphorus, and potassium [13]. Pretty et al. studied
environmental problems and measured the health costs caused by modern agriculture [14].
However, these studies are mainly at the macro level, and examine environmental externali-
ties at a regional or country scale. There is no comparative study on the environmental costs
between specific agroforestry planting patterns. The research on the environmental cost of
agroforestry is helpful for producers to realize the importance of developing agroforestry
and protecting the environment.

In addition, the protection of world natural heritage is closely related to the liveli-
hood of local residents. Muhammad investigated the sustainability of livelihoods and
environmental issues in marine protected areas using structural equation models. The
results showed that the improvement of residents’ livelihood capital has a positive and
significant impact on their attitudes towards environmental protection [15]. Residents’
attitudes and behaviors towards local resources and the environment are mainly affected
by their livelihoods in protected areas. If the development interests of the local people
are marginalized for a long period of time, they may adopt actions which are detrimental
to the goal of protection [16]. The implementation of conservation without considering
the economy often leads to local resistance [17]. If the local people lack livelihood capital,
they may undertake behaviors that are not conducive to the ecology [18]. Conservation
programs are effective and sustainable only if they have the dual objective of improving
local livelihoods and ecological conditions [19]. Therefore, the protection of world natural
heritage must take into account the livelihoods of local residents. Agroforestry is an im-
portant livelihood strategy for the rural population [20], which can help farmers alleviate
livelihood problems and improve livelihood flexibility [21]. Farmers’ livelihoods have
been greatly improved through the implementation of agroforestry, which can provide
many benefits such as food, fodder, and fuelwood [22,23]. Agroforestry increases species
diversity, ensures economic returns, and maintains farmers’ livelihoods [24]. The livelihood
capital of farmers is the foundation of poverty eradication, environmental protection, and
sustainable use of natural resources in the protected areas [5,25]. Most of these studies
examined the differences between agroforestry and non-agroforestry systems at a large
scale, and did not specifically focus on the different agroforestry planting patterns.

This study explored the economic benefits, environmental impacts, and social benefits
of different agroforestry planting patterns. The comprehensive benefits of different agro-
forestry planting patterns were measured in terms of the four dimensions of net output,
carbon emissions, environmental costs, and livelihood capital. These were ranked by the
Borda Count. As one of the most well-known aggregating methods, the Borda Count was
introduced by Borda in the late 1700s [26]. This methodology has been applied as a data
merging method for consolidating ranking results [27].

To the best of our knowledge, there are no systematic papers specifically devoted
to a study regarding net output, carbon emissions, environmental costs, and livelihood
capital of different agroforestry planting patterns. In this paper, we highlight three aspects.
In terms of content, there are numerous studies about agroforestry livelihoods [20,21,24].
Most studies compare the difference between agroforestry and non-agroforestry. However,
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there is no specific livelihood research that studies different agroforestry planting patterns.
In the current research, we studied the livelihood capital of different agroforestry planting
patterns. This is of significance for improving the livelihoods of farmers. In terms of
research directions, the ecological-economic trade-offs of agroforestry have rarely been
analyzed simultaneously [28]. In this study, we took the ecological and economic benefits
of specific agroforestry planting patterns into consideration. In terms of methods, the
Borda Count has been widely used in the decision-making field. However, there is no
specific decision-making research that studies different agroforestry planting patterns. We
ranked the seven planting patterns based on the Borda Count. This provided a decision-
making method for farmers to select agroforestry planting patterns. The following three
questions were answered: First, what method is used to evaluate the impact of agroforestry
planting patterns on heritage sites? Second, which indexes are more suitable to analyze the
impact of agroforestry on farmers’ livelihood capital? Third, through the study of different
agroforestry planting patterns, which agroforestry planting patterns are more beneficial to
heritage protection?

2. Materials and Methods
2.1. Research Area

Shibing Karst is located in eastern Guizhou Province in southwestern China and lies
in the slope transitional zone from the eastern edge of Yunnan-Guizhou Plateau to the
low mountains and hills of western Hunan Province (Figure 1). This is the transition zone
between the second and third stage of Chinese terrain, which is in the range of 29◦05′49′′

to 27◦13′59′′ east longitude [29]. The core area is spread over 102.8 km2, the buffer zone ex-
tends over 180.15 km2, and the total area is 282.95 km2. The area is within a mid-subtropical
monsoon humid climate zone, with obvious typical mountain humidity characteristics.
The annual average temperature is 14–16 ◦C. The annual average sunshine hours are 1200 h.
The annual precipitation is 1060–1200 mm, with uneven seasonal distribution, occurring
mainly from April to September, and which accounts for 75% of the annual precipitation.
The average annual humidity is 80%, and the frost-free period is 255–294 d. Extensive
native forest vegetation and diverse ecosystems have been conserved and maintained in
the area, with a forest cover of 94%. There are settlements in the buffer zone and human
activities are relatively widespread. The local residents are mainly engaged in agricultural
production. The main crops cultivated are flue-cured tobacco, corn, and rice [30].

According to the planting situation in Shibing study area, seven main agroforestry
planting patterns in Shibing study area were selected (Figure 2). These were numbered as
A1 plum (Prunus salicina Lindl) + rape (Brassica chinensis L. var. oleifera Makino et Namot);
A2 plum (Prunus salicina Lindl) + passion fruit (Passiflora coerulea L.); A3 pear (Pyrus sorotina)
+ potato (Solanum tuberosum L.); A4 pear (Pyrus sorotina) + corn (Zea mays L.); A5 pear
(Pyrus sorotina) + bletilla (Buddleja alternifolia); A6 pear (Pyrus sorotina) + polygonatum
(Polygonatum sibiricum); and A7 tobacco (Nicotiana tabacum L.) + rape (Brassica chinensis L.
var. oleifera Makino et Namot). The four planting patterns of A1, A2, A3, and A4 are mainly
located in Baiduo Village, Shibing County. The three planting patterns of A5, A6, and A7
are mainly in Shiqiao Village, Shibing County.
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Figure 1. Location of the research area.

Figure 2. Agroforestry planting patterns.
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2.2. Methods

The Borda Count was originally an election method in which voters ranked multiple
candidates according to their preferences. Subsequently, this method was used in group
decision making, and each decision maker would rank each option relative to other options,
instead of only voting on the options he liked [31]. This method has good characteristics for
the optimal scheme [32]. It can guide decision makers to choose a widely agreed optimal
scheme [33]. Borda advocated the following method: each agent ranks all the alternatives,
and gives integer marks to each of them: the highest score, which coincides with the
number of alternatives, to the most preferred; one point less to the next alternative; and so
on, in a descending manner, until the least preferred is reached, which is given only one
point [34]. The Borda Count has been used widely, not only in voting, but also to maximize
social welfare [35]. Therefore, by calculating the product economic value, carbon emissions,
environmental costs, and livelihood asset scores of different agroforestry patterns, the
Borda Count was used to comprehensively rank the seven agroforestry planting patterns
in the Shibing study area. This provides a quantitative evaluation method for optimizing
different agroforestry planting patterns in the buffer zone of heritage sites.

Let the set of schemes V = {V1, V2, . . . , Vj}. The index set is C = {C1, C2, . . . , Cn}. The
elements in V are arranged in linear order according to the index Cn. The sequence L = L1,
L2, . . . , Ln, then B(Vj) is the Borda number of Vj.

(
Vj
)
=

m

∑
i = 1

Bi
(
Vj
)

(1)

The analysis of environmental negative externalities of agroforestry production is
mainly carried out from two aspects: the physiological growth process of crops and the
materials used by human beings to regulate the growth of crops. The use of chemical
substances causes carbon emissions, soil pollution, water pollution, air pollution, etc.,
which are the main sources of external environmental costs. The use of pesticides, fertilizers,
and agricultural films in the production process of agroforestry has a negative impact on
the environment, which can be measured by carbon emissions and environmental costs.

The carbon emission calculation formula is:

E =
n

∑
i = 1

(Ti·δi) (2)

where E is the total carbon emission and Ti is the amount of carbon emission sources. δi is
the carbon emission coefficient (Table 1).

Table 1. Carbon emission coefficients.

Carbon Source Coefficient Reference

fertilizer (kg/kg) 0.8956 Oak Ridge National Laboratory [36]
pesticide (kg/kg) 4.9341 Oak Ridge National Laboratory [36]

agricultural films (kg/kg) 5.1800 Institute of Resources and Ecological Environment,
Nanjing Agricultural University [37]

The environmental cost calculation formula is:

CP = ∑n
i=1(Qi·MECi) (3)

where CP is the total environmental cost, Qi is the chemical substance input, i represents
the agroforestry planting patterns. MEC is the environmental cost per kilogram of chemical
inputs. The MEC of chemical fertilizers is 0.08368, the MEC of pesticides is 3.9874, and the
MEC of agricultural film is 3.5891 [38,39].
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2.3. Data Collection and Calculation

This study utilized a mixed-methods research approach that included 87 quantitative
household surveys and key information interviews of the relevant responsible persons
of the government. The research team conducted the surveys in Baiduo and Shiqiao
villages in Shibing County from 12 April to 18 April 2021. The two villages in the Shibing
research area were selected for the following reasons: first, most areas of the two villages
are located in the buffer zone and belong to the research scope; second, the development of
agroforestry in the two villages is significant; third, both villages are the research areas of
the research teams, who have worked in both villages and are familiar with their situation.
The investigation process was as follows. First, the relevant responsible persons of the
government were interviewed about the situation of the villages. This provided the basic
information regarding the villages, including population distribution, labor force, crop
distribution, etc. Second, the sampling survey was conducted in the two villages by random
sampling. Fifty-six households were surveyed in Baiduo village and 31 households in
Shiqiao Village. A total of 87 households were surveyed. The main contents of the
survey were: net output of agroforestry (Figure 3); the amount of fertilizer, pesticide, and
agricultural film (Table 2); and the indicators of livelihood capital of villagers (Table 3).
Third, the information was recalled and sorted via on-site recording and listening to audio
recordings.

Figure 3. Output value and number of households.

Table 2. Inputs of agricultural supplies.

Serial Number Patterns Fertilizer Inputs (kg) Pesticide Inputs (kg) Agricultural Films Inputs (kg)

A1 plum + rape 546.67 15.67 0.00
A2 plum + passion fruit 516.67 28.30 0.00
A3 pear + potato 456.25 25.94 13.50
A4 pear + corn 536.36 32.95 15.14
A5 pear + bletilla 600.00 75.00 30.00
A6 pear + polygonatum 675.00 75.00 30.00
A7 tobacco + rape 1153.85 45.00 43.85
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Table 3. Livelihood asset indicators.

Asset Quantitative Indicator

Natural Capital
Size of farmland (area)

The quality of farmland (level)
Crop diversity (the number of)

Physical Capital

Road conditions (level)
Distance of public facilities from home (how far)

The traffic tools (the number of)
Agricultural machinery (the number of)

Human Capital
Labor (the number of)

The degree of education (level)
Family health (yes or no)

Social Capital
Political influence (yes or no)

Social cost (level)
Participation in cooperatives (yes or no)

Financial Capital
Paid work (yes or no)

Bank deposits (the number of)
Livestock (the number of)

2.3.1. Estimation of Net Output Value

Two main methods are adopted to estimate the net output value. These are the direct
inquiry method and the cost-profit calculation method. The direct inquiry method is
applicable to a situation in which farmers have a better understanding of net output value.
The net output value of each agroforestry planting pattern can be calculated by averaging
the net output value that we obtained via the survey. The cost-profit method is suitable
for farmers who do not understand the concept of net value. In this case, the researchers
helped famers calculate the net output value of each household. Then, the net output value
of agroforestry planting patterns was averaged.

2.3.2. Estimation of Agricultural Supplies

Modern agricultural management is facing the challenge of providing sustained high-
quality yields without harming the environment [40]. According to the survey of farmers,
the inputs of agricultural supplies of each farmer are different. If some farmer’s crops are
infected with insect pests and need medical treatment, the amount of pesticide used by
the farmer will increase. Therefore, Table 2 lists the application status of each agroforestry
pattern, which is an average value for each farmer under normal conditions. For example,
A1 and A2 do not need agricultural film in the production process, so the amount of
agricultural film used is zero.

2.3.3. Livelihood Asset

Agroforestry plays a significant role in increasing agricultural productivity and con-
tributes to sustainable rural livelihoods [41]. Some studies have examined the local man-
agement and sustainability of agroforestry practices, constraints encountered, and contri-
butions to household income [42,43]. Hideyuki showed that home gardens are ecologically,
socially, and economically diversified, and demonstrated their benefits to human well-
being as ecosystem services [44]. The livelihoods of farmers have been greatly improved
through agroforestry because they have greater access to food, feed, and fuelwood, which
creates more opportunities to obtain livelihood capital. The capital status of farmers is not
only the basis for understanding the livelihood strategies adopted and the risky environ-
ment in which they are located, but also the entry point for policy intervention in natural
resource management and environmental protection.

Rural livelihoods consist of five forms of capital: human capital, social capital, financial
capital, natural capital, and physical capital [45] The seven planting patterns of capital
overlap and can be converted into each other, including different planting patterns of
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assets required for sustainable livelihoods. According to the actual situation of the study
area, combined with scholars’ relevant research on livelihood capital [18,25], the indicators
of the capital of rural household livelihood capital were determined. Three indicators
were selected for quantification of natural capital: farmland size, farmland quality grade,
and crop diversity. The indicators of physical capital are road conditions, distances from
homes of public facilities, vehicles, and agricultural appliances. Human capital includes
the number of labor forces, the education level of the head of the household, and the health
of the family. Financial capital indicators include paid jobs, the amount of bank deposits
and the number of livestock. Social capital indicators include political influence, social cost,
and whether to participate in cooperatives (Table 3).

In order to make it easier to calculate, the survey results for each of the indicator
questions were converted so that the answer choices for questions were on a scale of 0
to 1. The results were assigned as 1 to represent the most desirable response, and 0 to
represent the least desirable response. For example, for the question about whether any
household member participated in cooperatives, any “yes” answer was assigned as 1 and
any “no” answer was assigned as 0. Questions with multiple answer choices (such as Likert
scale-type questions) were assigned values within the range of 0 to 1 (for example, 0, 0.25,
0.75, 1) [25]. After the survey results for each question and respondent were converted to fit
a scale of 0 to 1, composite asset indexes were able to be created. To create the composite
asset index for each of the five livelihood capital assets, the individual indicator scores
were averaged for each household [46]. Finally, the asset score of the agroforestry pattern
was obtained by a composite asset index.

3. Results
3.1. Net Output Value

Based on the interviews with farmers and the estimation of the net output value of
each agroforestry planting pattern, the net output value and number of households of
agroforestry planting patterns was obtained (Figure 3). Among the seven agroforestry
planting patterns, the A5 and A6 planting patterns have the highest net output value, and
both planting patterns contain Chinese herbal medicine. Regarding A5, Bletilla is a Chinese
herbal medicine, and its price is relatively high. Regarding A6, the price of Polygonatum is
lower than that of Bletilla so its net output value is lower. The cultivation of Bletilla and
Polygonatum requires high technical management, so the number of planting households
is small. There are five of these households in Shibing County, all of which are relatives of
each other. The A3 and A4 planting patterns have the lowest net output value. In these
two patterns, potatoes and corn are both food crops, and their prices are low.

3.2. Carbon Emissions

The total carbon emissions of different agroforestry planting patterns are different
(Figure 4). The carbon emissions of A7 (1482.57 kg) are the highest. Compared with other
planting patterns, the agricultural film carbon emissions of A7 are highest (227.14 kg). In
the early period of tobacco growing, agricultural film needs to be covered, and agricultural
film is used in large quantities. The tobacco is fertilized several times during the growth
process and pesticides are used to prevent pests and diseases. Due to the extensive use
of chemical fertilizers, pesticides, and agricultural film, the total carbon emissions of the
pattern are large. The total carbon emissions of A1 (566.91 kg) and A2 (602.36 kg) are
lower. The two planting patterns do not require agricultural film, so the carbon emissions
of agricultural film are zero. The use of chemical fertilizers and pesticides is lower than
that of other planting patterns, so the total carbon emissions of the two planting patterns
are lower.
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Figure 4. Carbon emissions of different agroforestry planting patterns.

3.3. Environmental Costs

The total environmental costs of different agroforestry planting patterns are different
(Figure 5). The total environmental costs of the three planting patterns A5, A6, and A7 are
higher because the three plants of Bletilla, Polygonatum, and tobacco all need to be covered
with agricultural film. During the growth period, chemical fertilizers and pesticides need
to be used. The inputs of chemical fertilizers, pesticides, and agricultural film are different.
The environmental cost of A5 is USD 456.94, that of A6 is USD 463.22, and that of A7 is USD
433.38. The proportions of environmental costs of A5 are as follows: the environmental cost
of chemical fertilizers is USD 50.28 (11%), the environmental cost of pesticide is USD 299.46
(65.45%), and the environmental cost of agricultural film is USD 107.82 (23.56%). Pesticide
is the main source of environmental costs of this pattern (65.45%). The environmental cost
of chemical fertilizers of A6 is USD 56.56 (12.19%), the environmental cost of pesticides
of A6 is USD 299.46 (64.56%), and the environmental cost of agricultural film of A6 is
USD 107.82 (23.24%). The input of chemical fertilizer in this pattern is slightly more than
that of A5, and the inputs of pesticide and agricultural film are roughly the same. The
environmental cost of chemical fertilizer of A7 is USD 100.56 (22.75%), the environmental
cost of pesticide of A7 is USD 179.68 (40.65%), and the environmental cost of agricultural
film of A7 is USD 161.73 (36.59%). The input of chemical fertilizer of this pattern is large,
and the environmental cost of chemical fertilizer is high. Compared with other planting
patterns, the input of agricultural film is the largest. The total environmental cost of A1 is
the lowest (USD 108.38). The environmental costs of chemical fertilizers (USD 45.75) and
pesticides (USD 62.48) are low, and the environmental cost of agricultural film is zero.
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Figure 5. Environmental costs of different agroforestry planting patterns.

3.4. Livelihood Capital

Different agroforestry planting patterns have different impacts on farmers’ livelihood
capital. The five forms of livelihood capital in different planting patterns can be presented
with a spider diagram (Figure 6). The average livelihood capital is 0.4217. The livelihood
capital of A6 is highest (0.4986), and second is A5 (0.4729). The pattern with the lowest
livelihood capital is A3 (0.3753) (Figure 7).

Figure 6. The five forms of livelihood capital of different planting patterns.
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Figure 7. The livelihood capital of different planting patterns.

Among the human asset scores, the agroforestry pattern with the highest score is A5
(0.6667), followed by A6 (0.5833). Farmers in the two planting patterns have a high level of
education and good health. The agroforestry pattern with the lowest score is A1 (0.4556). In
this agroforestry pattern, the education level of the head of household is low (0.4). Among
the physical asset scores, the highest-scoring agroforestry pattern is A6 (0.6875), and the
lowest-scoring agroforestry pattern is A3 (0.4180). The number of vehicles and agricultural
machinery in A3 is lower than that of A6. Among the natural asset score, A2 (0.3889) has
the lowest score, and A3 (0.5573) has the highest score, with a range of 0.1684. The asset
scores are very close, and the gap is small. Among the financial asset scores, the score
of A2 (0.4444) is highest, and the score of A3 (0.2708) is lowest. The net output value of
A2 is higher than that of A3. Among the social asset scores, the score of A1 (0.3111) is
highest, and the score of A3 (0.125) is lowest. In A1, the number of farmers participating in
a cooperative is more than that of A3. Overall, the average social financial score is only
0.2290, which is a low score.

3.5. Ranking and Optimization of Different Agroforestry Planting Patterns

In order to determine the most suitable pattern of agroforestry in the Shibing World
Natural Heritage Site, according to the four dimensions of the net output value, carbon
emissions, environmental cost, and livelihood asset score of different agroforestry patterns
(Table 4), the Borda Count was used to sort the different agroforestry planting patterns to
determine the preferred pattern.

The values of the four dimensions of net output value, carbon emissions, environ-
mental costs, and livelihood asset scores of different agroforestry planting patterns were
sorted to obtain four sequences, which were recorded as L1, L2, L3 and L4. Then, the net
output of the seven agroforestry planting patterns was ranked as L1: A5 > A6 > A2 > A7 >
A1 > A4 > A3 (ranking from large to small). Similarly, the carbon emissions of the seven
agroforestry planting patterns were ranked as L2: A1 < A2 < A3 < A4 < A5 < A6 < A7
(ranking from small to large). The environmental costs of the seven agroforestry planting
patterns were ranked as L3: A1 < A2 < A3 < A4 < A7 < A5 < A6 (ranking from small to
large). The livelihood asset scores of the seven agroforestry planting patterns were ranked
as L4: A6 > A5 > A2 > A1 > A7 > A4 > A3 (ranking from large to small).



Sustainability 2021, 13, 11544 12 of 16

Table 4. The values of the four dimensions.

Serial Number Net Output
Value ($)

Carbon
Emission (kg)

Environmental
Cost ($)

Livelihood
Capital

A1 10,909.99 566.91 108.23 0.4411
A2 18,854.92 602.36 156.08 0.4514
A3 9351.60 606.54 190.07 0.3753
A4 9601.26 721.37 230.61 0.401
A5 66,280.99 1062.82 456.94 0.4729
A6 44,480.85 1129.99 463.22 0.4986
A7 12,633.12 1482.57 433.38 0.4285

According to Formula (1), using the Borda Count, the Borda numbers of A1 in the
four sequences were calculated to be BL1(A1) = 2, BL2(A1) = 6, BL3(A1) = 6, BL4(A1) = 3;
therefore, the score of A1 is B(A1) = 17. Similarly, B(A2) = 18, B(A3) = 8, B(A4) = 8,
B(A5) = 14, B(A6) = 12, B(A7) = 7. Therefore, the preferred order of the seven agroforestry
planting patterns is:

A2 > A1 > A5 > A6 > A3 = A4 > A7

According to the ranking, A2 has the best performance among the seven agroforestry
planting patterns, A7 is ranked last, and A3 and A4 share fifth place. The results show
that the Borda Count was used to comprehensively consider the four dimensions, which
are net output value, carbon emissions, environmental costs, and livelihood asset scores.
The optimal pattern of agroforestry in the buffer zone of the Shibing Karst World Natural
Heritage Site is A2. The most unsuitable pattern is A7.

4. Discussion
4.1. Consideration of Research Directions and Methods

In terms of methods, Shen et al. evaluated the development modes of community
settlements in Taining World Natural Heritage Site using the sequence relation analysis
method [47]. Through the establishment of primary indicators and secondary indicators,
the index layer is constructed and the weights are set. In this study, the index weights were
not distinguished because the weights of the four dimensions could not be determined.
The weight needs to be determined by experts after research and consideration. Vallejo
et al. assessed the changes in the location and scope of agricultural land use, visually
interpreted very high-resolution images, and analyzed the ecological and agricultural areas
of interest [48]. This method is suitable for intensive agriculture. In the current study, the
agroforestry planting patterns were not highly distinguishable from the image, and the
coverage area is small. This method is therefore not appropriate, but it can be used as
a reference for other land use planting patterns with a high degree of distinction and a
large area.

In terms of research directions, Rosa-Schleich et al. identified 1926 articles through
meta-analysis [28]. They believed that although ecological-economic trade-offs are essential
to incorporate biodiversity into agricultural production, the agroforestry practices are rarely
analyzed simultaneously. Zou et al. evaluated ecosystem services for typical land-use
patterns and compared the ecological and economic benefits of seven typical agroforestry
planting patterns [49,50]. A diversified agricultural system may provide farmers with a
means to combine high ecological benefits with high economic benefits. This also confirms
the significance of the analysis in the current study of the practice of agroforestry from the
two aspects of ecological and economic benefits. Therefore, in this study, we took the eco-
logical and economic benefits of specific agroforestry planting patterns into consideration,
ranked different agroforestry planting patterns, and selected more suitable agroforestry
planting patterns. This provided a decision-making method for farmers when selecting
agroforestry planting patterns. By sorting the various indicators of different agroforestry
planting patterns, the effectiveness of the agroforestry planting patterns can be predicted.
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4.2. Consideration of Environmental Indicators

In the development of agroforestry, the environment is affected due to the input of
agricultural materials such as chemical fertilizers, pesticides, and agricultural films. The
sources of carbon emissions include fertilizers, pesticides, agricultural films, and agricul-
tural machinery fuels [51,52]. However, the agroforestry planting patterns considered in
this study are not intensive and agricultural machinery is not used. This study did not
consider the carbon emissions of fuel. Due to the different field management approaches
of different agroforestry planting patterns, the impacts on the environment are different. It
is necessary to highlight the differences between different agroforestry planting patterns.
The different impacts on the environment of crops with agricultural film and crops without
agricultural films should be considered. Furthermore, for crops that are highly prone to
diseases and insect pests, more pesticides need to be sprayed.

4.3. Analysis on the Livelihood of Agroforestry

Nautiyal et al. analyzed the differences between simultaneous agroforestry, sequen-
tial agroforestry, home gardens, and community forests [53]. They concluded that the
present policy of treating forests and agriculture as closed and independent ecological
or production systems needs to be replaced by an integrated land use policy. Quandt
illustrated the effectiveness of agroforestry in building livelihood resilience for agricultural
households and found that the average livelihood composite asset index for households
with agroforestry was 0.440, and that without agroforestry was 0.400 [25]. It is common
to study the classification of agroforestry systems, but no specific livelihood research has
examined different agroforestry planting patterns. The current study assessed livelihoods
and examined the household livelihoods of farmers under different agroforestry planting
patterns. This represents a supplement to and improvement of the research of Quandt.

4.4. Deficiencies and Prospects
4.4.1. Index and Weight

Regarding the selection of different agroforestry planting patterns, many aspects need
to be considered. We only selected the four dimensions of net output, carbon emissions,
environmental costs, and livelihood scores. Thus, there was no consideration of index
weights, and the analysis may therefore be incomplete. In a follow-up study, appropriate
indexes and weights for the study area should be set, so that the results will be closer to
the actual situation of the study area.

4.4.2. Data Error

There were a number of possible data errors in this study. First, the data were gathered
from interviews with farmers. Although the actual situation of farmers can be determined,
there may be artificial errors as a result of cognitive barriers in the communications with
the farmers. Second, due to the vigilance of farmers, the interview content may not
be precise enough. For example, when investigating the financial assets of households,
some households may have been unwilling to disclose their economic situation. In this
case, the investigator can only make an estimate according to the external conditions of
the households, such as the degree of luxury of the house and the number of electrical
appliances. This process will result in data errors, which can only be carefully overcome as
much as possible. Third, the data obtained in this paper only reflect the situation in the
study area. Because of the differences in different regions, the calculation results would be
different.

4.4.3. Outlook

A future aim should be to further strengthen the basic research on the impact mecha-
nism of agroforestry and environment, especially in the specific process of the interaction
between different agroforestry planting patterns and the environment; for example, the
impact of different agroforestry planting patterns on biodiversity. In response to different
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purposes, different evaluation methods and indexes need to be set, and should be paid
greater attention. For instance, the use biodiversity evaluation indexes in natural reserves
for biodiversity protection should be increased. In protected areas with aesthetic value,
more indexes that reflect the beauty of the landscape should be used.

5. Conclusions

The buffer zone of a world natural heritage sites is a protection layer. The agricultural
activities in the buffer zone affect the value of the heritage site. This study used the buffer
zone of a world natural heritage site as an example, and examined the agroforestry planting
patterns. In agricultural activities, agricultural materials such as fertilizers, pesticides, and
agricultural films affect the local atmosphere, water, and soil. By calculating carbon
emissions and environmental costs, the impact of different agroforestry planting patterns
on the environment was measured. Furthermore, the four dimensions of net output value,
carbon emissions, environmental costs, and livelihood asset scores were calculated and
ranked. The ranking scores were represented by Borda numbers. The scores of the seven
agroforestry planting patterns were: B(A1) = 17, B(A2) = 18, B(A3) = 8, B(A4) = 8, B(A5) = 14,
B(A6) = 12, and B(A7) = 7. The results showed that the priority sequence of the seven
agroforestry planting patterns was A2 > A1 > A5 > A6 > A3 = A4 > A7. According to the
ranking, considering the four dimensions, the A2 pattern was the best among the seven
agroforestry patterns, and the A7 pattern ranked last. In consideration of the protection of
world natural heritage, the planting scale of the better-performing agroforestry pattern can
be appropriately increased based on the actual situation of the region, and the use of the
poorly performing agroforestry pattern can be reduced. This also provides a new reference
method for predicting whether the new agroforestry pattern is suitable for development.
The data in this study were mainly derived from interviews with farmers, and there may
be errors. Moreover, there was no consideration of the weights of the four dimensions of
net output, carbon emissions, environmental costs, and livelihood scores. As a result, the
analysis may be incomplete. For future research, appropriate weights for the study area
should be set, so that the results will be closer to the actual situation of the study area.
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