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Abstract: Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent
enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its
molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts
of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and
carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical
carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism
is carried out in low permeable core samples. This corresponds to the feasible mobilization of the
supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for
core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the
increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36,
0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial
factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase
the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The
minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight
core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less
volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage
capacity increases. This is indicative of a proper gas displacement front in lower water saturation
and higher gas recovery factor. The findings of this study can help for a better understanding of the
gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.

Keywords: displacement efficiency; natural gas recovery; permeability; water saturation; adsorption density

1. Introduction

The enormous demand of various industries for fossil fuels [1–9] has forced petroleum
industries to find novel solutions to improve the oil production rate [10–16]. Utilization
of underground stored natural gas would be more environmentally friendly during en-
hanced recovery processes [17–23], as it does not need to transfer gas from petrochemical
industries [24–26]. Moreover, it is more economical, as it has removed unprecedented
expenses to capture carbon dioxide [27–34]. Recently, due to the high productions of hy-
drocarbon, most of the conventional reservoirs are almost depleted, or it is not economical
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to produce the remained hydrocarbon [35–40]. Thereby, to provide the supply and de-
mand for different industries, new methods such as drilling horizontal wells, hydraulic
fracturing, and enhancing the production rate from unconventional reservoirs become more
important [41–45]. Unconventional reservoirs include shale reservoirs, tight (k < 10 mD) or
ultra-tight (0.1 < k < 1 mD) reservoirs [46–50]. Due to tight gas reservoirs’ low permeability
and poor reservoir characteristics [51–55], ultimate gas recovery is very low, which is not
beneficial for petroleum industries [56–61]. Various studies have been conducted on the gas
recovery enhancement from tight gas reservoirs; however, there is no significant progress
made, compared with conventional gas reservoirs [62–67]. Problems such as liquid injec-
tion difficulties for chemical enhanced recovery methods or mixture problems of injected
gas with in situ gas have caused lower displacement efficiency [68–73]. Vo Thanh et al.
(2020) investigated the optimal WAG (alternating water gas) performances by a robust
optimization workflow as an artificial intelligence optimizer in carbon dioxide sequestra-
tion processes for sandstone reservoirs. They illustrated that WAG injection could help to
reduce the solubility trapping and residual features of carbon dioxide [74]. AlRassas et al.
(2021) developed a 3D geological model to estimate the carbon dioxide capacity in the
Shahejie Formation, which can be a crucial factor in determining the required carbon
dioxide during injectivity processes [75]. An artificial neural network model improves this
issue in offshore Vietnam, as developed by Vo Thanh et al. (2020) [76].

Although regarding the poor reservoir characteristics of tight reservoirs, gas recov-
ery is not high enough (in the range of 35–45%), it would be the optimum choice to
produce natural gas instead of conventional reservoirs, as most of the hydrocarbons are
depleted [77–79]. Furthermore, chemical-based recovery methods are not feasible in tight
gas reservoirs due to the liquid injection difficulties [80–86]. Carbon dioxide injection
would be the more practical method, as it can be easily mixed with the formation of in situ
natural gas [75,76]. The gas recovery enhancement has been improved from areas with
poor displacements [87–90]. Carbon dioxide can also be stored in underground formations
during the gas recovery enhancement, which is why it is called an environmentally friendly
and economical method. The CO2 phase has been changed in temperatures more than
31.04 ◦C and pressures more than 7.382 MPa, with different viscosity and density [91–93].
This property would be more conducive for efficient displacement in tight reservoirs.
Liu et al. (2013) observed that supercritical CO2 injection could provide more gas recovery
factors in shale reservoirs—above 95% of the injected CO2 was stored [94]. In this paper,
we experimentally investigated the effect of permeability and water saturation during
supercritical CO2 injection, and how they impact the gas recovery in tight reservoirs. This
process is schematically shown in Figure 1.

The prominent influence of carbon dioxide-based enhanced oil recovery methods
has been studied to enhance the recovery factor in tight oil reservoirs [95–99]. Based
on several studies, carbon dioxide is stored in underground formations and helps to
enhance oil recovery [100–102]. Hu et al. (2020) experimentally investigated the effect of
carbon dioxide injection in shale core samples for different cycles and how it affects the
oil recovery factor. An increase in the number of cycles would be a potentially influential
factor in enhancing the oil recovery factor. Carbon dioxide changes to the supercritical
phase in higher temperatures and pressures, which causes more carbon dioxide adsorption.
Higher adsorption of carbon dioxide can improve the displacement efficiency, and more
oil volumes are therefore produced [103]. Yang et al. (2017) observed that it was not the
natural gas features but the physical characteristics of supercritical carbon dioxide, such
as viscosity and density, that caused proper displacement efficiency. Therefore, in this
study, regarding these efficient features, supercritical carbon dioxide injection would be a
prominent option to increase remained natural gas production from tight reservoirs [104].
Furthermore, the higher adsorption capacity of supercritical carbon dioxide, compared
with natural gas (CH4, C2H6, and CO2), would be another influential factor in improving
gas recovery from tight reservoirs [104–107]. According to Kim et al. (2017), gas recovery
increase for a shale reservoir would be 24% more than regular carbon dioxide injection. This
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paper aimed to investigate tight gas reservoirs and tight core samples during supercritical
injection and examine whether lower permeabilities can provide better gas recoveries [108].

Figure 1. The supercritical CO2 injection process through porous media. As can be seen, natural gas
included CO2, CH4, and N2 injected into the formation and in the production well, mostly CH4 was
produced, and CO2 was stored for further processing.

This paper aimed to experimentally investigate the considerable influence of supercritical
carbon dioxide injection for various permeabilities and water saturations in tight gas core
samples to observe the gas recovery alterations. It is observed that this method is an appropri-
ate method to improve natural gas recovery and carbon dioxide storage in lower permeable
core samples. First, materials used for this experiment and their properties are introduced,
and then the presented methods are explained in Section 2. Then, in Section 3, the effect of
crucial parameters on enhanced gas recovery and CO2 storage are reported and explained in
more detail. Finally, the main conclusions of this study are summarized in Section 4.

2. Materials and Methods
2.1. Materials

Core samples: A total of 25 tight core samples from a gas reservoir with the permeability
and porosity range of 0.05–0.9 mD and 4.23–9.49%, respectively, were selected for this
experiment. The lengths are 2.5 inches and 1.5 inches, and 94% of the selected core
samples contained quartz, and 6% contained calcite and dolomite. To provide a reasonable
evaluation of reservoir conditions, the temperature was considered to be 60 ◦C.

Fluids: natural gas with 96.7% CH4, 3% of C3–C5, 0.3% of N2, and 99.9% purified CO2,
were used in the experiment. Synthetic brine with 52,000 mg.L−1 of KCl was used to match
with formation brine.

2.2. Experimental Apparatus

The following procedure was performed to measure gas recovery for different water
saturation and core permeabilities to observe their significant impact on the carbon dioxide
storage and content (see Table 1). It is schematically depicted in Figure 2.

2.3. Measurement of Supercritical Carbon Dioxide Characteristics

Firstly, diffusion capacity was measured by an HTHP vessel by injecting supercritical
carbon dioxide (yellow dye) in constant pressure, and then the natural gas was injected
sequentially. Two gases were combined for two days under 60 ◦C. The measured compo-
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sition and pressure drop rate were utilized to measure diffusion capacity (see Figure 3).
It is observed that lower pressures have larger diffusivity in natural gas, which is about
12 × 10−8 for 10 MPa. The pressure increase decreases it.

Table 1. Supercritical carbon dioxide procedure for enhanced gas recovery.

Step Process

1
Irreducible water with a saturation of 30% was injected into the core holder

system. A pressure drop transmitter was put above the core holder to
regulate the pressure if necessary.

2 Core samples were saturated with natural gas to reach the pore pressure to
25 MPa (reservoir pressure). The confining pressure was 30 MPa.

3 The gas depletion drive mechanism was started from one end of the core
sample to measure the gas volume by a gas meter until it reached a plateau.

4 Supercritical carbon dioxide injection with the pressure of 12 MPa was
started until all of the natural gas components were produced.

Figure 2. Supercritical carbon dioxide setup.

Figure 3. Diffusion coefficient at various pressures. The measured composition and pressure drop
rate were utilized to measure diffusion capacity.
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In this part, the thermophysical characteristics of viscosity, adsorption, and density
were measured in lab conditions at different pressures (see Table 2). It is observed that
supercritical carbon dioxide has a higher density and viscosity at higher temperatures,
which significantly influences the gas recovery from tight reservoirs. These values are
higher than natural gas viscosity and density due to the differences in gravity between
supercritical carbon dioxide and natural gas. On the other hand, increased adsorption
capacity by increasing pressure results in higher values for supercritical carbon dioxide
than natural gas. Therefore, adsorption differentiations would be crucial in gas recovery
enhancement by replacing the natural gas phase in a porous medium.

Table 2. Fluid thermophysical characteristics for supercritical carbon dioxide.

Pressure, MPa Viscosity, mPa·s Density, g·cm−3 Adsorption Volume,
cm3·g−1

10 0.02 0.2 0.1

15 0.03 0.3 0.121429

20 0.04 0.4 0.142858

25 0.05 0.5 0.164287

30 0.06 0.6 0.185716

35 0.07 0.7 0.207145

40 0.08 0.8 0.228574

3. Results and Discussion
3.1. Enhanced Gas Recovery

When measuring the gas recovery from tight core samples, the results indicate that
the maximum gas recovery is 46.4%, which means there is no significant progress in gas
recovery. At this stage, the supercritical gas injection started to inject supercritical carbon
dioxide through tight core samples. Different crucial factors such as permeability and
water saturation were considered to measure the ultimate gas recovery factor. Moreover,
the gas recovery increase by using supercritical carbon dioxide was measured for each
factor to compare the effect of each parameter.

3.1.1. Effect of Permeability

To observe the significant impact of different permeability on the gas recovery en-
hancement, five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD were considered.
It is observed that supercritical carbon dioxide provides a higher gas recovery increase
after the gas depletion drive mechanism is carried out in lower permeability core samples.
This increase is related to the feasible mobilization of the supercritical carbon dioxide
phase through smaller pores. The maximum gas recovery increase for core samples with
0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in
permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36,
0.54, and 0.78 mD, respectively (see Figure 4).

3.1.2. Effect of Water Saturation

To consider the effect of water saturation on the gas recovery from tight reservoirs, we
set water saturation levels at 0.15, 0.35, 0.45, 0.55, and 0.65 in our experiments. As shown
in Figure 5, higher water saturation is a crucial factor in the gas recovery enhancement,
especially in the final pore volume injection, as it can increase the supercritical carbon
dioxide dissolving in water, leading to more displacement efficiency.
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Figure 4. Effect of permeability on the gas recovery enhancement using supercritical carbon dioxide
for five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD.

Figure 5. Effect of water saturation on the gas recovery enhancement for supercritical carbon dioxide
for water saturation levels of 0.15, 0.35, 0.45, 0.55, and 0.65 in our experiments.

3.2. Carbon Dioxide Content

In the first period of supercritical carbon dioxide injection through tight core samples,
there is no carbon dioxide in the produced gas. After the carbon dioxide breaks through
in the pores, carbon dioxide content is increased. It becomes the only gas component
in the pores, and there is no natural gas in the system. This is why the natural gas
recovery from the tight core samples reaches a plateau after a short time of carbon dioxide
breakthrough [109]. Another reason is the extremely low diffusivity index of supercritical
carbon dioxide when in contact with natural gas.

3.2.1. Effect of Permeability

To observe the significant impact of different permeabilities on the carbon dioxide
content, five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD were considered. As
shown in Figure 6, the breakthrough time is delayed by reducing core samples’ permeability
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during supercritical carbon dioxide injection. It causes the carbon dioxide content to
increase dramatically in a shorter time. Furthermore, due to more small pores in lower
permeable pores in tight core samples, natural gas would be trapped in the pores, as the gas
mobilization is poor. Supercritical carbon dioxide injection can push the trapped natural
gas into small pores due to being a more feasible outcome and the smaller molecular
size. Another reason for this issue corresponded to the higher adsorption capacity of
supercritical carbon dioxide in lower permeabilities.

Figure 6. Effect of permeability on the carbon dioxide content in supercritical carbon dioxide injection
for five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD.

3.2.2. Effect of Water Saturation

To consider the effect of water saturation on the carbon dioxide content in supercritical
carbon dioxide injection from tight reservoirs, we set water saturation levels at 0.15, 0.35, 0.45,
0.55, and 0.65 in our experiments. An increase in water saturation causes a delay in reaching
the breakthrough. This corresponds to the supercritical carbon dioxide dissolving in water,
which causes a proper displacement front and more gas recovery factor (see Figure 7).

Figure 7. Effect of water saturation on the carbon dioxide content in supercritical carbon dioxide
injection for water saturation levels of 0.15, 0.35, 0.45, 0.55, and 0.65 in our experiments.

3.3. Carbon Dioxide Storage Capacity

The storage capacity for carbon dioxide is defined as the storage volume to the total
carbon dioxide injection volume. Before the breakthrough, there is no production of carbon
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dioxide, and a large volume of carbon dioxide is stored, while after the breakthrough, its
storage decreases dramatically.

3.3.1. Effect of Permeability

To observe the significant impact of different permeabilities on the carbon dioxide
storage capacity, five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD were
considered. As shown in Figure 8, the carbon dioxide storage capacity decreases with the
increase in core samples’ permeability during supercritical carbon dioxide injection. This is
due to the stronger adsorption capacity of supercritical carbon dioxide in low-permeable
core samples. Therefore, it causes tight core samples to have a lower gas recovery factor.
The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is
about 38% for tight core samples with the permeability of 0.78 mD.

Figure 8. Effect of permeability on the carbon dioxide storage capacity in supercritical carbon dioxide
injection for five different permeabilities of 0.1, 0.22, 0.36, 0.54, and 0.78 mD.

3.3.2. Effect of Water Saturation

To consider the effect of water saturation on the carbon dioxide storage capacity in
supercritical carbon dioxide injection from tight reservoirs, we set water saturation levels
at 0.15, 0.35, 0.45, 0.55, and 0.65 in our experiments. By decreasing water saturation from
0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore,
carbon dioxide storage capacity increases. This indicates a proper gas displacement front
in lower water saturation and higher gas recovery factor (see Figure 9).

Figure 9. Effect of water saturation on the carbon dioxide storage capacity in supercritical carbon
dioxide injection for water saturation levels of 0.15, 0.35, 0.45, 0.55, and 0.65 in our experiments.



Sustainability 2021, 13, 11606 9 of 14

3.4. Summary of Results

The results summary is depicted in Tables 3 and 4 for the effects of permeability and
water saturation.

Table 3. Summary of results (effect of permeability).

Permeability 0.1 mD 0.22 mD 0.36 mD 0.54 mD 0.78 mD

Natural gas
recovery increase 20% 20% 20% 20% 20%

Carbon dioxide
breakthrough 0.30 PV 0.40 PV 0.50 PV 0.60 PV 0.70 PV

Carbon dioxide
storage capacity at the
end of 1.3 PV injection

50% 45% 42% 40% 38%

Table 4. Summary of results (effect of water saturation).

Water Saturation 0.15 0.35 0.45 0.55 0.65

Natural gas
recovery increase 22.5% 19.8% 15.3% 12.1% 10.9%

Carbon dioxide
breakthrough 0.4 PV 0.5 PV 0.55 PV 0.6 PV 0.7 PV

Carbon dioxide
storage capacity 48% 44% 41% 39% 35%

4. Summary and Conclusions
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The carbon dioxide storage capacity is decreased by increasing core samples’ permeabil-
ity during supercritical carbon dioxide injection. This decrease in higher permeabilities
corresponds to the more negligible adsorption of supercritical carbon dioxide.
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The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it
is about 38% for tight core samples with the permeability of 0.78 mD.
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Nomenclature

EGR Enhanced gas recovery
EOR Enhanced oil recovery
mD Darcy (×10−3)
CO2 Carbon Dioxide
CH4 Methane
C2H6 Ethane
C3 Propane
C6 Hexane
N2 Nitrogen
KCL Potassium chloride
Sw Water Saturation
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