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Abstract: The growth of the global economy in recent years has resulted in an increase in infras-
tructure projects worldwide and consequently, this has led to an increase in the quantity of waste
generated. Two recycled materials, namely garnet residues (GR) and tire-derived aggregates (TDA),
were used to improve mechanical properties of soft clay (SC) subgrade in this study. GR was evalu-
ated as a replacement material in SC prior to Type I Portland cement stabilization. TDA was also
studied as an elastic material in cement-stabilized SC–GR. The laboratory tests on the cement–TDA-
stabilized SC–GR included unconfined compressive strength (UCS), indirect tensile stress (ITS) and
indirect tensile fatigue (ITF). Microstructural analysis on the cement–TDA-stabilized SC–GR was
also performed to illustrate the role of GR and TDA contents on the degree of hydration. The UCS
of cement-stabilized SC–GR increased when cement content increased from 0% to 2%. Beyond 2%
cement content, the UCS development was slightly slower, possibly due to the presence of insufficient
water for hydration. The GR reduces the specific surface and particle contacts of the SC–GR blends to
be bonded with cementitious products. The optimum SC:GR providing the highest UCS was found
to be 90:10 for all cement contents. Increased amounts of GR led to a reduction in UCS values due
to its high water absorption, resulting in the insufficient water for the cement hydration. Moreover,
the excessive GR replacement ratio weakened the interparticle bond strength due to its smooth
and round particles. The TDA addition can enhance the fatigue resistance of the cement-stabilized
SC–GR. The maximum fatigue life was found at 2% TDA content. The excessive TDA caused large
amounts of micro-cracks in cement–TDA-stabilized SC–GR due to the low adhesion property of TDA.
The SC:GR = 90:10, cement content = 2% and TDA content = 2% were suggested as the optimum
ingredients. The outcome of this research will promote the usage of GR and TDA to develop a green
high-fatigue-resistant subgrade material.

Keywords: soil–cement; pavement geotechnics; ground improvement; recycled waste; fatigue life;
subgrade; compressive strength

1. Introduction

The continuous growth of emerging and developed economies has led to an increase
in infrastructure projects, such as roads. Nakhon Si Thammarat is one of the largest
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economic cities in the southern region of Thailand and most of its population lives in
coastal areas. These coastal areas are underlain by soft clay (SC) deposits with high organic
matter contents and with poor geotechnical properties which are also sensitive to moisture
change [1,2]. Therefore, ground improvement is normally required before the construction
of highway and road projects.

A widely accepted soft ground improvement technique is chemical stabilization using
Portland cement, calcium carbide, quicklime and geopolymer [1,3–7]. In the past century,
cement has been extensively acceptable for pavement and road construction. However,
cement production releases a large amount of carbon dioxide (CO2), which is a critical cause
of global warming issues. Therefore, the usage of low CO2 emission cementing agents
with an alternative method for ground improvement is an interesting issue in research and
development in transportation geotechnics.

In the past few years, the coarse and fine waste aggregates from civil engineering
projects and/or industries, e.g., recycled concrete aggregates, crushed masonry bricks,
recycled glasses and melamine debris, have been successfully utilized for ground improve-
ment projects [8–15]. These recycled materials are low in plastic and have potential for
improving the stiffness and strength of soil, especially clayey soil.

Due to the rapid growth of the global economy, marine and land transportation and
oil demand have been increasing. This causes the increased quantity of wastes from repair
and maintenance industries, namely garnet residues (GR) and tire-derived aggregates
(TDA) (Figure 1). Garnet refers to the most complex crystalline silicate structure group with
various chemical compositions. GR is a waste generated from usage of garnet in restored
applications such as pre-finishing surface preparation before paint or other coatings on
ship structures [16]. GR causes a major environmental concern worldwide, including
in Thailand. In 2019, the total estimated global production of raw garnets for industrial
purposes was 1.2 million tonnes/year, and China, USA, India, South Africa and Australia
were the major producers. The consumption of raw garnets in 2020 in the USA was a 32%
increase from that of 2016 [17]. In Thailand, the quantity of raw garnets acquired from
both local and foreign sources for the domestic industries is about 8000 tonnes annually,
which is mainly imported by the Thai Beverage Distribution Co., Ltd. (TBD). The global
consumption of raw garnets forecasted indicates that these numbers will continue to
increase annually [18]. The contaminants in GR consist of old paint, oil and other residues
from the surface during blasting. GR is mostly disposed of at landfills. These wastes could
disrupt the balance of the natural environment system through the pollution of water
sources caused by runoff or flooding in the landfills. Kunchariyakun and Sukmak [19]
undertook research to reduce pollution and reported that mixing GR with cement reduced
leaching of heavy metals. Therefore, the reuse of GR in civil infrastructure applications is
an interesting issue.

Figure 1. Waste rubber tires.
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Recently, several researchers [19–24] employed GR as a fine aggregate in an infrastruc-
ture construction. The replacement of GR in natural river sand of up to a maximum of 25%
could produce geopolymer concretes that meet the required performance [21]. For road
applications, GR can be used as a fine aggregate in asphalt concrete; the asphalt concrete
with up to 25% GR replacement by weight of total aggregate had suitable Marshall prop-
erties comparable with conventional asphalt concrete using 100% granite aggregate [24].
Moreover, the GR replacement could improve California bearing ratio (CBR) of clayey sand
for subgrade applications [23].

Automotive and truck tires and vulcanized rubbers have low elasticity and yield
strain as well as high Young’s modulus. Tires are made through the vulcanization process
to form a crosslinked formation in the molecular structure of rubber to have high shear and
temperature resistance for extreme environmental conditions. About one billion tonnes of
TDA are generated annually around the world due to an increased number of vehicles [25].
TDA is a non-biodegradable material with a low degradation rate. Although the landfilling
and combustion of TDA are a simple management technique, they cause recontamination
of hazardous gases and dust in the atmosphere and underground water resources [25].
In past decades, the usage of TDA in road applications has become popular [26–28].
TDA as a fine aggregate in coarse recycled aggregates reduced the stiffness of concrete
pavements; however, in turn, it could improve their performance, e.g., ductility and
cracking and fatigue resistance. Moreover, the TDA could be used as an aggregate to
improve geotechnical properties of highly expansive clay for subgrade applications [29].
The maximum unconfined compressive strength (UCS) and toughness were obtained at a
5% TDA replacement ratio. The higher TDA replacement ratio (>5%) caused a decrease
in UCS. The swelling strain of expansive soil could also be minimized with the TDA
replacement.

To the best of the authors’ knowledge, there is no available research on the usage
of combined GR and TDA in the mechanical strength improvement of soft clay to be a
stabilized subgrade material. This research examined the feasibility of using GR as a
replacement material in SC to improve its basic properties prior to cement stabilization
to develop a green subgrade. TDA was used to improve the fatigue resistance of cement-
stabilized SC–GR blends. The UCS, indirect tensile stress (ITS) and indirect tensile fatigue
(ITF) of the cement–TDA-stabilized SC–GR were examined at various factors of SC:GR
ratios and cement and TDA contents. Furthermore, the microstructural analysis was per-
formed by using scanning electron microscopy and energy dispersive X-ray spectroscopy
(SEM-EDX) to illustrate the role of GR in the interparticle bond strength improvement and
TDA in the fatigue resistance improvement. Based on the authors’ best knowledge, the
investigation of cement–TDA-stabilized SC–GR blends under static and repeated tensile
loading as well as their microstructural analysis has not been available, which is significant
for road analysis and design. The outcome of this research will promote the usage of TDA
and GR in road subgrade applications.

2. Materials and Methods
2.1. Materials

Tire derived-aggregates (TDA) was obtained from Union Commercial Development
Co., Ltd., in Thailand, and air-dried before being used. The morphology and particle size
distribution are shown in Figures 2a and 3, respectively. The TDA shape was irregular
and prepared to have various single sizes of 2.830 mm, 2.000 mm, 0.841 mm, 0.595 mm,
0.400 mm, 0.297 mm and 0.250 mm. The TDA was then trial mixed to meet the gradation
requirement for fine aggregates in accordance with ASTM C33/C33M-18 [30] (Figure 3).
Table 1 presents the physical properties of TDA, indicating that the specific gravity and
water absorption of TDA (ASTM C128-15 [31]) were 1.78% and 2.4%, respectively.
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Figure 2. Appearance particles and SEM images of (a) tire-derived aggregates (TDA), (b) garnet
residues (GR) and (c) soft clay (SC).

GR was sourced from Best Performance Engineering Co., Ltd. located in the south of
Thailand; it came from the blasting and pre-finishing surface processes of ship and/or oil
drilling tools. The GR was transferred to a laboratory and kept in sealed plastic bags for
geotechnical tests. The physical properties, morphology and particle distribution curve are
shown in Table 1 and Figures 2b and 3, respectively. The GR particles were relatively round
in shape. The specific gravity and water absorption according to ASTM C128-15 [31] were
3.8% and 10.2%, respectively. The natural water content was approximately 0.2% based on
ASTM D2216-19 [32]. GR has no liquid or plastic limits [33] due to its low plasticity. Based
on ASTM C33/C33M-18 [30], the median diameter (D50) of GR was 0.75 mm, similar to
that of natural sand, as shown in Figure 3, whereas the specific gravity value of GR (=3.8)
was greater than that of the natural sand (=2.7). The coefficient of uniformity (Cu) was 2.18
and the coefficient of curvature (Cc) was 1.35. The GR was therefore classified as poorly
graded sand (SP) according to the Unified Soil Classification System (USCS) [34].
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Figure 3. Gradation curves of GR and SC blends at SC:GR = 100:0, 95:5, 90:10 and 85:15.

Table 1. Physical properties of SC, GR and TDA.

Physical Properties SC GR TDA

Specific gravity, SG 2.60 3.8 1.78
Water absorption (%) - 10.2 2.4

Natural water content (%) 41.6 0.2 -
Liquid limit, LL (%) 65 N/A -
Plastic limit, PL (%) 27.7 Non-plastic -
Plastic index, PI (%) 37.3 N/A -

Sand content (%) - 100 -
Silt content (%) 25 - -

Clay content (%) 78 - -
D60 (mm) - 0.95 1.01
D50 (mm) - 0.75 0.75
D30 (mm) - 0.52 0.52
D10 (mm) - 0.29 0.35

Cu - 2.18 2.88
Cc - 1.35 0.76

Classification—USCS [34] CH SP -
Classification—AASHTO [35] A-7-6 A-1-b

Maximum dry unit weight, γd,max (kN/m3) [36] 15.4 - -
Optimum moisture content, OMC (%) 23.7 - -

Soft clay (SC) samples studied were alluvial clay commonly found in the Pak-Phanang
estuary, in Nakhon Si Thammarat, Thailand. It was taken from a depth of 3–4 m below
ground level. The morphology of SC particles was found to be irregular in shape (Figure 2c).
Table 1 presents physical properties of SC, indicating that the specific gravity (ASTM
D854 [37]), natural water content (ASTM D2216-19 [32]) and liquid limit and plastic limit
(ASTM C4318-10 [33]) were 2.60%, 41.6%, 65% and 27.7%, respectively. The particle size
distribution of SC is also shown in Figure 3. The SC was classified as high plasticity
(CH) according to USCS [34]. The maximum dry unit weight (γd,max) and optimum
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moisture content (OMC) of SC according to ASTM D 1557 [36] were 17.0 kN/m3 and 19.8%,
respectively.

The chemical compositions of TDA, GR and SC were examined under a scanning
electron microscope with energy dispersive X-ray spectroscopy (SEM/EDX) and are shown
in Figure 2. The major cation elements in GR and SC were Si, Al and Fe, whereas C was the
domain cation element in TDA.

2.2. Mix Proportions and Preparation

GR was blended with SC at SC:GR ratios of 100:0 (only soft clay), 95:5, 90:10 and
85:15 to improve the basic properties and compactability. GR replacement is undertaken to
reduce the specific surface of the SC to improve the UCS of cement-stabilized SC. However,
with high water absorption, the excess GR replacement ratio might cause a negative
contribution. As such, the SC:GR ratio was limited to 85:15 in this study. Type I Portland
cement was employed to stabilize the SC–GR blends at five different cement contents of
0%, 1%, 2%, 3% 4% and 5% by the dry weight of the SC–GR blends. The mixture was
compacted under modified Proctor energy [37] to determine the γd max and OMC.

The cement–SC–GR blends of each ingredient were thoroughly mixed at the OMC
until the homogenous mixture was achieved. The blends were compacted in a metal
cylindrical mold with dimensions of 102 mm in diameter and 116.4 mm in height in five
layers [37]. After 24 h, the cylindrical specimens were dismantled and sealed in plastic
wraps to prevent evaporation. The cement-stabilized SC–GR specimens were kept at an
ambient room temperature (27–30 ◦C) until the lapse of seven days of curing. The UCS
tests were run on the cement-stabilized SC–GR specimens according to ASTM D1633 [38]
to obtain the optimum of SC:GR ratio (highest UCS).

The TDA was blended with SC and GR at 1%, 2% and 3% by weight of the SC–GR
mixtures at the optimum SC:GR ratio. The cement–SC–GR–TDA blends were then prepared
at the OMC and compacted under modified Proctor energy to achieve the γd,max state in a
metal cylindrical mold with dimensions of 102 mm in diameter and 116.4 mm in height for
UCS tests and in a metallic mold with dimensions of 101.60 mm diameter and 65.00 mm
height for ITS and ITF tests. The specimens were dismantled, sealed in plastic wraps and
kept at an ambient room temperature (27–30 ◦C) for seven days prior to the UCS, ITS,
ITF and SEM-EDX testing. Figure 4 summarizes the steps of specimen preparation of
cement–TDA-stabilized SC–GR specimens.

2.3. Testing Methods
2.3.1. Unconfined Compression Strength Test

The UCS tests were run according to ASTM D1633 [38] on the cement-stabilized
SC–GR specimens with and without the TDA after seven days of curing, at a deformation
rate of 1 mm/min. The UCS test was conducted on least five specimens to ensure testing
consistency.

2.3.2. Indirect Tensile Strength Test

The indirect tensile strength (ITS) test in accordance with ASTM D6931 is performed to
measure the tensile strength of pavement material for highway engineering design [39]. The
ITS tests on cement–TDA-stabilized SC–GR specimens were conducted using a universal
testing machine with a loading strip of 19 mm wide and 125 mm long at a deformation
rate of 1 mm/min. According to the elastic theoretical approach, the ITS was calculated by
using the following equation:

ITS =
2P

πDL
(1)

where P is the is a maximum load (N), D is the specimen diameter (mm) and L is the
specimen length (mm).
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Figure 4. Summary of preparation and testing of cement–TDA-stabilized SC–GR specimens.
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2.3.3. Indirect Tensile Fatigue Test

The indirect tensile fatigue (ITF) test according to EN 12697-24 is performed on road
materials under controlled loading to examine the fatigue characterization. Kavussi and
Modarres [40] recommended a loading frequency for the simulation of low traffic volume
on rural roads of 0.66 Hz. Since rural roads are subject to the transportation of agricultural
products such as livestock and agricultural products, which are relatively heavy, the applied
stress level for the ITF specimens in this study was 80% of the corresponding ultimate
ITS. The fatigue life of the ITF specimens is defined as the total number of loading cycles
needed to damage the specimens. A linear variable differential transformer (LVDT) with
an automatic recorder was used to measure horizontal deformations.

2.3.4. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy

The scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-
EDX) analysis was achieved using a Merlin machine of Carl Zeiss, a company in Oberkochen,
Germany, together with the Oxford Instruments Nano Analysis and the newest analytical
system from Wycombe, U.K. The SEM-EDX specimen was a small fragment of the broken
UCS specimen. It was frozen at −195 ◦C for five minutes in liquid nitrogen and evacu-
ated at a pressure of 0.5 Pa at −40 ◦C to stop the hydration of cement. After drying, the
SEM-EDX specimens were coated with gold to investigate the cementitious products and
identify their chemical characterization by using the area mapping technique.

3. Results and Discussion
3.1. Cement-Stabilized SC–GR Blends

It is evident from Table 2 and Figure 3 that the basic properties of the SC–GR blends at
SC:GR = 100:0, 95:5, 90:10 and 85:15, such as gradations and Atterberg limits, did not pass
the requirements of the Thailand Department of Highways for stabilized base and subbase
materials [41,42]. The SC–GR blends can only be used as stabilized subgrade material and
its 7-day UCS must be greater than the minimum requirement of 294 kPa [43].

Table 2. Basic and mechanical properties of the SC–GR blends.

Properties
SC: GR Ratio

Standard for
Stabilized Subbase

(DH-S206/2532)

Standard for
Stabilized Base
(DH-S204/2556)

100:0 95:05 90:10 85:15 Value

Largest particle size (mm) 0.014 2.36 2.36 2.36 ≤50 ≤50
Passed at a 2.0 mm sieve (%) 100 * 100 * 100 * 100 * NS ≤70

Passed at a 0.075 mm sieve (%) 100 * 94 * 91 * 83 * ≤40 ≤25
Liquid limit, LL (%) 65.0 64.7 64.2 64.1 ≤40 ≤40
Plastic limit, PL (%) 27.7 30.7 31.8 31.7 NS NS

Plasticity index, PI (%) 37.3 34 32.4 32.4 ≤20 ≤15
Maximum dry unit weight, γd,max

(kN/m3) (ASTM D 15557)
15.4 15.6 15.8 16 NS NS

Optimum moisture content, OMC
(%) (ASTM D 15557) 23.7 23.1 21.8 21.5 NS NS

Unconfined compression strength,
UCS (kPa) 80 * 96 * 100 * 90 * >689 >1724

Axial stress at 0.6% strain (kPa) 22 26 42 59 NS NS
Secant modulus, Esec (MPa) 3.7 4.3 7.0 9.8 NS NS

Note: NS = not specified. * Did not meet requirement.

The change in Atterberg limits with cement content showed the impact of cement
content on the specimens’ plasticity characteristics (see Tables 2 and 3). The increase in
cement content reduced the LL for all SC:GR ratios, for example, from 65% to 60.3% for
cement contents from 0% to 5% for SC:GR = 100:0. This is because of the change in the SC’s
structure from dispersed to a flocculated structure. The increase in the plastic limit, PL,
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was caused by prominent flocculated structure and the development of cementation in the
SC–GR structure [44,45].

Table 3. Basic and mechanical properties of the cement-stabilized SC–GR specimens.

Cement Content (%) Properties
SC: GR Ratio

100:0 95:5 90:10 85:15

1

Liquid limit, LL (%) 64.1 63.6 63.4 63.1
Plastic limit, PL (%) 28.6 31 31.5 31.9

Plasticity index, PI (%) 35.5 32.6 31.9 31.2
Maximum dry unit weight, γd,max (kN/m3) 16 16.2 16.4 16.6

Optimum moisture content, OMC (%) 21.9 21.4 20.5 20
Unconfined compression strength, UCS (kPa) 159 176 260 214

Axial stress at 0.6% strain (kPa) 39 50 76 109
Secant modulus, Esec (MPa) 6.5 8.3 12.7 18.2

2

Liquid limit, LL (%) 62.3 61.8 61.5 61.2
Plastic limit, PL (%) 29.6 31.2 31.5 31.8

Plasticity index, PI (%) 32.7 30.6 30 29.4
Maximum dry unit weight, γd,max (kN/m3) 16.2 16.6 17.1 17.4

Optimum moisture content, OMC (%) 20.8 20.5 20.0 19.6
Unconfined compression strength, UCS (kPa) 222 278 403 367

Axial stress at 1% strain (kPa) 56 76 103 122
Secant modulus, Esec (MPa) 9.3 12.7 17.2 20.3

3

Liquid limit, LL (%) 61.1 60.7 60.4 60.2
Plastic limit, PL (%) 30.1 32.1 32.6 33

Plasticity index, PI (%) 31 28.6 27.8 27.2
Maximum dry unit weight, γd,max (kN/m3) 16.8 17.2 17.3 17.5

Optimum moisture content, OMC (%) 20.4 19.5 19.3 19
Unconfined compression strength, UCS (kPa) 242 340 462 424

Axial stress at 1% strain (kPa) 77 132 157 187
Secant modulus, Esec (MPa) 12.8 22.0 26.2 31.2

4

Liquid limit, LL (%) 60.3 59.7 59.5 59
Plastic limit, PL (%) 31.6 33.8 34.1 34.8

Plasticity index, PI (%) 28.7 25.9 25.4 24.2
Maximum dry unit weight, γd,max (kN/m3) 17 17.4 17.9 18.1

Optimum moisture content, OMC (%) 19.7 19.2 18.8 18.3
Unconfined compression strength, UCS (kPa) 279 376 524 492

Axial stress at 1% strain (kPa) 109 200 218 282
Secant modulus, Esec (MPa) 18.2 33.3 36.3 47.0

5

Liquid limit, LL (%) 60.3 59.7 59.5 59
Plastic limit, PL (%) 33.2 33.8 35.7 34.8

Plasticity index, PI (%) 27.1 25.9 23.8 24.2
Maximum dry unit weight, γd,max (kN/m3) 17.2 17.8 18.2 18.4

Optimum moisture content, OMC (%) 19.4 19 18.4 17.7
Unconfined compression strength, UCS (kPa) 294 410 549 535

Axial stress at 1% strain (kPa) 171 280 285 359
Secant modulus, Esec (MPa) 28.5 46.7 47.5 59.8

Table 2 and Figure 5 show the values of γd,max and OMC and compaction curves,
respectively, at SC:GR = 100:0, 95:5, 90:10 and 85:15 for various cement contents. For all
SC:GR ratios, the addition of cement to the SC–GR blends increased the γd,max but reduced
the OMC, similar to the cement-stabilized coarse-grained soil [46] and the cement-stabilized
fine-grained soil [44]. The cement had higher specific gravity than the SC; therefore, the
density of the specimens increased when the cement content increased. The cement reaction
mechanism consists of two stages: immediate and long-term reactions. In the immediate
reaction, the Ca2+ ions from cement are adsorbed into negative charges of the SC surface
and reduce the thickness of diffused double layers of the SC particles. The edge-to-face
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contacts of SC particles, on the other hand, are increased [44,45], thus resulting in an
increase in PL with a decrease in LL. The decrease in LL reduces the OMC and increases
γd,max [44].

Figure 5. Dry unit weight versus moisture content curves of SC–GR blends with various cement contents.

For all cement contents, the γd,max of the cement–SC–GR mixture increased with the
increased GR because the specific gravity of GR was higher than that of SC and cement, as
shown by the γd,max of SC:GR = 100:0 being lower than the γd,max of SC:GR = 85:15 for all
cement contents. The increase in the γd,max is associated with the decrease in the OMC, as
presented in Figure 5.

Figure 6 shows stress–strain curves under the UCS tests for cement contents = 0 to
5% and SC:GR = 100:0 to 85:15. For all cement contents and SC:GR ratios tested, the
cement-stabilized SC–GR specimens exhibited brittle behavior with a rapid drop in stress
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after peak. Since the strain levels developed in road subgrade material due to traffic load
varies from 0.003% to 0.6% [47], in this research the secant modulus (Esec) was calculated at
0.6% strain to describe the stiffness of a material. The equation for calculating Esec is:

ESEC =
σa@ 0.6% strain − σa@ 0% strain
εa@ 0.6% strain − εa@ 0% strain

(2)

where σa@0.6% strain is the stress at 0.6% strain, σa@0% strain is the stress at 0% strain (equal to
0), εa@0.6% strain is the strain at 0.6% and εa @ 0.6% strain is the strain at 0% (equal to 0).

Figure 6. Stress–strain curves under UCS test for cement contents = 0–5% for various SC:GR ratios.

Table 3 shows the variation of Esec of all cement-stabilized SC–GR specimens at 0.6%
strain. The Esec and UCS for all SC:GR ratios tended to increase with the increased cement
content (Figure 6). Figure 7 shows the UCS development with the increased cement
contents of the cement-stabilized SC–GR specimens. As the cement contents increased
up to 2%, the cementation bonds at the contact points between the SC–GR particles were
stronger due to predominant Calcium Silicate Hydrate (C-S-H, cementitious products). The
amount of C-S-H products increased with an increase in the cement content. This range of
cement contents could be termed as the active zone. When cement contents were between
2% and 5%, the UCS development was slightly slower, possibly because the water at OMC
was not sufficient for hydration.

The role of GR is also clearly depicted in Figure 7. Without GR replacement, the UCS of
cement-stabilized SC at cement contents = 1–5% could not meet the minimum requirement
of 294 kPa. The UCS values at all cement contents were increased with the GR replacement
ratio up to the optimum value of SC:GR = 90:10. This implies that the GR reduces the
specific surface and particle contacts of the SC–GR blends to be bonded cementitious
products, hence the stronger interparticle bond strength at the same input of cement.
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However, when SC:GR > 90:10, the UCS decreased. The GR has high water absorption
(refer to Table 1); the higher GR absorbed more water into its particles and therefore, the
water is not sufficient cement hydration. Moreover, the excessive smooth and round GR
particles caused the decrease in interparticle bond strength. The 2% cement content was
found to be the most effective for the OMC when utilized with GR replacement. For all
SC:GR ratios tested, the 2% cement-stabilized SC–GR blends met the strength requirement
(UCS > 294.2 kPa) for stabilized subgrade specified by the DOH [43].

Figure 7. UCS development as a function of cement content.

Figure 8a,b show the SEM-EDX analyses of the specimen at cement content of 2% and
SC:GR ratios of 90:10 and 85:15, respectively, to understand the role of GR replacement. The
specimen at SC:GR = 90:10 had more C-S-H products (confirmed by EDX result in Area A)
in pores than the specimens at SC:GR = 85:15. Moreover, the specimens at SC:GR = 85:15
had more micropores than the specimens at SC:GR = 85:15. The lower cementitious
products in specimens at SC:GR = 85:15 were also confirmed by EDX results (refer to
Area C (SC particles) and point B (GR particles)). These results confirmed the lower degree
of cement hydration at the excessive GR replacement ratio (SC:GR = 85:15) due the high
water absorption of GR particles, which resulted in lower strength and stiffness.

3.2. Cement–TDA-Stabilized SC–GR Blends

Figure 9 depicts dry unit weight versus moisture content relationship of the cement–
TDA–SC–GR mixtures when SC:GR = 90:10 and cement content = 2% (optimum ingredient)
with TDA contents. The γd,max slightly reduced with an increase in the TDA content.
Nonetheless, the OMC slightly increased with the increased TDA content (refer to Table 4).
Figure 10 presents stress–strain curves under the UCS test when SC:GR = 90:10 and cement
content = 2% for various TDA contents. The reduction in UCS and stiffness could be
seen with an increase in the TDA content. Moreover, the TDA stabilization resulted in
the increase in area under the curves and the decrease in Esec, indicating the increased
toughness and the energy absorption before rupture. This characteristic is associated with
the higher fatigue resistance, which is required for durable roads. According to the UCS
requirement, TDA > 2% cannot be accepted in practice.
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Figure 8. SEM-EDX analyses of specimens at cement content of 2% and when SC:GR ratio = (a) 90:10 and (b) 85:15.

Table 4. Basic and mechanical properties of the cement–TDA-stabilized SC–GR specimens when SC:GR ratio = 90:10 and
cement content = 2% with various TDA contents.

Cement Content (%) Properties
TDA Content (%)

0 1 2 3

2

Maximum dry unit weight, γd,max (kN/m3) 17.1 16.8 16.6 16.2
Optimum moisture content, OMC (%) 20.0 21.3 22.0 22.5

Unconfined compression strength, UCS (kPa) 403 379 339 231
Axial stress at 0.6% strain (kPa) 103 79 42 21

Secant modulus, Esec (MPa) 17.2 13.2 6.7 5.2
Indirect tensile stress, ITS (kPa) 113.6 132.3 137.2 119.3

Indirect Tensile Fatigue, Nf (pulses) 22 95 115 72
Initial deformation, ∆p (mm) 0.19 0.79 1.18 0.94



Sustainability 2021, 13, 11692 14 of 19

Figure 9. Dry unit weight versus moisture content relationship of cement–TDA-stabilized SC–GR mixtures when
SC:GR = 90:10 and cement content = 2% with various TDA contents.

Figure 10. Stress–strain curves under the UCS test of cement–TDA-stabilized SC–GR mixtures when SC:GR = 90:10 and
cement content = 2% for various TDA contents.
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Figure 11a shows the relationship between the number of cycles versus horizontal
deformation of the cement–TDA-stabilized SC–GR specimens when SC:GR = 90:10 and
cement content = 2% for TDA contents of 0% to 3%. Figure 11b shows the typical rela-
tionship between the number of cycles versus horizontal deformation, which is divided
into three zones. In the first zone, at a small number of cycles, high deformation occurred
on the specimen because of the increase in plastic deformation. In the second zone, the
increase in number of cycles is associated with the lower rate of deformation, whereby the
micro-cracks are gradually formed and propagated. In the third zone, the complete split-
ting failure occurs because of the accumulated microcracks on specimen. Figure 11b also
shows the method of determining fatigue life (Nf) and initial deformation in zone 2 (∆p).
The initial deformation (∆p) is defined as the intersection of the straight lines extending
from the linear portion in zone 1 and zone 2. The Nf is the number of cycles at the splitting
failure of the specimen.

Figure 11. Relationship between the number of cycles versus horizontal deformation of (a) the
cement–TDA-stabilized SC–GR specimen of SC:GR ratio = 90:10 and cement content = 2% and (b) the
method of the determining of fatigue life (Nf) and initial deformation (∆p).
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At zone 2, the cement–TDA-stabilized SC–GR specimens had longer Nf than the
cement-stabilized SC–GR specimens (TDA = 0%). This indicated that the TDA improved
the ductility behavior, whereas the specimen at TDA = 0% exhibited sudden failure. The
∆p and Nf values increased with the TDA content up to the optimal TDA of 2%, after
which they decreased. For example, the ∆p values were increased from 0.19 to 1.18 mm for
TDA contents from 0% to 2% and Nf values were increased from 22 to 123 pulses for TDA
contents from 0% to 2%. The increase in both ∆p and Nf is associated with the increase in
ITS (Table 4). In other words, both ∆p and Nf values are directly related to the ITS.

The role of TDA in the UCS and fatigue resistance can be explained by the SEM-EDX
analyses shown in Figure 12. More C-S-H gels (Area E) bonding TDA (Area D) in SC–GR
particles and in voids were observed at 1% TDA content (Figure 12a), when compared
with 2% TDA content (Figure 12b) and 3% TDA content (Figure 12c). More micro-cracks
within TDA–SC–GR clusters were, however, found (red dash line) for 2% and 3% TDA
contents when compared with 1% TDA content. The cracks developed were attributed to
the low adhesion property of TDA particles. As such, the UCS, which represents the static
and short-term strength, decreased with increasing TDA content. Even with micro-cracks,
the TDA particles at optimum content can absorb more cyclic load energy and result in
larger Nf. However, the excessive TDA with more micro-cracks caused excessive plastic
deformation and the reduction in energy absorption and hence, the reduction in Nf.

Figure 12. SEM-EDX analyses of the cement–TDA-stabilized SC–GR specimens when SC:GR
ratio = 90:10 and cement content = 2%, and WRT content of (a) 1%, (b) 2% and (c) 3%.
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3.3. Economic and Environmental Benefits

Table 5 shows the total construction costs of cement–TDA-stabilized SC–GR and
lateritic soil as a pavement subgrade. The total construction cost of cement–TDA-stabilized
SC–GR was 48.48% less than that of compacted lateral soil in 1 m3 highway, indicating
the cost savings. Moreover, the industry could reduce the GR and TDA disposal costs
by approximately 58.03 USD/tonne (from GMA Garnet Group) and 10 USD/tonne [48],
respectively, and also reduce environmental pollution from disposal in landfills.

Table 5. Material costs comparison between of using cement, GR and TDA in SC and compacted lateral soil for subgrade
application in 1 cubic meter.

Section Material Volume(m3) a Weight (kg) Price (USD/m3) b Total Cost (USD)

Cement–TDA-stabilized
SC–GR at SC:GR = 90:10,

cement content = 2%
and TDA content = 2%.

cement 0.02 63 5.09 [49]

5.11GR 0.096 364.8 -

TDA 0.02 35.6 0.0178 c

SC 0.864 2246.4 -

Lateral soil lateral soil 1 - 10.54 [49] 10.54
a Based on the dry soil weight. b Not including shipping and labor costs. C The price from Union Commercial Development Co., Ltd.,
Samut Prakan, Thailand.

4. Conclusions

This research aims to examine the feasibility of using GR as a replacement material
in soft clay (SC) prior to cement stabilization to be a subgrade material. TDA was used to
improve the fatigue resistance of cement-stabilized SC–GR. The mechanical and microstruc-
tural investigation of the cement–TDA-stabilized SC–GR were performed to ascertain it as
a sustainable subgrade material. The following conclusions can be drawn from this study.

1. The increase in γd,max and the decrease in OMC were caused by changing the dis-
persed structure to a flocculated SC–GR structure with the addition of cement. There-
fore, γd,max increased with the GR replacement ratio. The GR replacement reduced
the specific surface of SC, but at the same time, increased the water absorption. The
optimum SC:GR ratio was found at 90:10. The 2% cement content for stabilized
SC–GR at SC:GR of 90:10 was the optimum mixture.

2. The UCS and stiffness of cement-stabilized SC–GR were found to reduce with the
increase in TDA content. This is due to the low adhesion property of TDA; the micro-
cracks within SC–GR–TDA matrix were detected with the increased TDA content.
However, the increased TDA content improved the ductile behavior and resulted
in the increased energy absorption before rupture. The optimum TDA content was
found to be 2%. When TDA content was greater than 2%, the excessive micro-cracks
caused excessive plastic deformation and the reduction in energy absorption and,
hence, the reduction in fatigue life.

3. The cement–TDA-stabilized SC–GR at SC:GR of 90:10, cement content of 2% and
TDA content of 2% is suggested as a sustainable subgrade material. Its UCS met the
strength requirements of the Department of Highways, Thailand (DH-S201/2532), and
its fatigue life was found to be the highest when compared to other SC:GR ratios with
the same cement content. The improved fatigue resistance of the cement-stabilized
SC–GR is necessary for durable roads.
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