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Abstract: The trend towards personalized healthcare has led to an increase in applying deep learning
techniques to improve healthcare service quality and sustainability. With the increasing number of
patients with multiple comorbidities, they need comprehensive care services, where comprehensive
care is a synonym for complete patient care to respond to a patient’s physical, emotional, social,
economic, and spiritual needs, and, as such, an efficient prediction system for comprehensive care
suggestions could help physicians and healthcare providers in making clinical judgement. The exper-
iment dataset contained a total of 2.9 million electrical medical records (EMRs) from 250 thousand
hospitalized patients collected retrospectively from a first-tier medical center in Taiwan, where the
EMRs were de-identified and anonymized and where 949 cases had received comprehensive care.
Recurrent neural networks (RNNs) are designed for analyzing time-series data but are still lacking in
studying predicting personalized healthcare. Furthermore, in most cases, the collected evaluation
data are imbalanced with a small portion of positive cases. This study examined the impact of
imbalanced data in model training and suggested an effective approach to handle such a situation.
To address the above-mentioned research issue, this study analyzed the care need in the different
patient groupings, proposed a personalized care suggestion system by applying RNN models, and
developed an efficient model training scheme for building AI-assisted prediction models. This study
observed several findings: (1) the data resampling schemes could mitigate the impact of imbalanced
data on model training, and the under-sampling scheme achieved the best performance with an
ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an F1 score of 0.7602,
while the model trained with the original data had a very low PPV of 6.42% and a low F1 score of
0.1116; (2) patient clustering with multi-classier could predict comprehensive care needs efficiently
with an ACC of 99.87%, a PPV of 77.90%, an NPV of 99.90%, a recall of 92.19%, and an F1 score of
0.8404; (3) the proposed long short-term memory (LSTM) prediction model achieved the best overall
performance with an ACC of 99.80%, a PPV of 70.18%, an NPV of 99.87%, a recall of 82.91%, and an
F1 score of 0.7602.

Keywords: deep learning in healthcare; personalized healthcare; big data analysis; recurrent neu-
ral networks

1. Introduction

Sustainability in healthcare is a new trend all across the globe. The term sustainability
has many meanings in different contexts. Shediac-Rizkallah and Bone [1] considered it
as maintaining the health benefits of the service over a long period and continuing the
service within an organizational structure. In its simplest form, sustainability can be seen as
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“holding the gains” and “evolving as required” [2]. An example of doctors in primary and
secondary care working together to develop new forms is a practical sustainability project.

The current medical and scientific knowledge could keep the majority of people
healthy, preventing most heart diseases, diabetes, cancers, asthma, and other serious dis-
eases. However, the mortality rate is still very high for patients with multiple comorbidities
or elderly patients. In addition, for many years, there has been a visible increase in the death
rate caused by cancer diseases as well. Therefore, medical institutes provide comprehensive
healthcare services to improve sustainability, patient satisfaction, and work efficiency.

Comprehensive healthcare [3,4], aka total healthcare or holistic care, is considered as
patient-centered care to achieve total patient care from different aspects, including physical,
emotional, social, economic, and spiritual needs. Personalized care is the process of taking
into account a patient’s unique characteristics such as clinical history and risk factors
to provide personalized care and treatments [5]. Both are important for treating elderly
patients or patients with comorbidities or cancers, as they demand medical resources and
require treatments across multidisciplinary medical professionals. Such high-quality care
requires integrated healthcare resources but could improve patients living quality and
health conditions.

Multiple factors play an integral part in considering whether patients need com-
prehensive care or not. To facilitate sustainable healthcare, medical institutes rely on an
efficient comprehensive care system that keeps track of all the relevant patient records for
monitoring disease progression, improving patient satisfaction, and reducing health care
costs. With limited resources, an efficient method of forecasting patients’ needs is critical
for sustainability and service improvement.

The field of recurrent neural networks (RNNs) has evolved considerably in the last
decades, and many RNN applications have been deployed in various contexts. However,
it remained challenging to apply RNN technology to obtain an efficient prediction model.
On the other hand, the available datasets collected from real environments contain mostly
negatives and a small portion of positives, where such imbalanced data would affect
the effectiveness of model training. The past studies rarely discussed the implication of
imbalanced data as well as model training. Therefore, this study aimed to evaluate multiple
contemporary deep learning models and the impact of imbalanced data on model training
and to propose an efficient RNN-assisted prediction system that forecasts patients in need
of comprehensive care.

Machine-learning-based clinical decision support systems (CDSS) play an important
role in enhancing the quality of healthcare provided to patients. Neural networks (NNs)
are becoming increasingly popular for a wide range of health care tasks, and among the
different NN models, RNNs have been applied for prediction-related tasks by applying
historical time-series data and learning the patterns from the past. Based on the literature
review [6], few past studies have addressed personalized care needs or have implemented
a decision-making system by applying deep learning techniques in support of the need for
comprehensive care.

To address the abovementioned issues, this research analyzed the care need for differ-
ent groups of inpatients and proposed a CDSS that applies deep learning techniques to
predict the need for comprehensive care for different groups of inpatients. A prototype
system was developed for practical evaluation with the aim to improve clinic staff work
efficiency and healthcare sustainability.

This research makes the following contributions: (1) a deep-learning-based CDSS for
personalized care that predicts the need for comprehensive care for different groups of
inpatients; (2) an analysis of the prediction efficiency on different groupings of inpatients
in need of comprehensive care; (3) an analysis of the impact of imbalanced data on deep
learning model training; and (4) a prototype system to demonstrate the practicality of the
proposed model.

The remainder of this article is organized as follows. Section 2 reviews the deep
learning techniques applied to healthcare, and Section 3 explains the proposed model.
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Experimental results applying empirical data to the proposed model are explained in
Section 4, followed by concluding remarks and future work recommendations in Section 5.

2. Related Work

The Alliance for Natural Health International [7] is an internationally active non-
governmental organization promoting natural and sustainable approaches to healthcare
worldwide and has defined sustainable healthcare in the following way [8] as: a complex
system of interacting approaches to the restoration, management, and optimization of
human health that have an ecological base; that are environmentally, economically, and
socially viable indefinitely; that work harmoniously both with the human body and the
non-human environment; and which do not result in unfair or disproportionate impacts
on any significant contributory element of the healthcare system.

Artificial intelligence is a large computer science field that encompasses logic, proba-
bility, and continuous mathematics; perception, reasoning, learning, and action; fairness,
trust, social good, and safety; and performs sophisticated tasks in different industries.
AI includes but is not limited to machine learning, deep learning, and natural language
processing (NLP) and whichever techniques can help medical staff find important infor-
mation from data. Some medical organizations have already applied AI for daily routines
as a CDSS; it can assist medical staff to make decisions, reduce false rates, and increase
productivity by performing risk assessments, analyzing different types of diseases, and
finding the relationships among the medical data.

Cadar et al.’s study [9] on analyzing clusters of customers who use medicinal plants
indicated that analyzing by groupings contributes a better understanding of user behaviors.
It inspired this study to cluster patients in groups in order to have a better understanding
of patients’ care needs as well as an efficient comprehensive care prediction. Antoniadi
and Mooney [10] advised that a fair and usable ML-assisted CDSS should provide the right
decision with a clear explanation on how that decision was made and should preserve the
privacy of the information used to fulfill its purpose in the healthcare environment.

Many factors affect the success of machine learning on a given task, and among them,
the representation and quality of data are critical. A study [11] indicates that irrelevant,
redundant, noisy, or unreliable data make knowledge discovery difficult during the training
phase. Therefore, data preprocessing and feature selection are important for constructing
an effective prediction model. This study selected key features to establish the RNN-based
CDSS system, which provide good accuracy.

Datta et al. [12] evaluated the efficiency of deep neural network architectures and
concluded that soft attention improves the image classification performance as it boosts the
important features and suppresses noisy features. Dawoodbhoy et al. [13] conducted an
interview and suggested that AI could improve patient flow by streamlining administrative
tasks and optimizing resource allocation and that real-time data analytics systems could
support clinical decision-making.

Machine learning techniques have been extensively researched for disease predictions.
Data-mining algorithms like naïve Bayes, linear regression, decision tree, and random
forest have been used on the dataset taken from the UCI machine learning repository.
The past study [14] showed that the random forest model produced the highest accu-
racy for heart disease prediction among the aforementioned techniques. Nawaz et al.’s
study [15] compared different ML models for predicting disorders of the heart and blood
vessels, including support machine vector, K-nearest neighbor, naïve Bayes, artificial neural
networks, random forest, and gradient descent optimization. It concluded that gradient
descent optimization yields the best performance.

The COVID-19 pandemic has caused huge damage in the world since 2019. Several
studies [16–19] applied deep neural networks to detect coronavirus diseases from the
X-ray and computed tomography (CT) images, and some evaluated multiple convolutional
neural network (CNN) models. Chen et al. [20] proposed an efficient deep learning
model for removing irrelevant backgrounds, extracting spatial features, and automatically



Sustainability 2021, 13, 11909 4 of 22

segmenting lung lesions from CT images. Vidal [21] et al. proposed a multi-stage transfer
learning approach to obtain a robust system able to segment lung regions from portable
X-ray devices despite the lack of samples. Haneczok and Delijewski performed drug
discovery screenings based on supervised ML models for identifying potential coronavirus
diseases and compared the prediction performance of different ML models with different
molecular representations. In their study, ML approaches enable drug discovery screenings.

Khreis et al. [22] evaluated CDSS with the assistance of ML techniques to help health-
care providers in making the clinical judgement of patients’ therapy and reducing med-
ication errors. They concluded that applying ML techniques into CDSS design can re-
move duplicated and unimportant alerts. Baker et al. [23] applied a hybrid NN model,
CNN+LSTM, for estimating blood pressure from raw electrocardiogram and photoplethys-
mogram waveforms and demonstrated that ML techniques are an effective approach for
blood pressure estimation and are ready for implementing them into wearable devices.
Minnema et al. [24] evaluated different CNN training strategies for CT image segmenta-
tion. The results indicate that analyzing the structure of the images helps performance
improvement. Lakshmanaprabu et al. [25] proposed a deep neural network model for lung
cancer classification on CT lung images by applying linear discriminate analysis for feature
reduction and a modified gravitational search algorithm for weight optimization.

Liu et al. [26] developed a CNN model to identify tuberculosis infection from X-ray
images. Dong et al. [27] applied a CNN model on chest X-ray image classification to
detect multiple diseases such as pleural thickening, otosclerosis, and pulmonary interstitial
hyperplasia, not just tuberculosis. This multi-classification model required more than
16,000 labeled X-ray images to train and yielded an accuracy of 82.2%.

A study [28] reviewed computerized CDSS to support automatic detection of critical
conditions and observed a trend toward the use of data-driven algorithms. Given the
current lack of best practice guidance to ML and AI, a study [29] highlighted that patients
and healthcare professionals require clinical prediction models to accurately guide health-
care decisions and that ML and AI models potentially improve diagnostic accuracy and
reliable prediction.

Most past research applied CNN-based classification models to predict diseases based
on images. Only a few published studies focused on applying RNN for predicting pa-
tient care, and most discussed the impacts and needs of applying AI technologies to the
healthcare sector. To our best knowledge and based on the above literature review, the
present study is the first attempt to apply an RNN model to develop a CDSS that predicts
personalized care needs.

3. Proposed Methodology
3.1. LSTM-Based Personalized Care Prediction System

The literature review [9,24] inspired our study of personalized health care prediction
by analyzing the groups of patients for comprehensive care needs. The literature review [27]
has demonstrated that multi-classifiers could yield high detection performance. Therefore,
this study applied a multi-classifier for personalized health care prediction.

Figure 1 presents the proposed system architecture, where the left dashed box indicates
the training process of constructing the prediction model based on the historical data, and
the right box shows the process of applying it in support of personalized care decision
making. The training data were the medical data of hospitalized inpatients collected from
a medical center that has practiced the CC service since 2017, where the de-identified data
include daily medical records extracted from EMR. The proposed method applies the under-
sampling technique to mitigate the impact of imbalanced data on model training, clusters
patients in groups, and adopts model-selected features to improve prediction performance.
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Figure 1. The proposed system architecture.

In the evaluation, the steps mentioned above in the training process were evaluated
with different approaches in order to obtain the best prediction model. For example,
feature selection is one of the key components of ML model training. This study considered
all the vital indexes in the daily medical records as the feature set. Another method of
selecting important features is relying on domain experts to select key features. This study
evaluated the above two feature selection approaches, which are elaborated more in the
discussion section.

This study proposed an LSTM model for predicting personalized care needs, where
LSTM is an improved RNN model that learns the temporal dependency of time-series
data. LSTM networks perform exceptionally well on sequential data due to their ability to
“remember” what they have previously seen. The proposed LSTM network is composed
of four layers, as illustrated in Figure 2. The input layer is fed with the time-series data:
the current medical data (Dt) of a given patient plus his/her past N-day historical medical
records (Dt−6~Dt−1), where N = 6 days. The softmax [30,31], aka normalized exponential
function, is used in the dense layer, as illustrated in Figure 3. It normalizes the output into
a probability distribution over the predicted output classes. The output layer forecasts if a
given patient needs comprehensive care based on the given input data.

The softmax function is used as the activation function in the output layer of NN
models. It transforms a vector of k values into another vector of k values that sum to 1
and has a normalized probability distribution. The softmax function σ(

→
z )i is expressed by

Formula 1 below, where
→
z is the input vector, zi is an element of the input vector, and ezi

denotes the standard exponential function of element zi.

σ
(→

z
)

i
=

ezi

∑k
j=1 ezj

(1)

Neural networks learn to map a set of inputs to a set of outputs from training data and
are trained using an optimization process that requires an objective function (loss function
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in this case) to evaluate a candidate solution (i.e., a set of weights). NN models typically
are trained using the stochastic gradient descent optimization algorithm, and weights are
updated using the backpropagation of error algorithm, where the gradient in gradient
descent refers to an error gradient. Therefore, the objective function for NN models usually
is a loss function calculating the model error.

Figure 3 illustrates the optimization process of the proposed LSTM model. It repeat-
edly improves the prediction by adjusting the features and their weighting in an LSTM
cell in order to minimize the loss function. For a predicted result, it compares with the
expected result and calculates the loss. The optimizer then revises the weighting of the
features in the LSTM cell to minimize the loss.
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3.2. Hyperparameter Selection

Based on our preliminary evaluation of parameter tuning, Table 1 lists the hyperpa-
rameters chosen by the proposed model. An LSTM cell contains two activation functions:
one is for the model and the other is for recurrent usage. A performance analysis study [32]
comparing 23 different combinations of activation functions recommended hyperbolic
tangent for activation function and sigmoid for recurrent activation function.

The literature review indicated that cross-entropy performs well at generalizing be-
yond the training data and initializing the weights [33] and that binary cross-entropy yields
the best performance for binary classification applications [34]. Therefore, the proposed
prediction model chose binary cross-entropy as the loss function.

An analysis of the optimization algorithms [35] concluded that Adam, RMSprop, and
AdaDelta perform approximately well; the Keras documents [36] recommended RMSprop
for RNN models. As LSTM falls into the RNN category, the proposed system implemented
RMSprop as the optimizer.
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Table 1. The hyperparameters of the proposed LSTM prediction model.

Name Value

LSTM Parameters

Learning Rate 0.01

Loss Function Cross-entropy

Activation Function hyperbolic tangent

Recurrent Activation Function Sigmoid

Recurrent Dropout 0.3

Batch size 200

Number of epochs 200

Optimizer RMSprop

Optimizer Parameters

Learning Rate 0.01

Rho 0.9

Epsilon None

Decay 0

The number of instances from the training data set used in the estimate of the error
gradient is called the batch size and is an important hyperparameter that influences the
dynamics of the learning algorithm. One training epoch means that the learning algorithm
has made one pass through the training data set, where the training data are separated into
randomly selected “batch size” groups [37].

A too-small batch size may fail to converge and may lead to underfitting, while a
too-large batch size may exhaust computing resources. An analysis study [38] observed
that controlling the ratio of the batch size to the learning rate to be not too large could
achieve a good generalization ability. An investigation [39] demonstrated that a large batch
tends to converge to sharp minimizers, leading to poor generalization and degrading the
model quality, while another past work [40] suggested increasing the batch size instead of
decaying the learning rate. Therefore, our preliminary testing ran multiple combinations
of epoch and batch size and concluded with the parameter values listed in Table 1.

3.3. Data Pre-Processing

The literature review proved that data pre-processing has a significant impact on
machine learning performance. The representation and quality of the instance data are
some of the foremost factors for building an effective model. Noisy or invalid data may
disrupt the model training.

To construct an effective ML model, the data preprocessing module examined the
validity of the patient’s records, including missing data points, empty values, and outlier
values. It applies linear interpolation to estimate missing data, for example, a missing
blood pressure measurement in a patient’s daily vital record. A default value of 0 is filled
in for null or empty values in a data field. A value larger than two standard deviations of a
given field is considered as an outlier and is replaced by an interpolation value.

The data were collected from a medical center composed of diverse medical informa-
tion such as body temperature, blood pressure, comorbidity, etc. The private information
about inpatients, such as name and birthday, had been removed and de-identified. The
reasonable range of each data field was verified, and unreasonable or missing data were
corrected by interpolation.
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3.4. Data Resampling

Effective model training requires a balanced or approximately balanced class distri-
bution. However, the training data collected from the real environment were imbalanced,
where most inpatients made up a majority class and where only a very small amount of
the comprehensive care patients made up a minority class. In this study, less than 0.5% of
inpatients received comprehensive care, which is extremely imbalanced data. Sampling is
a process of resampling data that generates a sampling distribution based on the actual
data, and the resampling is to produce a less-skewed training dataset for model training
purposes. Two types of resampling strategies are commonly applied: over-sampling and
under-sampling.

Over-sampling (or up-sampling) increases the number of minority class samples to
reduce the degree of imbalanced distribution. For over-sampling, this study adopted the
synthetic minority over-sampling technique (SMOTE) [41]. It is one of the most commonly
used over-sampling approaches in which the minority class is over-sampled by creating
synthetic examples. The synthetic samples are generated based on randomly selected
k nearest neighbors of the minority class. They cause the classifier to create larger and
less-specific decision regions so that the more general regions could be learned for the
minority class.

On the other hand, since there are much more samples of the majority class than the
minority one in the imbalanced class distribution problem, under-sampling approaches
reduce the number of samples from the majority class. To keep the selected samples
representative and to prevent the problem of information loss in most under-sampling
techniques, near-neighbor methods are widely used. This study adopted the NearMiss3
under-sampling approach [42], which selects the majority class samples for which the
average distance to the N nearest-neighbors is the largest. In other words, it attempts
to select the samples of the decision boundary. Based on our preliminary study, under-
sampling yields better performance and is suggested in the proposed method.

3.5. Data Clustering

According to our preliminary study on analyzing different patient groupings and
interviewing the physicians, the proposed method divided the patients into six groups
based on their age and disease, where there are three age groups (<65, 65~80, >80) and
two disease groups (with or without cancer). In practice, elderly patients usually require
more special care needs than young ones, so the grouping specifically ranges out two
aged groups: 65~80 and >80 in order to emphasize their different needs. Likewise, can-
cer patients need special care as well. Table 2 summarizes the patient grouping results
and the data distribution of each group, where CC denotes patients who have received
comprehensive care.

Table 2. The proposed patient clustering.

Group No. of Patients No. of CC Patients

C(<65 cancer) 28,936 112

C(65~80 cancer) 4073 34

C(>80 cancer) 14,068 28

C(<65 no-cancer) 23,602 76

C(65~80 no-cancer) 35,502 126

C(>80 no-cancer) 19,826 98

3.6. Feature Selection and Encoding

There were three types of data in this study: categorical, continuous numerical,
and discrete numerical data, as shown in Table 3, and all the data fields collected were
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considered as features in the proposed prediction model. The data need to be represented in
numerical form in order to be fed into ML models as they only work with numerical values.

Table 3. The description of the proposed feature set.

Data Type Data Name Description

Continuous numerical

Respiration Inpatients’ respiration rate (breaths per minute).

SpO2 Inpatients’ pulse oximetry (%).

Systolic blood pressure Inpatients’ blood pressure (mmHg).

Pulse Inpatients’ pulse rate (beats per minute).

Temperature Inpatients’ body temperature (◦C).

Discrete numerical

Coma Status
The Coma Status sums up the three coma indicators of consciousness:

eye reaction, vocal reaction, and motion reaction, and is a positive
integer ranging 1~15.

Nutrition Nutrition scale evaluated daily by nurses.

BSRS Brief Symptom Rating Scale evaluated daily by nurses.

Pain Pain scale evaluated daily by nurses.

Hospitalized days The number of days that the patient is hospitalized.

Categorical

Comorbidity Comorbidity denotes the illnesses of the patient.

Age Clustering Age clustering indicates the age range of the patient.

Disease Clustering Disease clustering denotes if the patient has a cancer or not.

Categorical data, such as disease and gender, need to perform a transformation before
applying an ML model. This study applied one-hot encoding for categorical data, which
converts each categorical value into one bit in a bit string.

For numerical data, this study applied data normalization to quantify the significance
of the feature value. For continuous numerical data, such as temperature and blood
pressure, the proposed system applied the MinMaxScaler standardization approach for
data normalization in order to quantify the significance of the feature, where MinMaxScaler
transforms a feature by scaling it to a given range to preserve the shape of the original
distribution. For each value in a feature X, MinMaxScaler subtracts the minimum value in
the feature and divides by the range, where the range is the difference between the original
maximum and the original minimum value of the feature. MinMaxScaler standardization
is expressed in the following formula, where max and min stand for the maximum and
minimum values of feature X, respectively, and Xstd is the standardized value of feature X
ranging in 0~1.

Xstd =
X−min

max−min
(2)

Regarding discrete numerical data, such as check-in and check-out dates, this study
transformed these parameters into meaningful values for the ML model, for example,
in this case the number of hospitalized days. The number of hospitalized days, Ddelta,
a discrete numerical feature, can be expressed as follows, where DD and ED mean the
check-out and check-in dates, respectively.

Ddelta = DD− ED (3)

A discrete numerical feature, such as coma status, combines multiple pieces of medical
information into one. The Glasgow coma scale (GCS) is a neurological scale to give a
reliable and objective method of recording the state of a patient’s consciousness, which
contains three physical aspects of coma seriousness: eye (CSeye), vocal (CSvocal), and motion
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(CSmotion). This study combined the above three scales into one feature, coma status (CSall),
as expressed below.

CSall = CSeye + CSvocal + CSmotion ∈ [1, 15] (4)

Table 4 illustrates how the patient’s EMR is represented originally and encoded for
applying the ML models, where the two red boxes indicate the corresponding data records
before and after the feature encoding. Table 4A lists the raw data of a patient’s medical
records including the dates of the admission and discharge, age, daily health measurements,
diseases, etc., where the first record denotes the patient’s medical record on the first day of
the admission (15 May 2019) and so on. Based on the aforementioned feature-encoding
methods, the data were encoded as outlined in Table 4B. The LSTM acquires the past N
days of the EMR data for predicting the patient’s health care need, where N = 6 in this
case. For example, to predict the patient’s health care need on his/her 8th day (22 May
2019), the input to the prediction model is the time-series feature vectors dated from 16
May 2019 to 22 May 2019 (a total of 6 + 1 days) as marked in the red box. Figure 2 describes
the neural networks of the proposed LSTM model. For this illustration, the input layer is
the time-series feature vectors (D2, D3, . . . , D8, where t = 8), and these feature vectors are
the input to the corresponding LSTM cells.

Table 4. An illustration of the EMR and feature encoding.

(A) The EMR raw data.

ID Admission Discharge Record Age Respirarion Cancer Diabetes Stroke . . .

0005 20190515 20190904 20190515 74 24 N Y N . . .
0005 20190515 20190904 20190516 74 23 N Y N . . .
0005 20190515 20190904 20190517 74 21 N Y N . . .
0005 20190515 20190904 20190518 74 21 N Y N . . .
0005 20190515 20190904 20190519 74 22 N Y N . . .
0005 20190515 20190904 20190520 74 20 N Y N . . .
0005 20190515 20190904 20190521 74 25 N Y N . . .
0005 20190515 20190904 20190522 74 22 N Y N . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(B) The encoded features.

Days in
hospital Respiraion SpO2 Pulse Nutrition Age

cluster
Cancer
cluster Comorbidity . . .

1 0.74 0.45 0.84 0.33 1 0 000010000000 . . .
2 0.71 0.36 0.80 0.33 1 0 000010000000 . . .
3 0.66 0.18 0.85 0.33 1 0 000010000000 . . .
4 0.66 0.18 0.79 0.33 1 0 000010000000 . . .
5 0.68 0.27 0.70 0.33 1 0 000010000000 . . .
6 0.63 0.09 0.77 0.33 1 0 000010000000 . . .
7 0.77 0.55 0.86 0.33 1 0 000010000000 . . .
8 0.68 0.55 0.79 0.33 1 0 000010000000 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

4. System Evaluation

The proposed system and the models used for evaluation were implemented and
evaluated in the same environment. They were developed in the programming language
Python with the open-source library Keras. The experiments were run on a personal
computer with the computing resources described in Table 5.



Sustainability 2021, 13, 11909 11 of 22

Table 5. Computing environment used in the evaluation.

Hardware Specification

CPU Intel i7-8700

Memory 64 GB

GPU GTX 1080 Ti

Hard Disk (Dataset store) Toshiba 6TB 7200RPM

Table 6 outlines the evaluation that consists of the following experiments: Exp. 1
evaluated the impact of imbalanced data; Exp. 2 analyzed whether a bi-classifier or a
multi-classifier is suitable for predicting personalized care; Experiment 3 analyzed which
patient grouping is suitable for practicing the personalized care prediction; Experiment 4
compared two different feature selection schemes, human vs. AI; Experiment 5 analyzed
the performance of different prediction models in order to construct the best model for
providing personalized care suggestions.

Table 6. The design of the system evaluation.

Exp. ID Exp. Title Exp. Purpose

Exp. 1 Imbalanced data Evaluate the impact of imbalanced data

Exp. 2 Bi-vs multi-classifier Evaluate the performance of the two types of classifiers

Exp. 3 Patient clustering Analyze the performance of different groupings

Exp. 4 Feature selection Compare the performance of features selected by the
domain experts with those selected by the ML model.

Exp. 5 Model selection Compare the performance of different prediction models

This research adopted accuracy, precision, recall, and F1 score as primary performance
measurements, where they were defined by the confusion matrix as shown in Table 7.
For completeness, the negative predictive value (NPV) is provided for reference. Except
presenting the mean of a result, this study also calculated its confidence interval and
adopted the most commonly used confidence level, 95%. A confidence interval represents
the estimation of a result and is comprised of two values: the upper and lower bound.
In other words, the confidence interval displays the probability that the result will fall
between the pair of the values around the mean.

Accuracy (ACC) =
TP + TN

TN + FN + FP + TP
(5)

Positive predictve value(PPV) =
TP

FP + TP
(6)

Negative predictive value (NPV) =
TN

FN + TN
(7)

Recall =
TP

FN + TP
(8)

F1 = 2× precision× recall
precision + recall

(9)

Because the main purpose of the prediction was to identify the patients who need
comprehensive care, recall was a primary performance measure considered in this study.
Because of highly unbalanced data with a huge number of non-comprehensive-case cases
(negatives), the negative predictive value was not considered in this study. However, all
the measurements were calculated for reference as well as the overall performance analysis.
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Accuracy is the degree of closeness to a true value and is defined as the proportion
of the correct predictions among the total number of the data set. Precision, aka positive
predictive value, is defined as the fraction of the predicted comprehensive care instances
divided by the correctly predicted comprehensive care instances. Recall, aka sensitiv-
ity, is the fraction of the actual comprehensive care instances divided by the correctly
predicted comprehensive care instances. Negative predictive value is defined as the frac-
tion of the predicted non-comprehensive-care cases divided by the correctly predicted
non-comprehensive-care cases.

The F1 score combines the precision and recall of a prediction model into a single
metric by taking their harmonic mean. As multiple performance indices were considered
in the evaluation, this study considered the F1 score as the overall performance comparison
measure when there was a trade-off among the different prediction models.

Table 7. Confusion Matrix.

Actually Positive Actually Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

4.1. Study Population

This study adopted de-identified inpatient medical records collected over two years
from a medical center in Taiwan that has practiced comprehensive care since 2017. The
physiological measurements of all hospitalized patients were available from the EMR
system, including vital signs, emotional conditions, sleeping quality, food intake, medi-
cation status, etc. A total of 250,000 inpatient cases with 1.9 million medical records and
949 comprehensive care patients was referenced to model training and evaluation, where
comprehensive care patients were verified manually by physicians.

The data set had the ratio of negatives to positives = 0.379%. All the neural networks
were trained using 50% of the data, and the remaining 50% of the data was unseen to
the networks for testing purposes. A prediction was considered valid if it fell within two
weeks of the actual date of occurrence. Cross-validation tests were performed to eliminate
the overfitting issue.

4.2. Patient and Public Involvement

This research was carried out without patient or public involvement in the design or
result interpretation. Patients and members of the public did not contribute to the writing
or editing of this manuscript.

4.3. Exp. 1: Imbalanced Data

Exp. 1 compares the prediction performance with and without data resampling to
evaluate the impact of imbalanced data on model training. Two data resampling strategies
were considered for mitigating the imbalanced data issue, where up-sampling applied the
synthetic minority oversampling technique (SMOTE) and down-sampling adopted the
Fourier method. The data resampling strategies adjusted the ratio of negatives to positives
into 8:2.

Table 8 summarizes the attributes of the collected data set and those of the training
data after applying the data sampling strategies. The collected data set was divided
evenly into two parts: one for training and the other for testing. Therefore, both had
the same amount of positive and negative cases, and the number of the associated data
records in training and that in testing were approximately even with the ratio of 1.22:1 as
indicated in the table. As mentioned above, the data sampling was to obtain a better data
distribution for improving the model training. This study applied the resampling strategies
and redistributed the positives and negatives to the ratio of 2:8, where the original data
had an extremely skewed ratio of 3.79:1000, as listed in the table.
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Table 8. The dataset description of the different samplings.

The Properties of the Collected Data

No. of patients 252,014

No. of positives 948

No. of negatives 251,066

Ratio of positives:negatives 3.79:1000

No. of patients in training data 126,007

No. of patients in testing data 126,007

Ratio of no. of patients in training: that in testing 1:1

No. of data records 2,518,887

No. of data records in training data 1,387,137

No. of data records in testing data 1,137,750

Ratio of no. of data records in training: that in testing 1.22:1

No. of data records in positives 948

No. of data records in negatives 2,517,939

Sampling strategy for training data

Resampling strategy None Over-sampling Under-sampling

No. of positives (in training data) 474 31,383 474

No. of negatives (in training data) 125,533 125,533 1896

Ratio of positives: negatives (in
training data) 3.79:1000 2:8 2:8

No. of data records in positives (in
training data) 474 31,383 474

No. of data records in negatives (in
training data) 1,386,663 1,939,845 31,119

No. of data records (in training data) 1,387,137 1,971,228 31,593

No. of -positives in testing data 474

No. of negatives in testing data 125,533

No. of data records in testing data 1,137,750

Table 9 outlines the impact of different data sampling strategies on the performance of
the model training. In this study, the data set contained a very huge amount of negative
samples. Therefore, even though under-sampling eliminated a large amount of negative
cases from the majority class, it still retained enough representative samples of the majority
class so that the ML models were able to learn the class patterns. On the other hand, with
an extremely small number of positive samples, some synthetic positive cases generated
by over-sampling might not be able to provide the expected patterns of the minority class
and hence affect the efficiency of the model training. The results indicate that, even though
under-sampling had the least number of samples as well as data records, it consumed the
least training time and outperformed the other two sampling strategies. No resampling
performed the worst, which demonstrates that imbalanced data may affect the effectiveness
of the model training. This experiment implies that data resampling could mitigate the
impact of imbalanced data, and under-sampling obtained the best prediction model.
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Table 9. The evaluation of the impact of resampling.

Resampling Strategy None Over-Sampling Under-Sampling

Predict Actual Positive Negative Positive Negative Positive Negative

Positive 202 2944 371 1119 393 167

Negative 272 122,589 103 124,414 81 125,366

Mean CI (95%) Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 97.45% [97.39%, 97.51%] 99.59% [99.54%, 99.64%] 99.80% [99.78%, 99.82%]

Precision (PPV) 6.42% [6.63%, 6.61%] 46.96% [46.91%, 47.00%] 70.18% [70.14%, 70.22%]

NPV 97.65% [97.60%, 97.70%] 99.67% [99.65%, 99.69%] 99.87% [99.85%, 99.89%]

Recall 42.62% [42.66%, 42.85%] 78.27% [78.21%, 78.33] 82.91% [82.82%, 83.00%]

F1 0.1116 [0.1072, 0.1159] 0.5870 [0.5814, 0.5925] 0.7602 [0.7534, 0.7670]

4.4. Exp. 2: Bi-vs Multi-Classifier

A personalized health care prediction model is a multi-classes question and has two so-
lution options: a single multi-classifier or a binary classifier for each group. Therefore, Exp.
2 analyzed the three classification models: (1) a multi-classifier for all the patient groups;
(2) one bi-classifier for each group; (3) one bi-classifier for all the patients. The results are
summarized in Table 10, where M(C) denotes the bi-classifier for all patients, M(Cgroup_i)
denotes the bi-classifier for patients in group i, and M(Cgroup_1, Cgroup_2, . . . , Cgroup_n) de-
notes the multi-classifier for the patient clustering of Cgroup_1, Cgroup_2, . . . , Cgroup_n. The
results demonstrate that the multi-classifier yields the best prediction performance and
that patient clustering improves the prediction performance as it reduces data complexity.
Comparing with the best training time, the increased training time of the multi-classifier is
neglectable.

Table 10. The results of Exp 2 evaluating different classifiers.

Model Multi-Classifier, M(C<65, C65~80,
C≥80)

Bi-Classifier for Each Group,
M(C<65) + M(C65~80) + M(C≥80) Bi-Classifier for All Patients, M(C)

Predict Actual Positive Negative Positive Negative Positive Negative

Positive 442 143 429 161 393 167

Negative 32 125,390 45 125,372 81 125,366

Mean CI (95%) Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 99.86% [99.80%, 99.92%] 99.84% [99.82%, 99.86%] 99.80% [99.78%, 99.82%]

Precision (PPV) 75.56% [75.49% 75.63%] 72.71% [72.65%, 72.77%] 70.18% [70.14%, 70.22%]

NPV 99.89% [99.87%, 99.90%] 99.87% [99.86%, 99.88%] 99.87% [99.85%, 99.89%]

Recall 93.25% [93.18%, 93.32%] 90.51% [90.40%, 90.62%] 82.91% [82.82%, 83.00%]

F1 0.8347 [0.8230, 0.8464] 0.8064 [0.7996, 0.8132] 0.7602 [0.7534, 0.7670]

Training Time (min) 115 [113.47, 116.53] 165 [163.06, 166.94] 103 [102.08, 103.92]

4.5. Exp. 3: Patient Clustering

Exp. 3 analyzed different patient groupings to find an optimal patient clustering for
personalized care suggestions. Patient clustering was factored by age and cancer disease,
and Exp. 3 analyzed the following patient groupings:

• Cluster 0: all patients in one group, no clustering.
• Cluster 1: (C<65, C≥65)
• Cluster 2: (C<65, C65~80, C≥80)
• Cluster 3: (Ccancer, Cno-cancer)
• Cluster 4: (C<65 cancer, C65~80+caner, C≥80+caner, C<65+no-cancer, C65~80+no-cancer, C≥80 no-cancer)

The results of Exp. 3 are summarized in Table 11 and Figure 4. Considering clustering
in age, the clustering of (C<65, C≥65) yielded the best performance. However, based on
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the interviews with physicians and clinical staff who practice the comprehensive care
service, they preferred clustering patients in three age groups: C<65, C65~80, C≥80, as it fits
in their operation. Based on their practice experience, patients with cancer often require
comprehensive care than those without cancer. Therefore, the age groups were further
divided by cancer disease, which produced Cluster 4.
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Table 11. The results of Exp. 3 evaluating different patient clustering.

Cluster Cluster 0 Cluster 1 Cluster 2

Predict Actual Positive Negative Positive Negative Positive Negative

Positive 393 167 425 117 442 143

Negative 81 125,366 49 125,416 32 125,390

Mean CI (95%) Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 99.80% [99.78%, 99.82%] 99.87% [99.85%, 99.89%] 99.86% [99.84%, 99.88%]

Precision (PPV) 70.18% [70.14%, 70.22% 78.41% [78.34%, 78.48%] 75.56% [75.46%, 75.66%]

NPV 99.87% [99.85%, 99.89%] 99.90% [99.89%, 99.91%] 99.89% [99.88%, 99.90%]

Recall 82.91% [82.82%, 83.00%] 89.66% [89.64%, 89.68%] 93.25% [93.23%, 93.27%]

F1 0.7602 [0.7534, 0.7670] 0.8366 [0.8310, 0.8422] 0.8347 [0.8297, 0.8397]

Training Time (min) 103 [102.08, 103.92] 111 [109.9, 112.1] 115 [114.00, 446.00]

Model Cluster 3 Cluster 4

Predict Actual Positive Negative Positive Negative

Positive 435 178 437 124

Negative 39 125,355 37 125,409

Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 99.83% [99.82%, 99.84%] 99.87% [99.85%, 99.89%]

Precision (PPV) 70.96% [70.85%, 71.07%] 77.90% [77.83%, 77.97%]

NPV 99.86% [99.86%, 99.86%] 99.90% [99.89%, 99.91%]

Recall 91.77% [91.76%, 91.78%] 92.19% [92.14%, 92.24%]

F1 0.8004 [0.7961, 0.8047] 0.8464 [0.8433, 0.8495]

Training Time (min) 105 [104.16, 105.84] 154 [152.79, 155.21]

Cluster 4, (C<65+cancer, C65~80+caner, C≥80+caner, C<65 no-cancer, C65~80 no-cancer, C≥80 no-cancer),
yielded the best performance, except that its precision was slightly less than Cluster 1.
Overall, Cluster 4 outperformed all the others but required a longer training time. The
results imply that a classifier with many classes requires longer training than one with not
too many classes, but this would not affect its performance. The increased training time is
in an acceptable range, so Cluster 4 was adopted in the proposed system.

4.6. Exp. 4: Feature Selection

Exp. 4 analyzed the performance of two methods of feature selection: human-selected
vs. model-selected, where the human-selected refers to the features chosen by the domain
experts and the model-selected refers to those chosen by the ML model. The model-selected
applied the EMR data records without summarizing or emphasizing any indicator so that
the ML model could extract the correlation among the original data.

Table 12 summarizes these two feature sets, where the human-selected feature set
was adopted by the hospital that had implemented and practiced a comprehensive care
suggestion system since 2017 [43]. Except the original EMR data, they added two more
health indicators (EWS and health score) calculated by patient’s physiological indicators.
The experts intended to emphasize the importance of the health indicators by adding
these two more features and assigning a human-defined weight for each of the health
indicators in order to quantify the degree of his/her need for comprehensive care. Tuning
the weighting has taken a large amount of trial-and-error experiments and discussion
meetings in the studied hospital.
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Table 12. The model-selected and the human-selected feature sets.

Model-Selected Human-Selected

Hospitalization date Hospitalization date

Coma Status Coma Status

Early warning score (EWS)

Comorbidity Comorbidity

Respiration Respiration

SpO2 SpO2

Systolic blood pressure Systolic blood pressure

Pulse Pulse

Temperature Temperature

Age Cluster

Disease Cluster

Age

Nutrition

Health ScoreBSRS

Pain

The health score evaluates a patient’s total health condition from the following three
aspects: the patient’s wellness evaluation from the care team (TeamEval), the comorbidity
condition based on the Charlson comorbidity index (CCI) [44], and the early warning Score
(EWS) [45], as summarized in Table 13, where pain and BSRS ranged from 0 to 10, nutrition
ranged from 0 to 6, CCI scaled from 1 to 6, and EWS scaled from 0 to 3. Each index in Table
13 contributes a ratio tuned by the experts, where B stands for the measured CCI value and
C for the EWS value. Different diseases contribute different mortality risks to a patient, so
weighting was given for the above three wellness aspects as listed in Table 14. The health
score is defined below.

HealthScore = TeamEval ×WTeamEval + CCI ×WCCI + EWS×WEWS (10)

where
TeamEval = Pain× RPain + BSRS× RBSRS + Nutrition× RNutrition (11)

Table 13. Health condition attributes.

TeamEval CCI EWS

Index Ratio Index Ratio Index Ratio

Pain RPain = 5

Min (B, 20) RCCI = 5 Min (C, 20) REWS = 5Brief Symptom Rating Scale (BSRS) RBSRS = 5

Nutrition RNutrition = 30

Table 14. Disease weighting in health score.

Disease WTeamEval WCCI WEWS

Cerebrovascular
accident (CVA) 0.37 0.34 0.29

Dementia 0.7 0.19 0.10

Cancer 0.61 0.19 0.20

Others 0.10 0.80 0.10
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Table 15 outlines the experimental results. Overall, the model-selected feature set
yielded better performance. It required a longer training time than the human-selected one
as its feature dimension was larger and required more time to find an optimal weighting
for the features.

Table 15. The results of Exp. 4 evaluating two feature selection approaches.

Feature Set Human-Selected Model-Selected

Predict Actual Positive Negative Positive Negative

Positive 397 202 393 167

Negative 77 125,331 81 125,366

Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 99.78% [99.76%, 99.80%] 99.80% [99.78%, 99.82%]

Precision (PPV) 66.28% [66.22%, 66.34%] 70.18% [70.14%, 70.22%

NPV 99.84% [99.83%, 99.85%] 99.87% [99.85%, 99.89%]

Recall 83.76% [83.71%, 83.81%] 82.91% [82.82%, 83.00%]

F1 0.73998 [0.7319, 0.7480] 0.76015 [0.7534, 0.7670]

Training (min) 66 [65.40, 66.60] 104 [102.08, 103.92]

4.7. Exp. 5: Model Selection

Exp. 5 compared the performance of different prediction models including the pro-
posed LSTM models, the baseline RNN, and a hybrid CNN+LSTM model, where the
baseline RNN was considered as the previous model applied in the studied hospital, and
the hybrid model applied CNN to perform feature selection and LSTM for prediction.
The hyperparameters applied for the baseline RNN and hybrid CNN+LSTM models are
outlined in Table 16; the model comparison results are listed in Table 17.

Table 16. The hyperparameters of the comparison models used in Exp. 5.

RNN Parameters

Activation Sigmoid

Kernel Glorot_uniform

Recurrent orthogonal

Bias vector zeros

Return sequence True

Return state True

Loss Binary Cross-Entropy

CNN + LSTM Parameters

Convolution_2D

Filter 64

Filter length 7

Activation ReLU

MaxPooling_2D

Pool length 5

LSTM Parameters

Activation Sigmoid

Loss Binary Cross-Entropy
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Table 17. The performance comparison of different neural networks.

LSTM (Proposed) RNN (Baseline) CNN+LSTM (Hybrid)

Predict Actual Positive Negative Positive Negative Positive Negative

Positive 393 167 385 174 404 201

Negative 81 125,366 89 125,359 70 125,332

Mean CI (95%) Mean CI (95%) Mean CI (95%)

Accuracy (ACC) 99.80% [99.78%, 99.82%] 99.79% [99.78%, 99.80%] 99.78% [99.77%, 99.79]

Precision (PPV) 70.18% [70.14%, 70.22% 68.87% [68.76%, 68.98%] 66.78% [66.65%, 66.91%]

NPV 99.87% [99.85%, 99.89%] 99.86% [99.85%, 99.87%] 99.84% [99.84%, 99.84%]

Recall 82.91% [82.82%, 83.00%] 81.22% [81.11%, 81.33%] 85.23% [85.16%, 85.30%]

F1 0.7602 [0.7534, 0.7670] 0.7454 [0.7392, 0.7516] 0.7488 [0.7438, 0.7538]

Training (min) 103 [102.08, 103.92] 73 [72.39, 73.61] 267 [260.09, 273.91]

All models performed well on accuracy and NPV as the data set contained a high
number of negatives. Both models, the baseline and the hybrid, performed equally well
on all the performance measurements, but the hybrid required 2.6 times more training
time than the baseline. Overall, the proposed LSTM achieved the best performance and
required a little bit more time than the baseline. It could forecast comprehensive care
patients efficiently with a high true positive rate and achieved the purpose well.

5. Discussion

The model-selected feature set exhibited better overall performance and yielded
a better F1 score, but the human-selected one had a slightly better recall rate. As the
correctness of the prediction was based on the clinician’s decision, they tended to activate
the comprehensive care service by observing the values of the two human-defined features,
the health score and the EWS. Therefore, the human-selected feature set may predict
positive cases better because of the two additional features. Likewise, the patient’s age and
comorbidity status are two important factors for the clinician while making the decision.
Therefore, the patient clustering approach according to the above two factors resulted in a
better recall rate as well.

When considering the overall performance by F1 score, the LSTM model outperformed
the baseline as well as the hybrid model. However, the recall rate may be important for
some medical applications. Even though the hybrid model (CNN+LSTM) took two times
more of the training time than the LSTM model and three times more than the RNN model,
it had the best recall rate, which could offset the additional training time.

An efficient clinical decision support system assists the clinicians in predicting the
patients’ needs, improves the quality of healthcare service, and preserves medical resources.
The proposed prediction model was designed according to the clinician’s practical experi-
ences on comprehensive care and improved the prediction performance by resampling,
patient clustering, and feature selection. The system evaluation demonstrated that the
proposed method is practical and efficient. It is able to improve work efficiency, and it
reduces the consumed medical resources, produces less medical waste, and hence improves
the environmental sustainability of the medical institute.

6. Conclusions

Good-quality care for patients with comorbidities is one of the most important and
complex problems of modern clinical health care because of the high mortality rates if not
managed properly. By applying AI technologies, this study developed an LSTM-based
prediction system, learning from the past patients’ medical records and decisions made by
clinicians so that it provides comprehensive care suggestions. The proposed system can
enhance the existing hospital information system with the ability to monitor the health
condition of inpatients continuously and to fill the communication gap among multiple
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clinic staff taking care of them. By allocating healthcare resources properly based on
need, the proposed system can improve staff work efficiency as well as increase medical
service quality.

To our best knowledge, the present study is the first attempt to apply an RNN model
to develop a CDSS that predicts personalized care needs. Only a few published studies
focused on applying RNN for predicting patient care, and most discussed the impacts and
needs of applying AI technologies to the healthcare sector.

This study addressed several design issues when applying AI models, including the
type of classifier for a multi-class question, feature selection, imbalanced data, and model
selection. The evaluation section conducted experiments to analyze the impact of the above
issues. A multi-classifier performed better than multiple bi-classifiers. Human-selected
features might not be able to perform as well as features selected by the machine learning
model. Resampling is an effective strategy to mitigate the impact of imbalanced training
data, where under-sampling is better if the data are extremely imbalanced, as is in this
study. A prediction model combining two neural network models typically consumes more
training time than a single neural network model but might not improve the performance
significantly. This study demonstrated that patient clustering improves personalized care
prediction and proposed an efficient CDSS approach.

It is difficult to account for the variability of the disease risks to a new illness, such
as COVID-19. Investigations require domain knowledge and complex production rules
where patterns are hard to predict. Further work could be focused on identifying the key
factors of providing personalized comprehensive care for patients with different disease
complications and mortality risks.
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