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Abstract: Quantifying the characteristics of urban expansion as well as influencing factors is essential
for the simulation and prediction of urban expansion. In this study, we extracted the built-up regions
of 14 central cities in the Hunan province using the DMSP-OLS night light remote sensing datasets
from 1992 to 2018, and evaluated the spatial and temporal characteristics of the built-up regions
in terms of the area, expansion speed, and main expansion direction. The backpropagation (BP)
neural network and autoregressive integrated moving average (ARIMA) model were used to predict
the area of the built-up regions from 2019 to 2026. The model predictions were based on the GDP,
ratio of the secondary industry output to the GDP, ratio of the tertiary industry output to the GDP,
year-end urban population, and urban road area. The results demonstrated that the built-up area
and expansion speed of the central cities in the eastern part of the Hunan province were significantly
higher than those in the western part. The main expansion directions of the 14 central cities were
east and south. The urban road area, year-end urban population, and GDP were the main driving
factors of the expansion. The urban expansion model based on the BP neural network provided a
high prediction accuracy (R = 0.966). It was estimated that the total area of urban built-up regions in
the Hunan province will reach 2463.80 km2 by 2026. These findings provide a new perspective for
predicting urban areas rapidly and simply, and it also provides a useful reference for studying the
spatial expansion characteristics of central cities and formulating a sustainable urban development
strategy during the 14th Five-Year Plan of China.

Keywords: night light remote sensing; Hunan province; BP artificial neural network; urban spatial
expansion; built-up region

1. Introduction

Urbanization, which represents a substantial change in human history, is significant for
the development of society. However, as stated by Friedman, “China’s urbanization process
is a result of forces that in their origin are essentially endogenous.” [1], and its process is
characterized by complexity and comprehensiveness [2], thereby making it an enduring
research topic in several disciplines. In recent years, urban sprawl has exacerbated social
and environmental problems in cities and the surrounding areas, which means that the
effective expansion of urban space has become the focus of attention and the study of urban
sprawl has emerged as a new hot spot in urbanization research [3,4].

Existing domestic researches on urban spatial expansion mainly focus on three aspects:
firstly, the modes and characteristics of urban spatial expansion. For example, Wang et al. [5]
analyzed the spatio-temporal characteristics of spatial morphological changes of Megacities
in China and summarized the spatial expansion modes of typical Chinese cities. Kuang
et al. [6], Li et al. [7], Lin et al. [8], Qiao et al. [9], and Fan et al. [10] made a detailed analysis
of the spatial expansion patterns and characteristics of Beijing, Tianjing, Xiamen, Nanjing,
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and Chengdu City, respectively. Secondly, the analysis of influencing factors of spatial
expansion. For example, Wang et al. [11] believed that GDP growth was the main driving
factor of spatial expansion in Putian City, Fujian Province. Wang et al. [12] reported that
the development of tertiary industry is a major driving factor. Long et al., [13] believed that
urbanization and suburbanization jointly drive the outward extension of urban boundaries.
In addition, Huang et al. [14] divided the driving factors of urban spatial expansion into
macro-level (urban planning, policy and other government behaviors, historical old urban
pattern), meso-level (economic and social factors), and micro-level (natural geographical
location, transportation facilities). The third is the simulation research of urban spatial
expansion, such as Cellular Automata (CA) model, agglomeration model (DLA), multi-
agent model (MAM), neural network, typing theory, genetic immune system, etc. [15–20]
which have been widely used in the researches of urban spatial expansion in recent years.
Therefore, it is critical to understand the driving force of urban expansion to better simulate
the spatial pattern of urban development in the future and formulate sustainable urban
development strategy.

CA and regression model are traditional methods for urban sprawl prediction [21,22].
CA model’s prediction relies on rules and the attribute changes of neighbor cells so that it
may not reflect the influences caused by distant cells, which severely limited its scope [23].
The internal drivers of urban expansion are interconnected for economic and demographic
relationships between distant cities, which is difficult to be detected by CA. Regression
models such as the Geographically Weighted Regression (GWR) model fit the urbanization
well [24]. However, the qualification of nonlinear regressions is substantially influenced by
the equations, and inappropriate equations may result in large residuals. In contrast, the
Back Propagation (BP) artificial neural network model based on the principle of gradient
descent can approximate any nonlinear continuous function with arbitrary accuracy, which
makes it more efficient and accurate than regression models when facing complex nonlinear
problems. In addition, the BP neural network can automatically extract the "reasonable
rules" between input and output data through training and adaptively memorize them [25].
Thus, it can reflect the impact of small changes in the driving factors and is more sensitive
to the driving factors between different cities. Since the process of urban expansion is
complex and the BP artificial neural network method has excellent mapping ability of
nonlinear complex relationship, it can avoid defects such as over-fitting, thus it is worth
trying to simulate urban expansion by using an artificial neural network method.

Nighttime light remote sensing is an important method for researching urban spatial
expansion and it has been used extensively in research concerning urbanization owing to
its strong operability and spatio-temporal continuity [26,27]. Studies show that there is
a high correlation between the light index and the composite index reflecting the urban-
ization level, which can be used to analyze the urbanization level and its spatio-temporal
differentiation and monitor the urbanization process in China [28,29]. Researchers in China
have used this method to study urban expansion on a national scale, and within specific
economic zones and belts [30–33]. However, these studies were biased towards the country
as a whole or economically developed regions on the spatial scale (mainly eastern provinces
and centrally administered municipalities of China) [33,34]. Whether night light remote
sensing can be applied to the relatively underdeveloped cities in central and western China
needs to be tested. The central and western regions of China are essentially different
from the densely populated eastern regions in terms of economic development stage and
social organization structure. However, with the adjustment of national macro-regional
strategy and the guidance of local government policies in the new century, the cities in the
central and western regions have some new changes and characteristics. As one of the
most important provinces in central China, the Hunan province has received extensive
attention for its rapid economic development and urbanization in recent years. It can be
regarded as a typical case for the study of nighttime light remote sensing in urban spatial
expansion in central and western China.
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Therefore, in this study, 14 central cities in the Hunan province (which are shown in
Figure 1, including Chang Sha, Zhu Zhou, Xiang Tan, Heng Yang, Shao Yang, Yi Yang, Yue
Yang, Lou Di, Chang De, Huai Hua, Yong Zhou, Chen Zhou, Zhang Jiajie, and Ji Shou)
were taken as the research object, and continuous nighttime light remote sensing data
from the Hunan province from 1992 to 2018 were introduced. Five most representative
and quantifiable indicators of urban driving force were selected to analyze the spatial
and temporal characteristics of the expansion of central cities in the Hunan province,
including GDP, secondary industry output value to GDP ratio (hereinafter referred to as
the secondary industry ratio), tertiary industry output value to GDP ratio (hereinafter
referred to as the tertiary industry ratio), year-end urban population, and urban road area
(hereinafter referred to as the road area). On this basis, the backpropagation (BP) neural
network and autoregressive integrated moving average (ARIMA) model were used to
predict the expansion trend of built-up areas in the Hunan province from 2019 to 2026. Our
main objectives were to: (1) investigate the spatial and temporal characteristics of central
city spatial expansion in the Hunan province; (2) explore the dominant factors affecting
the spatial expansion of central cities and its underlying mechanisms, and (3) predict the
expansion trend of urban built-up areas in the Hunan province in the future.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 17 
 

urbanization in recent years. It can be regarded as a typical case for the study of nighttime 
light remote sensing in urban spatial expansion in central and western China. 

Therefore, in this study, 14 central cities in the Hunan province (which are shown in 
Figure 1, including Chang Sha, Zhu Zhou, Xiang Tan, Heng Yang, Shao Yang, Yi Yang, 
Yue Yang, Lou Di, Chang De, Huai Hua, Yong Zhou, Chen Zhou, Zhang Jiajie, and Ji 
Shou) were taken as the research object, and continuous nighttime light remote sensing 
data from the Hunan province from 1992 to 2018 were introduced. Five most 
representative and quantifiable indicators of urban driving force were selected to analyze 
the spatial and temporal characteristics of the expansion of central cities in the Hunan 
province, including GDP, secondary industry output value to GDP ratio (hereinafter 
referred to as the secondary industry ratio), tertiary industry output value to GDP ratio 
(hereinafter referred to as the tertiary industry ratio), year-end urban population, and 
urban road area (hereinafter referred to as the road area). On this basis, the 
backpropagation (BP) neural network and autoregressive integrated moving average 
(ARIMA) model were used to predict the expansion trend of built-up areas in the Hunan 
province from 2019 to 2026. Our main objectives were to: (1) investigate the spatial and 
temporal characteristics of central city spatial expansion in the Hunan province; (2) 
explore the dominant factors affecting the spatial expansion of central cities and its 
underlying mechanisms, and (3) predict the expansion trend of urban built-up areas in 
the Hunan province in the future.  

 
Figure 1. Four-directional arcs in Chang-Zhu-Tan area in 1992. 

2. Materials and Methods 
2.1. Data Source  

DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan 
System) data is representative of nighttime lighting data and has the advantage of high 

Figure 1. Four-directional arcs in Chang-Zhu-Tan area in 1992.



Sustainability 2021, 13, 11982 4 of 17

2. Materials and Methods
2.1. Data Source

DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System)
data is representative of nighttime lighting data and has the advantage of high resolution
and large time span compared to other nightlight remote sensing data. In this research, the
DMSP-OLS nighttime light remote sensing data were used to extract the built-up urban
areas in the Hunan province [35], and the selected image data were those produced from
the research of Zhao et al. [36]. They constructed data series of DMSP-OLS and NPP-
VIIRS (National Polar-orbiting Operational Environmental Satellite System Preparatory
Project-Visible infrared Imaging Radiometer) from 1992 to 2018, which combined the
temporal advantages of the DMSP-OLS and NPP-VIIRS data, and exhibited high accuracy
in extracting urban expansion. The images were resampled into 27-year annual average
images with integer gray values, or digital number (DN) values, of 0 to 63 and a resolution
of 1 km.

The statistical data of the Hunan province and the 14 cities that were used for the
analytical modeling were obtained from the China Statistical Yearbook, Hunan Statistical
Yearbook, China Urban Statistical Yearbook, and Thirty Years of Reform and Opening Up
in Hunan.

2.2. Extraction of Urban Expansion Feature Data
2.2.1. Extraction of Scope and Expansion Directions of Built-Up Area

We adopted the method of determining the image element value based on statistical
data to extract the scope of the urban built-up areas and limited the scope of the image
element extraction using urban administrative boundaries [37,38] to improve the accuracy.
The specific steps were as follows: (1) Crop the remote sensing data according to the
administrative boundaries of cities and towns. (2) Find a DN value threshold that total area
of elements with DN value higher than it has the smallest difference with the statistical built-
up area [39]. (3) Confirm the extent of the built-up area and calculate the error. According
to the above operations, the linear regression coefficients of the DN values for each image
element over time were calculated by superimposing all light remote sensing images in
chronological order and assigning these to the new images to obtain the light variability
images. Moreover, as the expansion of urban space is based on the development of existing
urban space [40], a four-directional arc could be established using the geometric center
of the built-up area patches in central Hunan City in the starting year (1992) (Figure 1).
The four-directional arc consists of four 90-degree circular arcs, each of which is bisected
by a positive directional line at the center of the built-up area. The area of the circles is
equal to the area of the outer tangent circle when the built-up area is at its maximum in
27 years. ArcGIS was used to determine the areas of the patches in the four-directional arcs
in different years to obtain the data of the built-up area in each direction for each year in
the 14 central cities. The information regarding the expansion direction of urban built-up
areas was analyzed by comparing these data and referring to the spatial distribution of the
variability of nighttime lighting DN values.

2.2.2. Expansion Speed of Built-Up Areas

To measure the dynamic change in the built-up area of each central city effectively,
the built-up area expansion rate (CS) adopted in this study was obtained by subtracting
two data (Si) and (Si−t) from the same city in different years and dividing the result by the
interval year (t):

CS =
Si − Si−t

t
(1)

2.3. Backpropagation Neural Network Model

The backpropagation (BP) algorithm uses a gradient descent strategy to adjust the
parameters of each node in different layers of the neural network in the direction of the
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negative gradient of the error function [41]. Thus, the output prediction value continuously
approximates the actual value to achieve the model construction. The sigmoid function
was selected for this study:

f (x) =
1

1 + e−x (2)

During the training process, each year of data for each central city in the Hunan
province was used as a sample, the data of five corresponding factors were the sample
input value, and the statistical area of the built-up region corresponding to that year of
the city was considered as the output reference value. All samples are normalized before
training. The number of nodes in the hidden layer was confirmed to be 9, the number of
iterations was 200, the learning rate was 0.01, and all other parameters were default values.
To prevent model overfitting, a Bayesian regularization algorithm was invoked to control
the average error of the output and sample data during the calculations.

The datasets for the BP model, including input and output values from the whole
observational datasets, were randomly divided into two parts: 321 normalized samples,
which accounted for 80% of the total number of samples (401 samples), were used for
modeling as calibration set. The other 80 samples, which accounted for 20% of the total
number of samples, were selected to test the model’s generalization ability and to be
validation set. To evaluate the performance of the BP model, we conducted a comparison
using of coefficient of determination (R), Mean Absolute Error (MAE), and Mean Square
Error (MSE), which is the performance function of an artificial neural network. When the
model fitting accuracy increased, MAE and MSE decreased significantly. An F-test was
performed on the output data and actual data to verify the reliability of the model results
as well. When the test coefficient p of the result is less than 0.05, the BP model output data
is defined insignificantly different from the actual data. Finally, we chose the result that
passed the F-test successfully with the R-value closes to 1 and the lowest MSE and MAE in
both two sets.

2.4. Correlation Analysis and Prediction of Factors

The development process of the built-up area of each central city in the Hunan
province exhibited unique characteristics, and the degree of influence of the five factors on
the built-up areas varied among the different central cities. For example, the urbanization
process of the eastern cities of the Hunan province is obviously faster than that of the
western cities, and the industrial structure is better than that of the western cities, which is
manifested in the rapid development of the tertiary industry. However, in the mountainous
area of western the Hunan province, the limitation of population scale and the imperfect
infrastructure such as roads hinder the expansion of urban space to a certain extent. On
this basis, a matrix was established to calculate the correlation coefficients of the dependent
variable and factors. The correlation coefficients of the five independent variables and
dependent variable were obtained for comparison and analysis. If the correlation coeffi-
cient was negative, the factor was negatively correlated with the built-up area and was a
hindering factor for spatial expansion.

The forecast factor values for 2019 to 2026 were calculated based on the ARIMA
model. This model is an integrated model based on time series, which has strong predictive
power for data with stable time series [42] and has also been used in studies in the field of
geography [43,44]. Thus, it was applicable to the prediction of the factor data selected in
this study. When the lag operator L is introduced, the expression is as follows:(

1−
p

∑
i=1

∅iLi

)
(1− L)dXt =

(
1 +

q

∑
i=1

θiLi

)
εt , (3)

where εt is the white noise series, Xt is the time series value, ∅i (i = 1, 2, 3 . . . p) is
the autoregressive coefficient, and θi (i = 1, 2, 3 . . . q) is the sliding average coefficient.
Augmented Dickey–Fuller and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were
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performed on the differentially processed data to increase the model accuracy, and the data
for each factor for the years 1992 to 2016 (GDP and proportions of secondary and tertiary
industries to 2017) were entered. Calculations were performed with data for 2017 to 2018
(GDP and proportion of secondary and tertiary industries to 2019) as a test, and the model
parameters were determined by considering the prediction error, Durbin–Watson (DW)
test value, Akaike information criterion (AIC), Bayesian information criterion (BIC), and
autocorrelation function and partial autocorrelation function distributions. AIC and BIC
were metrics of superiority to the ARIMA model, with their values increasing as the model
becomes more complex or the likelihood function becomes smaller. Autocorrelation was
verified by DW as well (Figure 2). Autocorrelation was insignificant when DW values were
closed to 2.
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3. Results
3.1. Urban Built-Up Area Extraction and Spatial Expansion Characteristics

The built-up areas of the 14 central cities in the Hunan province from to 1992 to 2018
were extracted using the determination threshold method, in which the error rate of the
total area was less than 5% in 25 years and less than 2.5% in 17 years, and the overall
accuracy was high.

3.1.1. Scale and Expansion Rate of Built-Up Areas

During the period of 1992 to 2018, the scale of the built-up areas of the 14 central cities
in the Hunan province exhibited an overall growth trend (Figure 3), with a total built-up
area of only 431 km2 in 1992, which reached 1446 km2 in 2018 (Figure 4). The cities in the
Hunan province exhibited a distribution pattern of “high in the east and low in the west”
on the spatial scale, with the high-scale central cities mainly distributed in the east along
the main stream of Xiang River and Dongting Lake (Figure 5), whereas the scale of the
central cities in the western part of the Hunan province was generally low. On the temporal
scale, the gap between the east and west of the major central cities and between Chang Sha
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and other cities gradually increased from 1992 to 2018. The size gap between Chang Sha
and other cities gradually expanded.
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For example, although Xiang Tan City is located along the main stream of Xiang
River, its built-up area was only 80 km2 in 2018, with an average growth rate of only 1.54
km2/year for 27 years, which was lower than that of the cities located in the western
part of Xiang Xi, including Shao Yang City, Huai Hua City, and Xiang Xi Autonomous
Prefecture (Figure 3). Moreover, there were differences in the expansion rates between
different regions: the difference in the expansion rates of the built-up areas of central cities
in the southern Xiang Tan region (including Heng Yang City, Yong Zhou City, and Chen
Zhou City) and the Dongting Lake region (including Yue Yang City, Yi Yang City, and
Chang De City) was small, whereas the difference between the Chang-Zhu-Tan region and
the western Xiang Tan region was obvious. Furthermore, the expansion rate of Chang Sha
City in the Chang-Zhu-Tan region was much higher than that of Xiang Tan City in the
same region and the expansion rate of Shao Yang City in the western Xiang Tan region was
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also significantly higher than that of other cities. In terms of the time scale, the built-up
area of each central city continued to expand over 27 years, but the expansion rate varied
at different times (Figure 3), indicating a cyclical change of “fast-slow-fast” (Figure 4).

3.1.2. Expansion Direction

The distribution of the four-directional arc statistical areas and the numerical change
rate of the nighttime lighting DN values in the built-up areas of the 14 central cities in
the Hunan province from 1992 to 2018 were compared. The results demonstrated that the
expansion of the central cities in the Hunan province was mainly concentrated in the east
and south directions (Figure 6). The cities that mainly expanded to the east were Chang
Sha City, Xiang Tan City, Yue Yang City, and Loudi City; the cities that mainly expanded to
the south were Zhu Zhou City Chen Zhou, Yongzhou, Zhang Jiajie, and Ji Shou. Moreover,
Shao Yang, Yiyang, Huai Hua, and Chang De mainly expanded to the east and south.
Apart from Heng Yang City, which mainly expanded to the west during the 27-year period
(Figure 6), all central cities expanded mainly to the east or south, whereas all central cities
expanded relatively little to the north during the 27-year period.
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the central cities in Hunan Province extending to the east, west, south and north, respectively.

A correspondence was observed between the expansion of built-up areas and the light
variation rate. The regions around the built-up areas with high light variability (variability
> 1.75 DN·year−1, Figure 7) (hereafter referred to as potential areas) were more easily
transformed into built-up areas. Spatially, the distribution direction of the potential areas
in the 14 central cities in the Hunan province was generally the same as the expansion
direction of the built-up areas (Figure 7). Two types of potential areas were identified:
strips (Huai Hua, Ji Shou, Zhang Jiajie, Chen Zhou, Shao Yang, and Chang De) and clusters
(Chang Sha, Zhu Zhou, Xiang Tan, Yi Yang, Lou Di, Yue Yang, and Heng Yang). The strip
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potential areas were mainly distributed in the western and southern regions of the Hunan
province, whereas the cluster potential areas were mainly distributed in the eastern regions,
which were consistent with the topography and traffic direction.
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3.2. Relationships between Built-Up Areas and Driver Factors

Among the five selected factors, the GDP, year-end urban population, and road area
were strongly and positively correlated with the built-up areas. The correlation coefficient
of the GDP was 0.97, whereas the correlation coefficients of the secondary and tertiary
industries were generally lower than those of the above three factors, and were general
drivers. Moreover, the correlation coefficients of these two factors fluctuated significantly
among the central cities (Table 1). In Chang De and Ji Shou, the correlation coefficients of the
built-up area and the proportion of tertiary industries reached 0.93 and 0.96, respectively,
and they were the main driving factors for the expansion of the two cities, whereas the
correlation coefficient of the proportion of tertiary industries in Chang Sha was only 0.26.
In Chen Zhou, the correlation coefficient of the proportion of secondary industries reached
0.84; however, in Zhang Jiajie and Ji Shou, the two correlation coefficients were –0.50 and
−0.07, respectively.
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Table 1. Correlation coefficients of factors and built-up areas.

Cities GDP The Proportion of
Secondary Production

The Proportion of
Tertiary Production

Year-End
Population Urban Road Area

Chang Sha 0.98 0.56 0.26 0.98 0.93
Zhu Zhou 0.99 0.53 0.52 0.97 0.99
Xiang Tan 0.84 0.56 0.27 0.97 0.90
Heng Yang 0.92 0.65 0.77 0.96 0.88
Shao Yang 0.91 0.60 0.87 0.95 0.89
Yue Yang 0.93 0.69 0.74 0.98 0.93
Yi Yang 0.95 0.72 0.46 0.83 0.93

Chang De 0.92 0.70 0.93 0.87 0.93
Chen Zhou 0.98 0.84 0.15 0.92 0.97
Yong Zhou 0.87 0.48 0.83 0.95 0.91
Huai Hua 0.96 0.68 0.58 0.96 0.90

Zhang Jiajie 0.96 −0.50 0.81 0.75 0.90
Ji Shou 0.96 −0.07 0.96 0.94 0.90
Lou Di 0.83 0.09 0.69 0.97 0.58
Hunan 0.97 0.71 0.71 0.99 0.99

3.3. Precision Inspection of BP Network Model

The BP neural network model based on the five selected factors provided high model-
ing and prediction accuracy (Figure 8). The MSE of the BP artificial neural network results
of both calibration set and validation set were low: less than 0.0001 (after normalization).
The MSE (without normalization) between the predicted and actual data of the calibration
set was 115.98, with MAE (without normalization) of 6.15. The MSE (without normaliza-
tion) between actual data and output data in validation set was 155.98, with MAE (without
normalization) of 7.87. The R of two sets were both close to 1(Figure 8) The F-test was
performed on the two sets of predicted and actual data, and a test coefficient of p < 0.01
was obtained.
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3.4. Forecast of Built-Up Areas in 2019 to 2026

The distribution of the autocorrelation function and partial autocorrelation function
after the ARIMA model incorporated the factor data for different operations, and the
residuals between the model output and actual values were analyzed. The ARIMA factor
prediction model parameters of the GDP were confirmed to be (2,2,3), the proportion of
secondary production was (15,1,1), the proportion of tertiary production was (0,1,11), the
year-end urban population was (4,1,2), and the urban road area was (1,2,11). The factor
validation parameters and prediction results are listed in Table 2.

Table 2. ARIMA model factor prediction results and parameters.

GDP (Billion Yuan) Proportion of Secondary
Industries (%)

Proportion of Tertiary
Industries (%)

Year-End Population
(Million People)

Urban Road
Area(km2)

2019 39,513.39 37.86 52.10 39.46 282.04
2020 41,775.50 37.82 54.32 40.39 297.56
2021 44,536.86 37.70 55.92 41.41 315.14
2022 48,403.38 36.77 55.72 42.57 326.33
2023 51,374.60 37.92 55.67 43.81 337.63
2024 54,325.03 37.88 56.55 45.07 349.62
2025 57,670.55 38.12 56.60 46.25 366.31
2026 60,705.07 38.81 56.85 47.36 383.98
DW 1.88 1.73 1.95 1.94 1.99
AIC 398.64 244.34 −124.25 290.32 408.04
BIC 407.45 266.98 −107.90 300.08 425.10

Considering the model accuracy and the effect of the COVID-19 epidemic, the GDP,
proportion of secondary industries, proportion of tertiary industries, and GDP growth
rate of the Chinese macroeconomic forecast for 2020 to 2021 following the outbreak of the
COVID-19 epidemic according to the “China Quarterly Macroeconomic Model (CQMM)”
group [45] were incorporated for 2019. The GDP forecasts for the corresponding years
in the Hunan province were calculated and replaced with the corresponding ARIMA
model forecasts to form a factor forecast dataset, which was subsequently input into the
BP network model to obtain the total built-up area forecasts for 2019 to 2026 in the Hunan
province (Figure 9). On the premise that the change rate of each factor continued to
remain stable in the time series, the total built-up area of the Hunan province would still
maintain the trend of increasing year by year from 2019 to 2026, in the following order:
1867.62 km2, 1990.92 km2, 2123.65 km2, 2129.63 km2, 2183.77 km2, 2285.31 km2, 2364.33
km2, and 2463.80 km2.
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4. Discussion
4.1. The Spatial Expansion Characteristics of Urbanization

Our results showed that the spatial scale of cities in the Hunan province presented a
trend of "high in the east and low in the west", and the spatial expansion of central cities
in the east was faster than that in the west. In terms of time scale, the overall growth
rate of central cities in the Hunan province showed a "fast-slow-fast" cyclical change
in 27 years. This result accords with the natural geographical conditions and the law
of social and economic development of the Hunan province. The terrain of the Hunan
province is high in the west and low in the east. The adjustment of regional development
policy before and after the new century also affected the urbanization process of the
Hunan province indirectly. In particular, at the beginning of the new century, the State
has assessed the situation and made overall plans at home and abroad, and put forward
national strategies such as the rise of the central Region and the development of the western
region. Taking urban agglomeration as the main form to promote urbanization, such as
the coordinated development of the Beijing-Tianjin-Hebei region [46], the protection of
the Yangtze Economic Belt, the promotion of Guang-dong-Hong Kong-Macao Greater Bay
Area, and the rapid development of the Cheng-du-Chongqing urban agglomeration in the
west [47], has become a national regional strategy [48], which has completely changed the
spatial development pattern of China. Under the influence of the national strategy and
policy adjustment, the urbanization process of the Hunan province has once again entered
a period of rapid development.

Secondly, the direction of urban spatial expansion in the Hunan province was mainly
east and south. The year 1997 was an important juncture. Prior to this, the main expansion
direction of the main central cities in the Hunan province was south, and it subsequently
changed to east. The direction of urban spatial expansion is the direction of population flow,
as well as the result of economic structure adjustment and spatial layout change, and it is
the main basis for the regulation of urban spatial structure in the future. Combined with the
development of China in the past 30 years, the main reason for the above characteristics in
the direction of urban spatial expansion in the Hunan province is also the transformation of
the national macro-regional strategy [47,49]. Prior to 1997, the Hunan province developed
its regional economy by relying on the Beijing–Guangzhou Railway, giving priority to
docking with the Pearl River Delta region, and its main expansion direction was south; after
1997, owing to the rapid development of the Yangtze River Delta and the strengthening of
economic ties in the Yangtze River Basin, particularly with the construction of the Yangtze
River Economic Belt, the main expansion direction of the central urban built-up areas
in the Hunan province changed to east [50]. Moreover, as the core growth pole of the
province [51], and the capital of the Hunan province, the Changsha-Zhuzhou-Xiangtan
Urban Agglomeration and Changsha City which were located in the eastern Hunan had a
trickle-down effect on other cities in the province that could not be ignored.

4.2. The Influence Factors of Urban Expansion

The expansion of urban space is the result of the combined action of multiple fac-
tors [1,52,53]. With the development of science and technology, natural factors such as
traditional topography and water systems have become less restrictive to urbanization,
economic development and social needs have become important factors driving urbaniza-
tion, and technology has made it possible to expand urban space into areas that are not
naturally suitable. Urban spatial expansion is the agglomeration or spread of urban space
in a larger scope under the traction of economic development, population growth, policy
planning, and transportation factors, and constantly breaking through the limitations of
natural factors [33,34]. With the rapid development of China’s economy and society, many
cities have experienced extraordinary urban area growth rates. Some cities have even
increased dozens or even hundreds of times [54].

It can be concluded from the above research results that among the five selected
economic and social factors, urbanization of the population and the construction of road
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transport were the main driving factors for the expansion of the Hunan central cities. Urban
growth in central and western China have been driven by a massive shift in population from
rural to urban areas and increased infrastructure investment in recent years [55]. Secondly,
the GDP growth was an important driving factor; the proportions of secondary and
tertiary industries were general driving factors and the influence varied among cities. For
example, the results showed that the urban area of Jishou and Changde was significantly
positively correlated with the proportion of tertiary industry, while the tourism cities such
as Jishou and Zhangjiajie were negatively correlated with the proportion of secondary
industry. This is related to the difference of industrial structure and industrial policy
between different cities. Compared with China’s coastal cities, which have entered the
mature stage of urbanization development, the economic growth of the vast central and
western regions is still the main driving factor of cities, and most cities have not completed
the upgrading of industrial structure [56]. A considerable proportion of urban secondary
industry still accounts for a high proportion of GDP, which is the pillar industry of cities.
The construction of industrial parks has become the main form of space expansion in
many inland cities. However, following economic transformation and upgrading, the
tertiary industry replaces the secondary industry as the main factor influencing urban
space expansion, and the green economy such as tourism and recreation in the tertiary
industry may provide an opportunity to promote urban development in the western part
of the Hunan province [50,56]. Zhangjiajie city with good tourism resources and Jishou
city which advocates the development of ecological tourism under the rural revitalization
strategy are good examples of this development trend.

Of course, urban spatial driving force is composed of many factors, such as population
factor, economic factor, industrial factor, internal traffic factor, natural geography factor,
urban development history, and other internal driving force. There are also external
driving forces such as the city’s external traffic and government policies. Different urban
development is affected by different factors, and different factors have different effects on
urban development. Therefore, only by deeply exploring the speed, mode and driving
force factors of urban space expansion can we understand the relevant laws and internal
power of urban development, which is conducive to rational and scientific use of urban
land, effective urban overall planning, and meet the sustainable development of human
beings and social and economic progress. As a typical province in central and western
China, the driving factors of spatial expansion in the Hunan province are of remarkable
epochal and policy characteristics, which is a meaningful exploration.

4.3. The Simulation and Prediction of Urban Expansion

Deep learning can be a good method to predict as well. However, it may need more
hidden layers which make network complex [57]. In consequence, the relationship between
dependent and independent variables turn out to be more complex [57]. Phenomena
of overfitting happen frequently. The BP model is less prone to overfitting because its
structure is relatively simpler than deep learning models. On the research method of
spatial expansion, the combination of the BP and ARIMA models overcame the inherent
drawback whereby the BP model cannot make predictions independently. Moreover, it was
demonstrated through the empirical results of the Hunan province that the complementary
application of the two models could effectively fit the process of urban spatial expansion in
the Hunan province. This study serves as a useful attempt to complement the application of
existing models, and it offers a reference significance for forecasting research of the models.
Both the improvement of the model method and the simulation of the spatial expansion
can be used for reference for other regions and cities in inland China. City expansion in
China will continue contributing to urbanization of this country enormously. It still needs
to be explored that many inland cities’ expanding rules which are different from the rules
revealed by previous researches and the rules of coastal urbanization in east China.
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5. Conclusions

Based on DMSP-OLS nighttime light remote sensing data, the BP artificial neural
network and ARIMA model were used to analyze the characteristics of urban spatial
expansion in the Hunan province. Our result indicated that the urban scale of the Hunan
province exhibited a trend of “high in the east and low in the west.” The high-scale central
cities were mostly distributed in the main stream of the Xiangjiang River and the coastal
areas of Dongting Lake, and the central cities in western Hunan were sparsely distributed
and limited by terrain and traffic. The expansion rate of the central cities in the eastern part
of the Hunan province was faster than that in the western part, but there were significant
differences in the growth rate among the different regions. The main expansion directions
of the built-up areas the central cities were east and south. We found that the GDP growth
was an important driving factor of urban expansion, while the proportions of secondary
and tertiary industries were general driving factors and the influence varied among cities.
According to the prediction model results, the total built-up areas of the central cities in
the Hunan province will expand further during the 14th Five-Year Plan period, and will
exceed 2400 km2 by 2026, indicating that the Hunan province has certain potential for
urban development. Our study enriches the research theory of urban spatial expansion
and helps guide the practice of regional urban planning.
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