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Abstract: In this study, a coupled three-dimensional hydrodynamic-ecological model was developed
to comprehensively understand the interaction between the hydrodynamics and ecological status of a
lake. The coupled model was utilized to explore the hydrodynamics, water quality, and ecological sta-
tus in an ecologically rich subalpine lake (i.e., Tsuei-Feng Lake (TFL), located in north-central Taiwan).
The measured data of water depth, water temperature, water quality, and planktonic biomass were
gathered to validate the coupled model. The simulated results with a three-dimensional hydrody-
namic and water quality-ecological model reasonably reproduced the variations in observed water
depth, water temperature, water quality, and phytoplankton and zooplankton biomass. Sensitivity
analysis was implemented to determine the most influential parameter affecting the planktonic
biomass. The results of sensitivity analysis indicated that the predation rate on phytoplankton (PRP)
significantly affects the phytoplankton biomass, while the basal metabolism rate of zooplankton
(BMZ) importantly affects the zooplankton biomass. Furthermore, inflow discharge was the most
important environmental factor dominating the phytoplankton and zooplankton biomass of TFL.
This implies that the runoff in the catchment area caused by rainfall and the heavy rainfall induced
by climate change may affect the planktonic biomass of the lake.

Keywords: hydrodynamic-ecological modeling; phytoplankton; zooplankton; water quality; SCHISM-
Ecol; Tsuei-Feng Lake

1. Introduction

Freshwater lakes provide important and valuable resources such as water supply,
environmental and ecological services, recreation, and landscape appreciation. Due to
rapid economic development, population expansion, and land cultivation, watershed areas
have been overly developed, resulting in excessive nutrient input into lakes during rainfall,
causing serious damage to water quality and eutrophication and even resulting in an
imbalance of ecosystems. Therefore, reducing external nutrient loads into lakes to prevent
deterioration of water quality and eutrophication for sustainable lake management has
become an extremely important task [1–6].

To fully understand the water quality and ecological health of lakes, on-site ob-
servation is an indispensable measure. However, no matter how dense the number of
measurement stations is, the water quality and ecological conditions in spatial and tempo-
ral distributions are still insufficient, and the cost of on-site observation is too expensive.
Another alternative is to utilize mathematical modeling, which can be employed to describe
spatiotemporal variations in hydrodynamics, water quality, and ecological variables and
can be applied to predict the water quality and ecological conditions due to human activ-
ities and after adjustment strategies [7–9]. Moreover, coupled hydrodynamic-ecological
models have become useful and effective tools for exploring the interactions among physi-
cal, biogeochemical, and ecological processes and for further water quality and ecological

Sustainability 2021, 13, 12377. https://doi.org/10.3390/su132212377 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4431-8806
https://doi.org/10.3390/su132212377
https://doi.org/10.3390/su132212377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132212377
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132212377?type=check_update&version=3


Sustainability 2021, 13, 12377 2 of 22

management in surface waters [10–14]. These models have been widely developed and
applied to different water bodies, such as lakes, reservoirs, wetlands, rivers, estuaries, bays,
and oceans [15–22].

Recently, different kinds of one-dimensional, two-dimensional, and three-dimensional
hydrodynamic-ecological coupled models have been developed and applied to investi-
gate water quality and ecosystems in lakes [8,16,23–31]. The one-dimensional and two-
dimensional hydrodynamic-ecological coupled models are not so complicated for running
the models to obtain the simulation results with minimal computational cost for eval-
uating water quality and ecological status in lakes, but these kinds of models are not
utilized to resolve the horizontal and vertical dimensions simultaneously. Therefore, three-
dimensional hydrodynamic-ecological coupled models display useful tools to obtain such
information for environmental assessment and management, even though they require
more computational resources [31].

Due to the complex bathymetry and topography of lakes as well as the complex-
ity of the water environment in lakes, the development of a coupled three-dimensional
hydrodynamic-ecological model based on the transport and transformation processes of
flow, pollutants, and ecological variables is urgently necessary. The objective of this study
was to develop a three-dimensional hydrodynamic-ecological coupled model (SCHISM-
Ecol) to simulate the hydrodynamics, water quality, and biomass of phytoplankton, zoo-
plankton, and fish in Tsuei-Feng Lake (TFL), which is located in the north-central mountains
of Taiwan. The coupled model was validated with observations of water depth, water
temperature, water quality, and planktonic biomass. The model sensitivity analysis of
parameters was conducted with the validated model to determine the important parame-
ters affecting the biomasses of phytoplankton and zooplankton. The validated model was
then applied to explore when the lake’s environment changed, which was the most crucial
environmental factor affecting the planktonic biomass.

2. Materials and Methods
2.1. Description of the Study Site and Data

Tsuei-Feng Lake (TFL) is one of the largest alpine lakes in Taiwan. It is located in
the mountainous area of north-central Taiwan between Taiping Mountain and Dayuan
Mountain (Figure 1). TFL is surrounded by a secondary cypress forest that was replanted
five decades ago after selective logging [32]. It has an altitude of 1850 m and a circumference
of 600 m. It is shaped like a gourd, measuring 160 m wide at its widest point and 15 m
at its narrowest point. The annual precipitation in the lake exceeds 3600 mm, and the
mean annual temperature is approximately 13.4 ◦C. The period of full water level is from
September to November, especially affected by typhoons, with an area of up to 25 ha and
a depth of 7 m. During the dry season from January to April, a large area of grassland
is exposed, making the lake appear as a large lake and a small lake, with a total area of
8 ha and a depth of 3 m [33]. As it is located in the Taiping Mountain National Forest
Recreation Area (TMNFRA), there is a trail around TFL to provide tourists with recreation
and sightseeing services. The principle of ecological engineering was employed throughout
in the construction of the trail, and care was taken to avoid destroying the original surface
and disturbing the underlying biological features. TFL has a more obvious inflow to the
southeast of the lake and an outflow to the northwest of the lake. The deepest part of its
bottom is 4.56 m, and a monitoring station buoy was set up (see Figure 1). According to
Chiu et al. [32], the degree of eutrophication is between mesotrophic and eutrophic. The
concentration of total phosphorus ranged from 10 to 70 µg/L, and the mean dissolved
organic carbon and pH were 2.9 mg/L and 5.9, respectively.
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Figure 1. Map showing the depth of the lake and the location of the buoy, inflow, and outflow in
Tsuei-Feng Lake (TFL).

The water depth, water temperature, and meteorological data were all obtained from
the buoy station every ten minutes using autonomous sensors. The dissolved oxygen
(DO) was measured in situ with a DO sensor. The lake water samples were sampled
and taken back to the laboratory for measuring nutrients (ammonium nitrogen, dissolved
organic nitrogen, phosphorus, and dissolved organic phosphorus), dissolved organic
carbon (DOC), and ecological state variables (phytoplankton biomass and zooplankton
biomass). These measured data were collected in 2017 and 2018 and were utilized for
hydrodynamic-ecological model validation.

In order to collect the phytoplankton and zooplankton data, a water sample of 1 L
was collected at 0–50 cm water depth from the lake surface for the determination of phy-
toplankton biomass. Zooplankton sample was collected in the study lake by filtering 5 L
water sample obtained from 0–50 cm water depth from the lake surface with zooplankton
sampling net (mesh size = 330 µm). Three replicates of phytoplankton and zooplankton
samples were collected at TFL during each sampling. Both phytoplankton and zooplank-
ton samples were fixed with formaldehyde, stored in labeled bottoms and transported
back to the laboratory at 4 °C. In the laboratory, individual water samples were passed
through pre-combusted Whatmann GF/F 0.7µm filters to collect particulate organic matter
(POM), which is composed of mainly (≥93%) phytoplankton in a mixture of phytoplankton
and detritus. The relative importance of phytoplankton in the POM was confirmed by
microscopic examination at the 500–1000x magnification of 100 mL subsample from each
water sample. Each zooplankton sample was examined at 80–100x magnification using
a Leica research microscope, and identified into three taxa (i.e., Copepoda, Cladocera,
and Rotifera) to make a composite sample. The relative abundance of each taxon in each
zooplankton sample was calculated and recorded. Prior to further analysis, the individual
phytoplankton samples and zooplankton samples were dried at 60 °C to constant weight.
After drying, samples were homogenized in an agate mortar, recorded in dry weight (to
the nearest 0.1 mg), and stored in a desiccator. The biomass of the phytoplankton and
zooplankton samples were determined by dividing the dry weight with the corresponding
volume of the field-collected water samples (mg/L). Triplicates of phytoplankton and
zooplankton samples (~2.0 mg) were put into tin capsules and weighed with an accuracy



Sustainability 2021, 13, 12377 4 of 22

of ±1 µg. The samples were analyzed by the elemental analyzer (NA 1500, Fison, Italy) in
the Plant Ecophysiological Lab of National Taiwan University. The results were expressed
as % amount of carbon in each sample, and these values can be converted to carbon content
(C) of the samples (mg C/L) by back-calculated with their weight.

2.2. Hydrodynamic Model

A three-dimensional semi-implicit cross-scale hydroscience integrated system model
(SCHISM) was employed to simulate the hydrodynamics in the lake [34,35]. The model is
an open-source supported modeling system derived from the early version of the SELFE
model [36]. SCHISM adopts an efficient and accurate semi-implicit and finite-volume
method with an Eulerian-Lagrangian algorithm to solve the turbulence-averaged Navier-
Stokes equations under hydrostatic and Boussinesq approximations. The governing equa-
tions of SCHISM can be expressed as follows.

The continuity equation is
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The mass balance transport equation is
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The equation of state is
ρ = ρ(T, p) (5)

where x and y denote the horizontal Cartesian coordinate; z expresses the vertical coordinate
with positive upward; u,v, and w represent the velocity components in the x, y, and z
directions, respectively; t is time; f denotes Coriolis factor; g expresses the acceleration of
gravity; η represents the free-surface elevation; ρ0 is the reference water density; ρ denotes
the water density which considers the effects of water temperature (T) and hydrostatic
pressure (p); pa is the atmospheric pressure at the free surface; Kmx, Kmy, and Kmz represent
the eddy viscosity coefficients in x, y, and z directions, respectively; C denotes the water
quality-ecological state variables; and Kcx, Kcy, and Kcz express the turbulent diffusivities
in the x, y, and z directions, respectively.

The turbulence closure of SCHISM employs the generic length-scale model of Umlauf
and Burchard [37] with the stability function of Kantha and Clayson [38]. Since the
cross-scale, semi-implicit scheme is adopted in SCHISM, the model allows large time
steps supported by lower- and higher-order numerical methods [39]. Wetting and drying
processes and a quadratic bottom drag equation for bottom stress are also considered in
the model. A detailed description regarding the numerical solution methods, horizontal
and vertical grids, and boundary conditions can be found in Zhang et al. [34,35].

SCHISM has been widely utilized in various research fields [18,39–48], but limited
cases have been utilized to simulate the hydrodynamics in lakes. Therefore, SCHISM
was coupled with an ecological model to develop a hydrodynamic-ecological model
(i.e., SCHISM-Ecol) for exploring the planktonic biomass in a subalpine lake.



Sustainability 2021, 13, 12377 5 of 22

2.3. Phytoplankton and Zooplankton Modules

The kinetic equation in the mass balance transport equation can be written as

∂C
∂t

= KC + R (6)

where K denotes the kinetic rate (time−1) and R expresses the source/sink term (mass
volume−1 time−1).

Phytoplankton can be divided into two state variables: periphyton and drifting phyto-
plankton, which include green algae, diatoms, and others. The subscript, i, is employed
to represent these two groups. The kinetic equations for phytoplankton biomass can be
expressed as

∂PBi
∂t

= (GPi − BMPi − PRPi) · PBi +
∂

∂z
(WSi · PBi) +

WPBi
V

(7)

where PB denotes the phytoplankton biomass (mass volume−1); GP represents the pro-
duction rate of phytoplankton (time−1); BMP expresses the basal metabolism rate of
phytoplankton (time−1); PRP represents the predation rate on phytoplankton (time−1). It
denotes the rate that the phytoplankton is preyed on by zooplankton; WS is the settling
velocity (Length time−1); WPB denotes the external loads of phytoplankton (mass time−1);
and V expresses the cell volume (volume).

Since copepods frequently appear during winter and summer seasons in TFL, the
zooplankton is divided into two state variables: copepods and other species. The subscript,
j, is employed to represent these two groups. The kinetic equation for zooplankton biomass
can be written as

∂ZBj

∂t
= (GZj − BMZj − PRZj) · ZBj +

WZBj

V
(8)

where ZB denotes the zooplankton biomass (mass volume−1); GZ expresses the produc-
tion rate of zooplankton (time−1); BMZ represents the basal metabolism of zooplankton
(time−1); PRZ indicates the death rate of zooplankton (time−1); and WZB is the external
load of zooplankton (mass time−1).

Figure 2 illustrates the schematic diagram of water quality-ecological state variables.
In the figure, the state variables DOC, DON, DOP, NH4, NO3, PO4, DO, and COD repre-
sent dissolved organic carbon, dissolved organic nitrogen, dissolved organic phosphorus,
ammonium nitrogen, nitrate nitrogen, orthophosphate, dissolved oxygen, and chemical
oxygen demand, respectively. Fecal coliform and fish biomass are also included in the
model simulation.

2.4. Model Setups

To build unstructured grids (triangles) for numerical simulation, bathymetric TFL
data were collected from Academia Sinica in Taiwan. Surface-water modeling system
(SMS) software was utilized to build unstructured grids and to greatly reduce the time for
manual grid generation. In the horizontal plane, a total of 11,589 unstructured grids were
generated for model simulation. The grid size is approximately 5 m. A pure S coordinate
was utilized with 5 S-levels in the vertical plane (see Figure 3). A time step (∆t = 120 s) was
used in the hydrodynamic-ecological model simulations. A constant bottom roughness
height, zo = 0.001 m, was adopted in the modeling. A 60-day spin-up time was utilized to
achieve an equilibrium condition.
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Figure 2. Schematic diagram of the water quality-biological interactions among the state variables.

Figure 3. Unstructured grids used for the hydrodynamic-ecological modeling of Tsuei-Feng Lake.

2.5. Statistical Error for Model Performance

Three statistical indexes consisting of the mean absolute error (MAE), the Pearson
correlation coefficient (CC), and the predictive skill (skill) were employed to quantify the
model performance of SCHISM-Ecol. Model validation to compare the model results with
observational data can achieve the minimization of MAE and the maximization of r (within
positive range) and skill value. Equations (9) and (11) for MAE, CC, and skill [49] can be
expressed as

∂ZBj

∂t
= (GZj − BMZj − PRZj) · ZBj +

WZBj

V
(9)
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where N represents the total number of modeled/observed data; Ci
m denotes the modeled

value at data point i; Ci
o expresses the observed value at data point i; Cm = 1

N ∑N
i=1 Ci

m; and
Co =

1
N ∑N

i=1 Ci
o.

The MAE denotes the average deviation between the simulation and measurement.
The Pearson correlation coefficient (CC) was employed to detect the linear relationship
between the modeled results and measured data. The r value is in the range between +1
and −1 to denote a positive and negative relationship, respectively. If r = 0, no relationship
exists. A predictive skill equal to 1 denotes perfect agreement of the model-measurement
relationship, while a predictive skill equal to 0 expresses complete disagreement of the
model measurement [45,50].

2.6. Metric for Sensitivity Analysis

Sensitivity analysis is an important procedure to understand which parameters affect
the simulation results. To quantify the results of parameter sensitivity analysis, the max-
imum rate is adopted in this study. The equation to express the maximum rate (MR) is
shown as

MR =
Cbaseline − Csen

Cbaseline
× 100% (12)

where Cb denotes the phytoplankton and zooplankton biomass for the baseline simulation
and Cs represents the phytoplankton and zooplankton biomass for the sensitivity run.

3. Model Validation

The measured data, including water depth, water temperature, and water quality-
ecological state variables, were gathered from September 2017 to July 2018 to quantify the
model accuracy for validating SCHISM-Ecol. Since the spin-up time of the model was set to
60 days, the model was conducted starting on 1 July 2017. The initial conditions for water
depth and water temperature were specified as 1.5 m and 20 ◦C, respectively. The mean
values of measured water quality and ecological variables were set as the initial conditions
for simulating the SCHISM-Ecol model.

3.1. Water Depth

To precisely predict the water depth of the TFL, in this study, the daily discharges
at the inflow and outflow locations in the lake served as an input to drive the model
simulation for predicting the time-series water depth.

Figure 4a depicts the time-series inflow and outflow discharges in the TFL. Due
to the multiple heavy rainfalls and Typhoon Khanun, several peak inflow discharges
occurred during the periods of October 11 and 15. Based on the recorded data, the total
rainfall during the periods was 1023.7 mm. Figure 4b illustrates the comparison between
simulated and observed time-series water depths from 1 September 2017, to 31 July 2018,
indicating that the high inflow discharges quickly responded to the high water depth in
the lake. However, the simulated results reproduced the observed water depths well. It
also indicated that the peak water depth reached 10.13 m at 7:00 am on 16 October 2017
(Figure 4b). It also showed that the model reproduced the observed normal and low water
depths well. The values for MAE, CC, and skill were 0.03 m, 0.92, and 0.95, respectively.
Based on the model-data comparison, excellent model performance was achieved.
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Figure 4. (a) Time-series inflow and outflow discharges from 1 September 2017 to 31 July 2018, and
(b) the comparison of water depth between observation and simulation.

3.2. Water Temperature

The precise prediction of water temperature in lakes is a crucial requirement for
modeling water quality-ecological state variables and further water quality management.
To validate the 3D coupled model, the measured water temperature data at the buoy station
gathered from 1 September 2017, to 31 July 2018, were utilized for comparison with the
modeling results. Meteorological data were employed to calculate heat and momentum
fluxes, providing the surface boundary condition for the 3D coupled model.

Figure 5 compares the simulated water temperatures in the time series and measured
results. The water temperature at 0.5 m below the water surface displayed day-night
variations. The water temperature reached 22.2 ◦C during the summer but decreased to
4.1 ◦C during the winter. The water temperature during the daytime was higher than the
nighttime temperature. This figure also indicated that the simulated water temperatures
accurately reproduced the measured results. The values of MAE, CC, and skill were 0.29 ◦C,
0.96, and 0.98, respectively, between the simulated and observed water temperatures. The
comparison of the observed and simulated water temperatures in vertical profiles at the
buoy station is illustrated in the Supplementary Materials (Table S1). This result indicated
that the simulated results satisfactorily reproduced the observed vertical water temperature
on different dates, except for the measured dates on 5 September 2017. The simulated water
temperatures exhibited more vertical mixing at the bottom layers than the observational
data on 5 September 2017. This would be the reason that the stronger turbulent mixing in
the vertical direction was calculated by the model.
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Figure 5. Comparison between simulated and measured water temperatures with time series.

Table 1 presents the statistical errors of the comparison between the simulated and
observed water temperatures in the vertical profile on different measured dates. The
computed water temperatures in the vertical profile satisfactorily matched the measured
results during the summer and winter seasons but slightly underestimated the measured
results in the bottom layer in September 2017. Based on the skill values, the model
performance in the vertical profiles ranged between very good and excellent scores.

Table 1. Statistical errors based on differences between simulated and measured water temperatures.

Year/Month/Date MAE (◦C) CC Skill

2017/09/05 0.58 0.96 0.60
2017/10/10 0.40 0.78 0.66
2017/11/21 0.18 0.91 0.56
2018/01/09 0.10 0.80 0.79
2018/03/26 0.24 0.94 0.91
2018/05/15 0.86 0.68 0.66
2018/06/12 0.90 0.78 0.86
2018/07/17 0.15 0.98 0.99

3.3. Water Quality and Ecology

To ensure that the water quality and planktonic modules in the SCHISM-Ecol model
are reliable and predictive, the measured water quality and ecological variable data were
employed to validate the coupled model.

Several reports have documented that the validation of water quality-ecological
models is more difficult than that of hydrodynamic models since there are many parameters
to be adjusted and determined in water quality-ecological models [15,51–54]. Fortunately,
values for these parameters have been reported [55–60] and can be adjusted and adopted
in this study. The trial-and-error method for validating the water quality-ecological model
is utilized.

Figure 6 compares the measured and simulated DO, DOC, NH4, DON, PO4, DOP,
phytoplankton biomass, and zooplankton biomass. The simulated water quality-ecological
state variables quantitatively agreed with the measured data. The model results depicted
that the phytoplankton and zooplankton biomass was high from May to July. Table
2 shows the statistical errors between the simulated and measured results for the wa-
ter quality-ecological state variables. The predictive skill and correlation coefficient are
all above 0.86. Excellent model performance is achieved when the skill value exceeds
0.90. The parameters adopted in the water quality-ecological model are displayed in the
Supplementary Materials (Table S1).
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Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Comparison between simulated and measured water quality and planktonic biomass:
(a) DO, (b) DOC, (c) NH4, (d) DON, (e) PO4, (f) DOP, (g) phytoplankton, and (h) zooplankton.

Table 2. Statistical error based on differences between simulated and measured water quality-
ecological state variables.

State Variable MAE (Unit in
State Variable) CC Skill

DO (mg/L) 0.22 0.87 0.92
DOC (mg C/L) 0.08 0.98 0.95

NH4 (mg/L) 0.02 0.86 0.90
DON (mg/L) 0.03 0.93 0.96
PO4 (mg/L) 0.002 0.99 0.91
DOP (mg/L) 0.005 0.96 0.96

Phytoplankton biomass
(mg C/L) 0.16 0.99 0.95

Zooplankton biomass
(mg C/L) 0.96 0.99 0.95
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4. Results and Discussion
4.1. Sensitivity Analysis of Phytoplankton and Zooplankton Biomass

Furthermore, the validated model was utilized to implement sensitivity analysis to
explore how the parameters adopted in the planktonic module affected phytoplankton and
zooplankton biomass. The parameters used for sensitivity analysis were GP, BMP, PRP,
and WS for phytoplankton and GZ, BMZ, and PRZ for zooplankton. Even though basal
metabolism is an inalienable and stable parameter of an organism, the parameter is also
adjusted to understand how it affects the simulation result.

The model validation from September 2017 to July 2018 served as the baseline. Two al-
ternative scenarios were employed to investigate the effect of planktonic parameters on the
biomass of phytoplankton and zooplankton. They are the planktonic parameters plus 50%
and minus 50% based on the parameters used for model validation.

Figure 7 illustrates the model sensitivity results for the most important parameters,
which are the predation rate on phytoplankton (PRP) and basal metabolism rate of zoo-
plankton (BMZ), affecting the phytoplankton biomass and zooplankton biomass from
11 July to 20 July 2018. When the PRP was reduced by 50%, the phytoplankton biomass
was most affected (Figure 7a), while when the BMZ was decreased by 50%, the zooplankton
biomass was most affected (Figure 7b). Table 3 lists the results of sensitivity runs for differ-
ent planktonic parameters. This result shows that an increase in PRP and BMZ parameters
results in a decrease in phytoplankton and zooplankton biomass. The maximum rates for
increasing and decreasing phytoplankton biomass referred to the PRP parameter were
157.12% and 44.36%, respectively, while the maximum rates for increasing and decreasing
zooplankton biomass related to the BMZ parameter were 62.54% and 28.74%, respectively.

Figure 7. Model sensitivity for the (a) influence of predation rate on phytoplankton (PRP) on
phytoplankton biomass and for the (b) influence of basal metabolism rate of zooplankton (BMZ) on
zooplankton biomass.
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Many parameters existed in the water quality-ecological model to be tuned. Most
studies have shown the parameters only but have not implemented sensitivity analysis
for parameters [15,30,61,62]. However, there are few parameters in the planktonic model,
so the procedure for performing sensitivity analysis of parameters is not too cumbersome.
According to the sensitivity analysis of parameters in the planktonic model, we found
that the predation rate on phytoplankton (PRP) and basal metabolism rate of zooplankton
(BMZ) were the most crucial parameters to be fine-tuned in the TFL.

Table 3. Results of sensitivity analysis for phytoplankton and zooplankton parameters.

Parameter Condition Phytoplankton (%) Zooplankton (%)

Growth rate of
phytoplankton (GP)

+50%
−50%

8.67
−21.80

−0.08
0.51

Basal metabolism rate of
phytoplankton (BMP)

+50%
−50%

−0.73
0.72

0.03
−0.02

Predation rate on
phytoplankton (PRP)

+50%
−50%

−44.36
157.12

1.96
−5.12

Settling velocity of
phytoplankton (WS)

+50%
−50%

−0.13
0.13

−0.01
0.01

Growth rate of
zooplankton (GZ)

+50%
−50%

-28.05
55.03

28.43
−28.34

Basal metabolism rate of
zooplankton (BMZ)

+50%
−50%

52.10
−41.98

−28.74
62.54

Mortality rate of
zooplankton (PRZ)

+50%
−50%

0.34
−0.34

−0.26
0.26

Note: Minus and plus denote decreasing and increasing planktonic biomass, respectively.

4.2. Effect of Water Temperature and Inflow on Phytoplankton and Zooplankton Biomass

We suppose that environmental variations, including water temperature and inflow,
would be dominant factors affecting planktonic biomass. Furthermore, the validated model
was employed to probe the influence of environmental variables on phytoplankton and
zooplankton biomass of TFL. Three scenarios were implemented to determine the main
purpose of this section.

The first scenario was enacted to alter inflow discharge to cover a strong rainfall
intensity-induced high inflow discharge into the lake. In this scenario run, the normal
inflow was set to 0.1 m3/s, and inflow phytoplankton biomass, zooplankton biomass,
and average water temperature were specified as 9.0 mg C/L, 35.1 mg C/L, and 15.2 ◦C.
The artificial inflow hydrograph is illustrated in Figure 8. It clearly shows that the inflow
discharge reached the maximum value (=6.3 m3/s) at the 127th. The second scenario
run was set to alter the inflow water temperature to the summer temperature, which was
20.4 ◦C, while keeping the normal inflow discharge at 0.1 m3/s. The third scenario run
was specified with the inflow water temperature using winter temperature, which was
7.8 ◦C and kept the same inflow discharge as the second scenario run. The model was
implemented in a one-month simulation to yield the planktonic biomass.

Figure 9 depicts the comparison of calculated phytoplankton biomass at the buoy
station under the three scenarios. The phytoplankton biomass was significantly affected
by inflow discharge and reached a maximum of 6.7 mg C/L at the 134th hour in TFL but
exhibited little effect by inflow water temperature. Figure 10 illustrates the distribution of
phytoplankton biomass at the surface layer at the 134th hour. Figure 10a indicates that the
phytoplankton biomass near the inflow was approximately 2.5 mg C/L, and the biomass
at other positions was less than 2.0 mg C/L for the baseline case. Figure 10b shows that the
biomass near the inflow reached 7.5 mg C/L, and the minimum value was approximately
3.5 mg C/L at the northeast side of TFL since the inflow discharge was changed. Figure 10c
displays the phytoplankton biomass difference between the changing inflow discharge
scenario run and the baseline run. This reveals that the phytoplankton biomass increased
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in the lake, and the biomass near the outflow location increased the most, by approximately
5.0 mg C/L.

Figure 8. Artificial inflow hydrograph for simulating the change in discharge scenario.

Figure 9. Comparison of calculated phytoplankton biomass for three scenario runs.

Figure 11 delineates the comparison of calculated zooplankton biomass at the buoy
station for the three scenario runs. This result indicates that the inflow discharge crucially
affected the zooplankton biomass, reaching a maximum of 48.7 mg C/L at the 155th hour
and then recovering to biomass of 24.0 mg C/L. It can be noted that the time for phyto-
plankton and zooplankton biomass to reach the maximum is different due to the fact that
when phytoplankton flow into the lake, they serve as food for zooplankton predation, so
the time for the maximum biomass of zooplankton is slightly later than that of phytoplank-
ton. The zooplankton biomass under the changing inflow summer water temperature and
changing inflow winter water temperature scenario runs was approximately 21.0 mg C/L
and 24.0 mg C/L, respectively.
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Figure 11. Comparison of calculated zooplankton biomass for three scenario runs.

Figure 12 illustrates the distribution of zooplankton biomass at the surface layer at
the 155th hour. Figure 12a shows that the zooplankton biomass near the inflow reaches
25.0 mg C/L for the baseline run, and the lower biomass at the outflow side is 14.0 mg C/L.
Figure 12b indicates that the zooplankton biomass was higher at the inflow location, reach-
ing 49.0 mg C/mg, and lower at the outflow location (=40.0 mg C/L) under the changing
inflow discharge scenario run. Figure 12c shows the zooplankton biomass difference be-
tween the changing inflow discharge scenario and the baseline runs. This reveals that the
zooplankton biomass increased, and the biomass at the center side of the lake increased the
most. Overall, the range of increasing zooplankton biomass was from 8.1 to 29.1 mg C/L.

The light regime and grazing impact are known to be important drivers of phyto-
plankton biomass. The same applied to fish predators in the case of zooplankton biomass.
However, there are many environmental factors affecting the planktonic biomass in lakes,
such as water temperature, land use, and climate change [8,28,63–65]. Environmental
change mostly results from anthropogenic impacts [1]. Land use and climate change alter
inflow discharge, nutrient loads from watersheds, and water temperature, resulting in
changes in ecological status. The results of sensitivity analysis for inflow discharge and
thermal alterations indicate that inflow discharge alteration plays the most important role
in affecting phytoplankton and zooplankton biomass in the TFL.

Figure 12. Cont.
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Figure 12. Spatial distributions of zooplankton biomass for (a) the baseline run, (b) the chang-
ing discharge scenario run, and (c) the difference between the changing discharge scenario and
baseline runs.

4.3. Limitations

The current ecological model did not consider intraspecific and interspecific competi-
tion in plankton assemblages that might lead to inconsistent results. Moreover, seasonal
difference in planktonic communities would be taken into account since tropic structure
affects the total biomass of plankton. In the ecological model, the module of fish biomass
has been built, but the measured of fish species and biomass were scarce. Therefore, the
fish module was not driven to simulate the fish biomass. In addition, the parameters that
affect phytoplankton and zooplankton biomass vary in different lakes and must be adapted
to local conditions. Therefore, when implementing the ecological model, it is best to have a
good understanding of the characteristics of the parameters and to prioritize parameter
testing and sensitivity analysis [66,67]. Incorrect selection of parameter values may lead to
incorrect simulation results.

5. Conclusions

A coupling 3D hydrodynamic-ecological model called SCHISM-Ecol was developed
and implemented to simulate planktonic biomass in Tsuei-Feng Lake (TFL), Taiwan. The
observational data of water depth, water temperature, water quality, and phytoplankton
and zooplankton biomass measured in 2017 and 2018 were utilized to validate the coupled
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model. Statistical metrics were used to quantitatively evaluate the modeling results and
observed data. The modeling results reasonably reproduced the observations.

The sensitivity analysis was implemented using the validated model to determine
which parameter was the most influential factor in dominating planktonic biomass. The
results of sensitivity analysis indicated that the predation rate on phytoplankton (PRP)
and basal metabolism rate of zooplankton (BMZ) were the crucial influential parameters
for phytoplankton and zooplankton biomass, respectively. Moreover, the validated model
was employed to prove the impact of environmental variables on planktonic biomass. The
modeling results showed that inflow discharge was the most crucial factor subjected to
changes in the external environment to affect the phytoplankton and zooplankton biomass
of TFL.

Future work on lake studies will focus on the cross-sector cooperation that is needed
to gather scientific researchers from different fields and to work on intensive field mea-
surements to improve the understanding of the functioning of lake ecosystems. Another
issue is to utilize the validated model to explore the effects of climate change on the water
quality and planktonic biomass in the lake.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132212377/s1. Figure S1. Comparison of vertical water temperature profiles between model
simulations and observations at the buoy station in 2017 and 2018; Table S1. Governing parameters,
descriptions, values, and units adopted in the water quality-ecological model.
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