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Abstract: With the increase in the demand for and transportation of hazardous materials (Haz-
mat), frequent Hazmat road transport accidents, high death tolls and property damage have caused
widespread societal concern. Therefore, it is necessary to carry out risk factor analysis of Hazmat
transportation; predict the severity of accidents; and develop targeted, extensive and refined pre-
ventive measures to guarantee the safety of Hazmat road transportation. Based on the philosophy
of graded risk management, this study used a priori algorithms in association rule mining (ARM)
technology to analyze Hazmat transport accidents, using road types as classification criteria to find
rules that had strong associations with property-damage-only (PDO) accidents and casualty (CAS)
accidents under different road types. The results indicated that accidents involving PDO had a
strong association with weather (WEA), traffic signals (TS), surface conditions (SC), fatigue (FAT)
and vehicle safety status (VSS), and that accidents involving CAS had a strong association with VSS,
equipment safety status (ESS), time of day (TOD) and WEA when urban roads were used for Hazmat
transportation. Among Hazmat transport incidents on rural roads, the incidence of PDO accidents
was associated with intersections (IN), SC, WEA, vehicle type (VT), and segment type (ST), while
the occurrence of CAS accidents was associated with qualification (QUA), ESS, TS, VSS, SC, WEA,
TOD, and month (MON). Strong associations between the occurrence of PDO accidents and related
items, such as IN, SC, WEA and FAT, and the occurrence of CAS accidents and related items, such
as ESS, TOD, VSS, WEA and SC, were identified for Hazmat road transport accidents on highways.
The accident characteristics exemplified by strongly correlated rules were used as the input to the
prediction model. Considering the scarcity of these events, four prediction models were selected to
predict the severity of Hazmat accidents on each road type employing four analyses, and the most
suitable prediction model was determined based on the evaluation criteria. The results showed that
extreme gradient boosting (XGBoost) is preferable for predicting the severity of Hazmat accidents
occurring on urban roads and highways, while nearest neighbor classification (NNC) is more suitable
for predicting the severity of Hazmat accidents occurring on rural roads.

Keywords: hazardous materials; association rules mining; accident prevention; different road types

1. Introduction

China has become the world’s largest producer and seller of chemicals, and the
accompanying logistics have also increased rapidly with the booming development of
production, sales and related activities. Due to the uneven geographical distribution
of product supply and product demand in China’s industries, approximately 95% of
hazardous materials (Hazmat) in China must be transported off-site [1]. Due to policy
constraints, geographical differences, and nonuniform technical conditions, information
systems are not interoperable, and railroads, waterways and other modes of transport are
not fully utilized. As a result, most Hazmat must be transported by road. In 2020, China’s
total shipments of Hazmat reached 1.7 billion tons, of which approximately 1.2 billion tons,
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or 69% of the total transport of Hazmat, was moved by road, accounting for 3.5% of the
total road transport of goods. Nearly 95,000 heavy-duty Hazmat vehicles carry 2.2 million
tons of Hazmat on roads every day [2].

The continuous increase in the frequency of transport makes transport accidents
increasingly frequent as well. The substances that characterize Hazmat are flammable,
explosive, toxic and corrosive, and they have other dangerous characteristics that often
cause major accidents and result in casualties and property damage. In addition, Hazmat
leakage can damage ecological safety barriers and reduce the ability to provide sustainable
ecological services for human survival and development [3]. Between 2006 and 2017,
5203 traffic participants died in 3974 events involving the transportation of Hazmat in
China. These data demonstrate that, each day, more than one person dies in China as a
result of Hazmat accidents [4]. Li Wei et al. [5] pointed out that the statistics of accidents
involving Hazmat that occurred in China from 2010–2017 show that 278 accidents occurred
in the transportation segment, resulting in 306 deaths—a fatal accident rate second only to
that of the production process.

Since China places great emphasis on curbing serious accidents, implementing safety
grading control and hidden danger investigation and management, the 14th Five-Year
Plan for China’s national economic and social development has also put forward new
requirements for road safety. Therefore, it is beneficial to build a safe and sustainable
national transportation system by using road type as the grading standard, conducting a
comprehensive safety risk assessment of Hazmat road transportation routes, exploring and
analyzing the causes of Hazmat road transportation accidents, and conducting risk grading
and control. Risk grading and control can achieve targeted, comprehensive coverage and
support refinement to prevent accidents, and the primary aspect of accident prevention is
to perform an in-depth investigation and data analysis.

The elements of a transport system interact with each other, and changes in the
behavior or properties of any one of them impact the functioning of the entire system.
Accidents in the road transport of Hazmat are a direct consequence of the dysfunction,
loss of control or failure of one or more parts of the transport system. The research
methods used in previous literature are mainly statistical methods that require predefined
relationships between dependent and independent variables, have a sound theoretical
basis and clear calculation structures, and effectively reveal the characteristics of Hazmat
road transport accidents [6–11]. Multiple studies have found that factors, such as people,
vehicles, equipment, Hazmat, roads, environment and management, all have a relationship
with the occurrence of accidents. Between 1986 and 1987, Andersson [12] employed
statistical approaches to evaluate 570 Hazmat accidents. He determined that the kind of
Hazmat, road, vehicle, and location all impacted the severity of the incidents. According to
Yang et al. [13], during 2000–2008, 46.6% of Hazmat road transport incidents were caused by
bad road conditions, 13.7% by driver mistake, and 9% by mismanagement. Xing et al. [14]
built a random parameter ordered probit model to investigate the effect of contributing
variables on the severity of accidents. The findings suggested that a greater degree of injury
may be associated with Hazmat type, mishandling, driver tiredness, speeding, tunnels,
hills, county roads, dry roads, winter, night, more than two cars, rear-end collisions, and
explosions. This research by Azimi et al. [15] used a random parameter logit model to
examine the severity of heavy truck rollover collisions in Florida. They found that crashes
are more severe when Hazmat spills are present. Ma et al. [16] used an ordered logit model
to predict the risk of several Hazmat incidents. A study of the Hazmat accident severity
factors using elasticity theory. In addition, the severity of road Hazmat accidents was
shown to be influenced by illegal activities and dangerous driving conduct.

Unfortunately, the correlation between crash risk factors as independent variables
hurt the statistical analysis has been reported by some literature that argues that, once
the assumptions of the generalized linear model (GLM) are violated, it could introduce
biased inferences about the influence of the factors of interest [17]. Machine learning
approaches are adaptable to processing outliers, missing data, and noisy data and are
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versatile, requiring no or few previous assumptions about input variables [18–26]. These
methods can effectively solve the problems associated with the above statistical methods
and achieve more accurate predictions of accident severity [17]. Huting et al. [27] used the
random forest model to identify factors that affected the probability of a responsible bus
accident in the Minneapolis–Saint Paul, Minnesota, metropolitan area. They found that bus
drivers are at greater risk toward the middle of their shift, especially when in dense traffic.
Yassin et al. [28] used a hybrid k-means and random forest algorithm approach to road
accident prediction and model interpretation. They found that driver experience and day,
light condition, driver age, and service year of the vehicle were the decisive contributing
factors for serious injury, light injury, and fatal severity, respectively. Harb et al. [29] inves-
tigated the features of drivers, vehicles, and settings associated with accident avoidance
strategies. Additionally, the random forests approach was used to prioritize the drivers,
vehicles, and environmental variables of accident avoidance operations. They discovered
that obstructions to drivers’ sight, physical disability, and attention were all connected with
collision avoidance actions during incidents. Additionally, the speed limit was connected
with avoidance movements for rear-end crashes, and vehicle type was associated with
avoidance efforts for head-on and angle collisions. Lv et al. [30] investigated how to iden-
tify the traffic accident potential by using the k-nearest neighbor method with real-time
traffic data and found that the k-nearest neighbor method outperformed the conventional
c-means clustering method. An investigation by Ma et al. [31] of the 3146 traffic deaths
in Los Angeles between 2010 and 2012, using a methodological framework of XGBoost
and grid analysis, revealed the eight most essential elements that contributed to the fa-
talities. Drunk driving, partying, rear-end crashes, poor illumination, pedestrian contact,
motorcycle contact, the day of the week, and the hour of the day were the most significant
influences, in that order. Soleimani et al. [32] utilized XGBoost to determine the relative
importance of crossing closure criteria using accidents data from 18,485 road-rail grade
crossings in the United States. The model’s accuracy was 0.991, which was higher than
that of decision trees and random forests. Parsa et al. [33] applied XGBoost and Shap-
ley Additive exPlanations (SHAP) for real-time accident detection and characterization.
The findings indicated that XGBoost could reliably detect accidents with a 99% detection
rate, 79% accuracy rate, and a 0.16% false alarm rate. Additionally, it was suggested that
speed, population, network, land use, and weather conditions all substantially affected the
likelihood of accidents.

However, since machine learning methods are ‘black box’ approaches, the analysis and
prediction of severity classification often lack a direct and clear interpretation of accident
severity and related variables [34]. In contrast, the association rule mining algorithm, as
an unsupervised algorithm that does not rely on any assumptions or a priori knowledge
to discover hidden but meaningful connections in a dataset, can discover the associations
between different accident characteristics, including their severity [35–37]. This data mining
methodology has been identified as a potential decision support tool for traffic safety
engineers [38–41]. Montella et al. [42] investigated the contributory crash factors in 15 urban
roundabouts located in Italy and to study the interdependences between these factors. They
identified numerous contributory factors related to the road and environment deficiencies
but unrelated to the road user or the vehicle. Das et al. [43] adopted an association rules
mining method to investigate driver lane-keeping ability in foggy weather conditions.
Their study indicated that affected visibility, male drivers, a higher number of lanes, the
presence of horizontal curves, was associated with poor lane-keeping performance in
several rules. Langford et al. [44] utilized an unsupervised association mining approach
to uncover trends in a database of vehicle-pedestrian collisions. They discovered that
highlighting traffic illumination helped to mitigate the severity of pedestrian accidents.
According to Xu et al. [45], the association rule mining approach was used to find sets
of accident contributing elements that were often found together in significant casualty
collisions. According to researchers, there is a complicated connection between road user
behavior, vehicle parameters, road geometry qualities, and environmental elements that



Sustainability 2021, 13, 12773 4 of 20

lead to significant casualty collisions. Yu et al. [46] used an a priori approach to find
significant correlations between crash severity and crash-related parameters. The created
rules showed that male drivers aged 29 are more likely to be engaged in fatal incidents on
non-separable roads, while property damage crashes are more likely to occur in towns.

Furthermore, despite this discovery, there is still a lack of study that uses data mining
technologies to uncover the hidden correlations in Hazmat road transport accident-related
datasets. A primary objective of this study is to apply the association rule mining (ARM)
approach to extensively explore the characteristics and contributing factors of Hazmat road
transport accidents that occur on different kinds of roads in light of this understanding.
At the same time, multiple prediction models are evaluated to determine the best severity
prediction model for accidents occurring on different road types. The findings of this
research will aid in the complete understanding of basic patterns of Hazmat road transport
accidents on various road types to target and guide policy and decision-making initiatives
to enhance the safety of Hazmat road transport.

2. Methods
2.1. Association Rule Mining

ARM is a typical unsupervised learning technique that uses data mining ideas to
uncover hidden correlations between variables in a database [36]. Its functions include dis-
covering frequent itemsets and discovering association rules, and its process is composed
of the following two steps:

(1) The frequent itemset mining method is used to find all the frequent itemsets.
(2) Strong association rules are produced according to the obtained frequent itemsets.

2.1.1. Apriori Algorithm

The Apriori algorithm is a classic data mining algorithm that follows the a priori
principle; that is, if an itemset is an infrequent itemset, then all its supersets are also
infrequent itemsets, and if a rule does not have a strong association relationship, then all
the subsets of the rule also do not have a strong association relationship. This approach
can avoid the calculations caused by infrequent candidate itemsets. After several passes
over the dataset, multiple robust candidate itemsets and multiple strongly correlated rules
can be generated [37].

The process of determining the set of frequent items by the Apriori algorithm is shown
in Figure 1.

Figure 1. The process of determining a set of frequent items.

C1, C2, · · · , Ck · · · , CK denote 1-item sets, 2-item sets..., k-item sets, respectively.
L1, L2, · · · , Lk · · · , LK denote the frequent itemsets with k items. Scan represents the dataset
scanning function, which filters the itemsets by the set minimum support and discards
those that do not meet the minimum support. The remaining itemsets that meet the re-
quirements constitute the set Lk. The different frequent k itemsets are combined into the
candidate K + 1 itemsets.
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After determining the frequent itemsets, the association rule mining criteria are used
to find strong association relationships. The process is as follows. First, we start with a
frequent itemset, create a list of rules with only one element on the right-hand side, and
then calculate those rules’ confidence and lift values. Next, the remaining rules are merged
to create a new list of rules with two elements on the right-hand side of the rule, and the
confidence and lift values of those rules are calculated. This step is repeated by adding
elements to the rule’s right-hand side, iterating through all the rules, and finally selecting
the rules that satisfy the threshold.

2.1.2. Association Rule Assessment Criteria

Support, confidence and lift values are often used assessment metrics for frequent
itemsets and strong association rules. An implication is defined in the Hazmat road trans-
port accident dataset D for two sets of itemsets X (the antecedent) and Y (the consequent)
of the form X → Y that satisfy the requirements X, Y ⊆ I and X ∩Y = {∅}.

The support of the rule is the probability that X and Y hold together among all the possi-
ble presented cases. Support can be mathematically defined, as shown in Equation (1) below.

Support(X → Y) = P(X ∩Y) =
|X ∪Y|
|D| , (1)

where |X ∪Y| is the number of times both itemsets X and Y occur together and |D| is the
number of items in the accident database.

The confidence of the rule is the conditional probability that the consequent Y is true
under the condition of the antecedent X, as defined as Equation (2).

Confidence(X → Y) = P(Y|X) =
P(XY)
P(X)

=
|X ∪Y|
|X| , (2)

where |X| denotes the number of occurrences of itemset X, and |X ∪Y| denotes the number
of occurrences of both X and Y itemsets.

The lift takes into account how much the likelihood of occurrence of Y varies as a
result of X. Equation (3) below may be used to compute the lift value mathematically.

Lift(X → Y) =
Confidence(X → Y)

Support(Y)
=

Support(X ∪Y)
Support(X)·Support(Y)

. (3)

Lift = 1 indicates no correlation between the antecedent and consequent, Lift > 1
indicates a positive correlation between the antecedent and consequent, and Lift < 1
indicates a negative correlation between the antecedent and consequent.

2.2. Prediction Models
2.2.1. Ordinal Logit (OL)

Ordered logit models are derived from econometric models and are one of the common
models used to perform ordered discrete data analysis and forecasting [16]. These models
map the latent, difficult-to-observe, continuous variable y∗i into an observable ordered
variable y to represent the severity propensity, and y∗i and yi are related by Equation (4).

yi = j, i f γj−1 < y∗i ≤ γj, (4)

where τ =
(
γ0, γ1, · · · γj, · · · γJ

)
denotes the set of accident severity grading points.

Accident severity is represented by the ordered variable y, and the various character-
istics affecting accident severity are represented by X. The general form of the model is
y∗i = βXT

i + εi.
Where XT

i = xi1, xi2, . . . , xik . . . xiK; n = 1, . . . , N; k = 1, . . . , K is the vector of accident
severity influencing factors; β = (β1, β2, . . . βk, βK) is the parameter corresponding to an
influencing factor, where xik is the observed value of the kth influencing factor of the ith
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accident; N is the total number of accident samples; K is the number of influencing factors
for each accident; and εi is the random error term, which is the sum of other factors that
are difficult to observe but have an impact on the severity of the accident.

In the ordered logit model, εi obeys the Gumbel distribution, its probability density
function is f (εi), and its cumulative distribution function is F(εi), E(εi) = 0.

From Equations (1) and (2), it can be derived that the probability of the ith accident
being of severity j is

P(yi = j|Xi, β, τ) = P
(

γj−1 − βXT
i < y∗i ≤ γj − βXT

i

)
= F

(
γj − βXT

i

)
− F

(
γj−1 − βXT

i

)
,

where the ith accident occurrence ratio (odds) is P(yi≤j|Xi ,β,τ)
1−P(yi≤j|Xi ,β,τ) = P(yi≤j|Xi ,β,τ)

P(yi>j|Xi ,β,τ) =

exp
(
γj − XT

i β
)
.

2.2.2. Nearest Neighbor Classification (NNC)

NNC, sometimes referred to as the k nearest neighbors method, classifies an obser-
vation of interest by examining the closest k observations, and if the majority of these k
instances belong to a specific class, then the new data belongs to that class. Its essential
elements are the k value [47], the distance between two instances in the feature space [48],
and the classification decision rule. The choice of k value starts from k = 1 and gradually
increases, and the k value is determined according to the classification effect. The choice of
the distance calculation method is decided according to the scenario of application and the
characteristics of the data itself, which are generally Euclidean distance and Manhattan
Distance [49]. The classification decision rule is generally a majority voting rule (majority
voting rule), that is, the majority of the k neighboring categories are used as the categories
of the test samples.

2.2.3. Random Forests (RF)

The core of the RF algorithm is to construct multiple mutually independent evalu-
ators and then to average or majority vote principle on their predictions to decide the
results of the evaluators. The primary computational process includes sample set selection,
construction of decision tree, and combination in three parts [50].

(1) Sample set selection.

In an original training set containing n samples, K rounds of data extraction are
performed; in each round of data extraction, random sampling is performed, one sample
is sampled each time, and the sample is put back into the original training set before the
following sample is taken, so that n times are collected. Finally, the K datasets are as large
as the original training set is obtained. Since it is random sampling, the other sampled sets
are also different each time the dataset is different from the original dataset.

(2) Decision tree construction.

The core problem of decision tree is to find out the right features to make judgments,
that is, how to branch. When each sample has M attributes, and each node of the decision
tree requires splitting, m attributes are randomly chosen from these M attributes that fulfill
the criterion m�M. Then, using some approach (Gini coefficient or Information Gain),
one of these m properties is chosen as the node’s splitting attribute. It continues until no
more splitting is possible.

(3) Decision tree combination.

A decision tree’s importance is equated to the significance of the outcomes since
each decision tree in this research is autonomous. In the RF combination phase, the
weight of each decision tree is equal. All of the decision trees weigh in on the final
categorization outcomes.
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2.2.4. Extreme Gradient Boosting (XGBoost)

The objective function of XGBoost [51] is expressed as Equation (5).

Obj = ∑m
i=1 l(yi, ŷi) + ∑K

k=1 Ω( fk), (5)

where i is the i th sample in the dataset, m is the total amount of data imported into the
kth tree, and K is all trees created. When creating t trees solely, the equation should be
∑t

k=1 Ω( fk). yi is the actual label, ŷi is the predicted value, and Ω is an equation that
determines the tree model’s complexity based on the tree’s structure.

When t trees are created, the predicted value ŷi in the traditional loss function is
expressed as Equation (6).

ŷi
(t) = ∑t−1

k=1 fk(xi) + ft(xi) = ŷi
(t−1) + ft(xi). (6)

As a result, the classic loss function is connected to all well-established trees. ŷi stores
the outcomes of all tree iterations, making a direct connection between the tree’s structure
and the model effect. The objective function is expressed as Equation (7).

Obj = ∑m
i=1 l

(
yi

(t), ŷi
(t−1) + ft(xi)

)
+ ∑t−1

k=1 Ω( fk) + ft. (7)

Using Taylor’s formula as a guide, the objective function may be expressed as shown
in Equation (8) after expansion.

Obj = ∑m
i=1

[
l
(

yi
(t), ŷi

(t−1)
)
+ ft(xi)gi +

1
2
( ft(xi))

2hi

]
+ ∑t−1

k=1 Ω( fk) + Ω( ft), (8)

where gi =
∂l(yi

(t),ŷi
(t−1))

∂ŷi
(t−1) and hi =

∂2l(yi
(t),ŷi

(t−1))
∂2(ŷi

(t−1))
are the first- and second-order derivatives

of the loss function l
(

yi
(t), ŷi

(t−1)
)

over ŷi
(t−1), respectively.

The constant term is irrelevant to the result of the tth iteration, so the constant terms
l
(

yi
(t), ŷi

(t−1)
)

and ∑t−1
k=1 Ω( fk) are removed from the objective function. The objective

function is expressed as Equation (9).

Obj = ∑m
i=1

[
ft(xi)gi +

1
2
( ft(xi))

2hi

]
+ Ω( ft). (9)

The structure of the tree is redefined according to Equation (10).

ft(xi) = wq(xi)
, (10)

where q(xi) is the leaf node where sample xi is located. wq(xi)
is the score obtained by this

sample falling in the q(xi) leaf node of the tth tree.
If a tree has a total of T leaf nodes, each with an index of j, the weight of the samples

in the leaf nodes is wj. Equation (11) describes the complexity of the model Ω( f ).

Ω( ft) = γT +
1
2

λ ∑T
j=1 wj

2. (11)

The objective function may be turned into Equation (12) by including the tree’s
structure into the loss function and specifying the set of samples stored on a leaf with index
j as Ij.

Obj = ∑T
j=1

[
wj ∑i∈Ij

gi +
1
2

wj
2
(

∑i∈Ij
hi + λ

)]
+ γT. (12)
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2.2.5. Predictive Performance Evaluation Indexes

The confusion matrix is a special kind of table that is used to visualize an algorithm’s
performance. Table 1 illustrates the confusion matrix for a two-class classifier, where TN
represents the number of correct predictions that an instance is negative, FP represents the
number of incorrect predictions that an instance is positive, FN represents the number of
incorrect predictions that an instance is negative, and TP represents the number of correct
predictions that an instance is positive. While the optimal outcome is to achieve a high
overall model prediction accuracy, greater preference is given to the prediction of CAS
accidents; that is, it is more desirable to capture the occurrence of a few categories of
accidents. Additionally, the influence of the imbalance of sample categories on the index
results in the actual accident data should be eliminated. Therefore, the evaluation index
for the overall effectiveness of the model, accuracy; the evaluation index that can capture
the particular category, recall; and the index that can equalize the impact of the sample
imbalance on the index results, the area under the receiver operating characteristics (ROC)
curve (AUC), were chosen [52].

Table 1. Confusion matrix.

Confusion Matrix
Predicted Condition

Positive Negative

True condition
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Accuracy is the proportion of all correctly judged results, as shown in Equation (13).
Recall is the probability of being predicted as a positive sample out of an actual positive
sample, as shown in Equation (14). FPR is the proportion of false positive prediction values
within the sum of true negative and false positive values, as shown in Equation (15). When
the distribution of positive and negative samples in the test set changes, the ROC curve
with the TPR as the y-axis and the FPR as the x-axis can be kept constant; the higher the
TPR (Recall) and the smaller the FPR, the more efficient the model and algorithm. From a
geometric point of view, the larger the AUC is, the better the model, so the AUC can be
used as a metric measuring the reliability of the algorithm and the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Recall(TPR) =
TP

TP + FN
(14)

FPR =
FP

TN + FP
. (15)

3. Data Sources

In this paper, we selected 900 accidents resulting from the transportation of Hazmat by
road between 2016 and 2020, and these data were obtained from the Hazardous Chemicals
Registration Center of the Ministry of Emergency Management of China. After screen-
ing and integration, the final data used for analysis included 862 accident cases, mainly
involving attributes such as accident casualties, driver attributes, vehicle attributes, road
attributes, environmental attributes, and Hazmat types. According to the road types where
the accidents occurred, they were divided into three road types (rural road, urban road and
highway) with large differences and analyzed separately, accounting for 11.14%, 23.43%,
and 65.43% of the total number of accidents, respectively. Depending on the casualties
of the accidents, the accident severities were divided into property-damage-only (PDO)
and casualty (CAS) categories, accounting for 43.97% and 56.03% of the total number of
accidents, respectively. To facilitate the modeling and analysis of the data, the accident
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characteristics need to be coded. The statistical results after feature coding are shown in
Table 2.

Table 2. Coding and descriptive statistics of features.

Feature Code and Description Count Feature Code and Description Count

Hazardous
Materials:

HM

Gases: 2 191

Road
Alignment:

RA

Straight: 1 530

Flammable liquids: 3 487 Ramps: 2 82

Flammable solids: 4 11 Curved ramp: 3 7

Oxidizers and organic
peroxides: 5 16 Curve: 4 243

Poisonous and infectious
substances: 6

15
Vehicle
Type:
VT

Tank: 1 745

141 Cargo-truck: 2 96

Corrosives: 8 1 Other: 3 21

Season:
SEA

Spring: 1 221
Surface

Condition:
SC

Dry: 1 726

Summer: 2 248 Wet: 2 83

Autumn: 3 208 Ice: 3 28

Winter: 4 185 Waterlogged: 4 25

Month:
MON

January: 1 60

Segment Type:
ST

Ordinary segment: 1 671

February: 2 41 Tunnel: 2 40

March: 3 78 Bridge: 3 32

April: 4 75 Entrance and exit: 4 26

May: 5 68 Station: 5 74

June: 6 62 Risky segment: 6 19

July: 7 102 Intersection:
INT

Yes: 1 128

August: 8 84 No: 0 734

September: 9 74 Traffic Signal:
TS

Yes: 1 837

October: 10 74 No: 0 25

November: 11 60 Fatigue:
FAT

Yes: 1 175

December: 12 84 No: 0 687

Time of Day:
TOD

[1–3]: 1 162

Moving Status:
MS

Go straight: 1 487

[4–6]: 2 122 Stop: 2 63

[7–9]: 3 150 Turn: 3 252

[10–12]: 4 92 Downhill: 4 11

[13–15]: 5 167 Avoid: 5 49

[16–18]: 6 31

Weather: WEA

Sunny: 1 778

[19–21]: 7 51 Rain: 2 46

[22–24]: 8 87 Snow: 3 22

Equipment Safety
Status: ESS

Safety: 1 723 Fog: 4 16

Malfunction: 0 139 Qualification:
QUA

Yes: 1 808

Vehicle Safety
Status: VSS

Safety: 1 779 No: 0 54

Malfunction: 0 83
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4. Results and Discussion
4.1. Association Rule Mining

To arrive at significant results, it is critical to calibrate the minimal support and
confidence levels. Defining proper cutoff points will result in the discovery of novel
rules. A trial-and-error approach using iterative support and confidence combinations was
utilized to develop a fair set of thresholds for investigations, including different levels of
road. Then, using the lift values, itemsets with a high association to accident severity were
retrieved. Increased lift values suggest higher links between the rule’s or right-side item’s
(RSI or Y) consequence and the rule’s or left-side item’s antecedent (LSI or X).

4.1.1. Urban Roads

The minimum support, confidence and lift thresholds were defined as 0.3, 0.9, and 1.1,
respectively. A total of 50 rules were generated using accident severity as a consequence.
The top ten rules in descending order of lift values for different severity levels were selected
and are presented in Table 3. Figure 2 shows the relationship between each antecedent
and consequent.

Table 3. Top 10 rules ranked by the lift value of each severity (urban roads).

No. Association Rules Support Confidence Lift

1 {WEA-1, TS-1, SC-1}→{Severity-PDO} 0.255 0.902 2.059
2 {SC-1}→{Severity-PDO} 0.280 0.951 2.050
3 {WEA-1, SC-1}→{Severity-PDO} 0.280 0.951 2.050
4 {TS-1, SC-1}→{Severity-PDO} 0.275 0.941 2.045
5 {FAT-0}→{Severity-PDO} 0.275 0.941 2.045
6 {WEA-1}→{Severity-PDO} 0.295 0.980 2.026
7 {WEA-1, TS-1}→{Severity-PDO} 0.290 0.971 2.021
8 {TS-1}→{Severity-PDO} 0.295 0.990 1.995
9 {VSS-1}→{Severity-PDO} 0.255 0.902 1.954
10 {TS-1, VSS-1}→{Severity-PDO} 0.255 0.902 1.954

1 {VSS-1, ESS-1, TOD-1}→{Severity-CAS} 0.275 0.960 2.276
2 {VSS-1, ESS-1}→{Severity-CAS} 0.275 0.960 2.276
3 {TOD-1, ESS-1}→{Severity-CAS} 0.280 0.970 2.210
4 {ESS-1}→{Severity-CAS} 0.280 0.970 2.202
5 {WEA-1, TOD-1, ESS-1}→{Severity-CAS} 0.246 0.900 2.188
6 {WEA-1, ESS-1}→{Severity-CAS} 0.246 0.900 2.181
7 {WEA-1, VSS-1, ESS-1}→{Severity-CAS} 0.246 0.900 2.089
8 {TOD-1, VSS-1, WEA-1}→{Severity-CAS} 0.246 0.900 2.089
9 {VSS-1}→{Severity-CAS} 0.250 0.910 2.081
10 {VSS-1, TOD-1}→{Severity-CAS} 0.250 0.910 2.081

(1) PDO Accidents.

As shown in Table 3, the occurrence of PDO accidents had a strong association with
WEA, TS, SC, FAT and VSS. The highest lift value is 2.059 for the LSI term X {WEA-1, TS-1,
SC-1}, which indicates that the probability of PDO accidents occurring under clear weather,
dry road surface and up to standard road traffic signs is 2.059 times that of the average
occurrence of PDO accidents on urban roads. This means that clear weather, a good road
surface environment and standard sign markings in the city have certain helpful effects on
reducing the severity of accidents. These benefits may exist because clear weather provides
drivers with a clear view and a better grasp of the surrounding environment [43]; the
dry road surface ensures that there is enough friction between the vehicle and the road
surface, which can balance with the large inertia force of the heavy-duty Hazmat transport
vehicle and allows the driver to control the vehicle better when danger occurs; and the
presence of sign markings regulates the behavior of road users, controls the speed of motor
vehicles [29], and effectively separates pedestrians, nonmotorized vehicles and motor
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vehicles, reducing the possibility of other road participants being involved in accidents
and increasing the possibility of escape from Hazmat subaccidents.

Figure 2. Graph-based visualization of association rules (urban roads). (a) Related to the PDO accidents; (b) Related to the
CAS accidents.

(2) CAS Accidents.

As shown in Table 3, the occurrence of CAS accidents showed a higher propensity
to be linked to VSS, ESS, TOD, WEA and QUA. The highest lift value is found to be
2.276 with rule {VSS-1, ESS-1, TOD-1}→ {Severity-CAS}. This finding indicates that the
probability of CAS accidents occurring at 1–3 a.m. under transport vehicles with good
loading equipment and vehicle technology is 2.276 times that of the average occurrence of
CAS accidents on urban roads. This means that although the vehicles entering the city and
with their loading equipment are in great technical condition, the probability of causing
casualties in accidents that occur in the early morning hours is also high. The reason for
this may be that the urban transport management of Hazmat transport vehicles has access
to strict standards, so access to the technical condition of the vehicle is relatively good [15].
Meanwhile, the urban area has strict requirements on the access time and roadway of
Hazmat transport vehicles, the more concentrated access time is 23:00–5:00. According to
human physiological characteristics, in the early morning hours, individuals are prone
to fatigue and sleepiness, and the ability to accurately evaluate the driving environment
and the correct handling of risk are reduced [14]. In addition, because there are fewer road
users and law enforcement officers during the night, drivers may engage in illegal driving,
hit-and-run and other dangerous behaviors.

(3) Proposals to Improve Safety in Hazmat Transport on Urban Roads.

To improve the safety of Hazmat road transport on urban roads, the following ap-
proaches should be taken into consideration. Law enforcement departments should in-
crease supervision, enforcement, and accident tracking while increasing the cost of vio-
lations to eliminate unsafe driver behaviors. Road units should be used with increased
investment in science, technology and personnel to provide timely detection and effec-
tive handling of dangerous road surface environments according to three aspects: initial
forecasts (weather forecasts, event monitoring and regular analysis), timely warnings (in-
formation dissemination, extensive channels and directed push), and active interventions
(road control, variable information and on-site command). It is also important to set stan-
dardized signs and markings [46]. Transportation companies should conduct psychological
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tests for drivers to avoid hiring aggressive and dangerous drivers. Specialized departments
and transport companies should also conduct regular emergency rescue training and drills
for Hazmat transport accidents.

4.1.2. Rural Roads

Minimum support, confidence, and lift levels of 0.2, 0.80, and 1.1, respectively, were
specified. For accident severity, a total of 67 rules were produced. Among these, the best
ten rules ranked by lift values for various severity levels were chosen and are given in
Table 4. The link between each antecedent and consequent is shown in Figure 3.

Table 4. Top 10 rules ranked by the lift value of each severity (rural roads).

No. Association Rules Support Confidence Lift

1 {IN-0, SC-1, WEA-1 }→{Severity-PDO} 0.201 0.901 1.943
2 {IN-0, SC-1}→{Severity-PDO} 0.201 0.887 1.924
3 {IN-0, WEA-1}→{Severity-PDO} 0.204 0.887 1.883
4 {VT-1, WEA-1}→{Severity-PDO} 0.213 0.877 1.872
5 {ST-1, WEA-1}→{Severity-PDO} 0.214 0.875 1.867
6 {IN-0}→{Severity-PDO} 0.205 0.871 1.865
7 {VT-1, SC-1}→{Severity-PDO} 0.231 0.868 1.861
8 {VT-1, SC-1, WEA-1}→{Severity-PDO} 0.217 0.863 1.857
9 {VT-1}→{Severity-PDO} 0.225 0.851 1.844

10 {WEA-1}→{Severity-PDO} 0.213 0.847 1.742

1 {QUA-0, TOD-1, VSS-1}→{Severity-CAS} 0.202 0.906 2.432
2 {MON-10, WEA-1, SC-1}→{Severity-CAS} 0.202 0.906 2.432
3 {QUA-1, ESS-1, TS-1}→{Severity-CAS} 0.213 0.895 2.413
4 {QUA-1, ESS-1, TS-1, VSS-1}→{Severity-CAS} 0.213 0.895 2.413
5 {ESS-1, TS-1}→{Severity-CAS} 0.248 0.865 2.222
6 {VSS-1, ESS-1}→{Severity-CAS} 0.244 0.850 2.160
7 {ESS-1}→{Severity-CAS} 0.220 0.837 2.131
8 {SC-1, ESS-1, WEA-1}→{Severity-CAS} 0.221 0.825 2.117
9 {TS-1}→{Severity-CAS} 0.235 0.820 2.099

10 {VSS-1, TS-1}→{Severity-CAS} 0.239 0.823 2.096

(1) PDO Accidents.

As shown in Table 4, the features with strong association rules with the occurrence of
PDO accidents were IN, SC, WEA, VT, and ST. The highest lift value is found to be 1.943
with rule {IN-0, SC-1, WEA-1}→ {Severity-PDO}. This rule signifies that the probability
of PDO accidents occurring at nonintersections with clear weather and dry road surface
environments is 1.943 times that of the average occurrence of PDO accidents on rural roads.
This implies that the probability of a serious accident at an intersection is higher in clear
weather and under good road surface conditions. The reasons for this phenomenon include
the following: (1) Hazmat transport vehicles are mostly heavy semitrailers, with a higher
center of gravity, in the process of turning, the centrifugal force of the curve and the lateral
force of the vehicle rotation on the tires increase the lateral slip force, making the vehicle
susceptible to rolling over. Moreover, large body, long wheelbase and the high driver
position increase the vehicle blind spots and the area of the inner wheel difference [12];
(2) Road junctions are not equipped with signal lights or other traffic signs and markings;
motor vehicles, nonmotorized vehicles and pedestrians are mixed; and personnel are
more concentrated; (3) The supervision of road transportation of Hazmat in rural areas
is low, and there are many driving violations, such as running red lights and speeding at
intersections.
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Figure 3. Graph-based visualization of association rules (rural roads). (a) Related to the PDO accidents; (b) Related to the
CAS accidents.

(2) CAS Accidents.

We identified a strong association between the occurrence of PDO accidents and
related items such as QUA, ESS, TS, VSS, SC, WEA, TOD and MON, as shown in Table 4.
The rule with the highest lift value of 2.432 is {QUA-0, TOD-1, VSS-1}→ {Severity-CAS}.
This rule demonstrates that the probability of CAS accidents occurring in the early morn-
ing hours when drivers who are not qualified to drive tankers transporting Hazmat is
2.432 times that of the average occurrence of CAS accidents on rural roads. This means
that driver qualification, accident time, and vehicle type significantly influence whether the
accident will cause casualties. Possible reasons are mainly that rural areas have inadequate
supervision over front-line transportation and Hazmat transportation enterprises and the
lack of long-term management mechanisms. Some enterprises that have not obtained
Hazmat transport qualifications attempt to avoid supervision by choosing rural roads.
Drivers who are not qualified for transportation have insufficient knowledge of the physical
and chemical characteristics of Hazmat, transportation requirements, precautions, rescue
measures, and so forth. Moreover, their awareness of safety and legal systems is weak.
Vehicles without transport qualifications do not meet the requirements for vehicle stability,
braking, tank pressure resistance and impact, making them susceptible to leakage, fire
or explosions. Road lights in rural areas are not well configured and have poor driving
visibility in the early morning [28], and drivers are prone to fatigue, leading to a decrease
in the perception of the surrounding environment and the ability to perform driving opera-
tions. The physical and chemical properties of different Hazmat differ greatly from each
other, and the consequences of an accident are diverse and complex. Rescue work is highly
professional and difficult to perform, requiring coordination with relevant departments
to scientifically configure emergency rescue resources and equipment. However, a lack
of resources for emergency treatment exists in rural areas, often resulting in missing the
best time for disposal due to the lengthy delivery time. In addition, limited medical care in
rural areas makes emergency medical assistance difficult and may miss the best time to
treat the injury and cause it to worsen.

The lift value of rule {MON-10, WEA-1, SC-1}→ {Severity-CAS} is also 2.432, which is
interpreted as the probability of CAS accidents in October, when the weather is sunny and
the road surface is dry, is 2.432 times higher than the average rate of CAS accidents on rural
roads. This means that month, road surface conditions and weather conditions are strongly
correlated with the occurrence of casualties in rural road accidents [43]. The possible reason
for the above phenomenon is that October is the autumn harvest season, and roads with
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good road surface conditions are illegally occupied by farmers for grain drying in sunny
weather. At this time, the flying chaff seriously affects driver and pedestrian vision; the
surface of the rounded grain and smooth straw reduces the stability of the vehicle; and the
contact of straw with the vehicle is likely to induce mechanical failure of the vehicle and
can even ignite Hazmat in the process of friction, causing a fire or explosion and seriously
affecting the safety of road traffic.

(3) Proposals to Improve Safety in Hazmat Transport on Rural Roads.

Additional mobile inspection stations for Hazmat should be set up at appropriate
locations on rural roads to increase on-site supervision of Hazmat transport in rural areas.
Led by the government, the joint management of several departments should crack down
on the unlicensed transport of Hazmat, strengthen the source of management, and establish
a long-term management mechanism. It is crucial to increase the number of streetlights
and optimize traffic signal devices at intersections to improve the technical conditions of
rural roads [53]. Observation windows should be fitted into the copilot doors of heavy
vehicles, and these vehicles should be equipped with other side assistance systems, such
as blind spot cameras and radar, to reduce the impact of visual blind spots on transport
safety. By linking transport enterprises and regulatory units, the whole process of the
transport supervision system can be established. Digital registration, intelligent query and
route management of Hazmat, drivers and vehicle information can provide the behavior
of drivers and escort personnel, the state of Hazmat, and the supervision and analysis
of the state of vehicles and loading equipment to ensure the safety of the whole process
of transportation. Access standards for Hazmat transportation drivers can be improved,
including driving skills, risk avoidance skills, and risk awareness in the audit criteria,
and driver education should be ongoing throughout drivers’ professional careers. Finally,
it is important to preset or optimize emergency rescue sites for Hazmat road transport
accidents in rural areas and strengthen the linkage with the local public security traffic
police, emergency fire, medical and health departments.

4.1.3. Highways

The minimum support, confidence and lift thresholds were defined as 0.2, 0.77, and 1.5,
respectively. A total of 77 rules were generated using accident severity as a consequence
(RSI). The top ten rules in descending order of lift values for different severity levels
were selected and are presented in Table 5. Figure 4 shows the relationship between each
antecedent and consequent.

Figure 4. Graph-based visualization of association rules (highways). (a) Related to the PDO accidents; (b) Related to the
CAS accidents.
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Table 5. Top 10 rules ranked by the lift value of each severity (highways).

No. Association Rules Support Confidence Lift

1 {IN-0, SC-1, WEA-1}→{Severity-PDO} 0.210 0.966 2.044
2 {FAT-0}→{Severity-PDO} 0.210 0.889 1.961
3 {IN-0, SC-1}→{Severity-PDO} 0.235 0.877 1.883
4 {SC-1, WEA-1}→{Severity-PDO} 0.225 0.862 1.855
5 {SC-1}→{Severity-PDO} 0.213 0.843 1.745
6 {IN-0, WEA-1}→{Severity-PDO} 0.203 0.825 1.676
7 {WEA-1}→{Severity-PDO} 0.223 0.782 1.664
8 {IN-0}→{Severity-PDO} 0.224 0.773 1.656
9 {WEA-1, FAT-0}→{Severity-PDO} 0.223 0.772 1.645

10 {FAT-0, SC-1}→{Severity-PDO} 0.220 0.766 1.631

1 {SC-2, WEA-2, TOD-3}→{Severity-CAS} 0.213 0.903 2.482
2 {ESS-1, VSS-1, SC-2}→{Severity-CAS} 0.216 0.902 2.339
3 {ESS-1, VSS-1}→{Severity-CAS} 0.213 0.895 2.237
4 {ESS-1, TOD-3, SC-2}→{Severity-CAS} 0.224 0.887 2.203
5 {TOD-3, ESS-1}→{Severity-CAS} 0.220 0.873 2.151
6 {SC-2, ESS-1}→{Severity-CAS} 0.230 0.879 2.148
7 {ESS-1}→{Severity-CAS} 0.220 0.872 2.146
8 {TOD-3, VSS-1, SC-2}→{Severity-CAS} 0.224 0.874 2.070
9 {TOD-3, VSS-1}→{Severity-CAS} 0.204 0.861 2.067

10 {SC-2, VSS-1}→{Severity-CAS} 0.230 0.840 2.064

(1) PDO Accidents.

The severity of PDO accidents showed a higher propensity to be linked to IN, SC, WEA,
and FAT, as shown in Table 5. The highest lift value is 2.044 for LSI {IN-0, SC-1, WEA-1}.
The results reveal that the probability of PDO accidents occurring at non-intersections in
clear weather with dry road surfaces is 2.044 times that of the average occurrence of PDO
accidents on highways. In clear weather and good road surface conditions, the probability
of serious accidents is higher at highway entrances and exits, especially at exits [5]. This is
mainly because, in the exit diversion area, the speed difference between vehicles moving
straight and vehicles turning becomes greater than the speed difference between vehicles
on the general roadway. In particular, when the distance of the road sign at the front of the
exit is not set reasonably (the sign is too close to the diversion nose), the driver needs to
brake sharply and turn sharply before driving off ramp. However, compared to ordinary
vehicles, Hazmat transport vehicles are heavier and have greater inertia, which makes it
challenging to drive smoothly into the exit in a short time, thus causing traffic accident.

(2) CAS Accidents.

We identified strong associations between Hazmat road transport accidents involving
casualties and related items, such as ESS, TOD, VSS, WEA and SC, as shown in Table 5.
The highest lift value is found to be 2.482 with rule {SC-2, WEA-2, TOD-3}→ {Severity-
CAS}, which is interpreted as the probability of CAS accidents occurring at 7:00–9:00 a.m.
on wet road surfaces being 2.482 times greater than that of the average occurrence of
CAS accidents on highways. This rule signifies that there is a strong association among
weather, road surface conditions, time of day and the occurrence of CAS accidents. This
is mainly because of the fast travel speed and large traffic flow on the highway; at this
time, any changes in the driving environment may bring safety hazards. For example,
rainfall will reduce the visibility of the road, affecting the driver’s ability to judge visually,
and rain will also reduce the friction between the wheels and the ground, affecting the
braking performance of the vehicle [13]. The fourth category of Hazmat regarding being
in contact with water or moisture indicates that a violent chemical reaction will occur,
releasing a large amount of flammable gas and heat, and in conditions that do not require
an open flame, Hazmat may also burn or explode. Fog will cause diffusion and absorption
of light and, coupled with small droplets of water in the air, it will result in objects on
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the road becoming blurred, seriously hindering the driver’s sight and easily causing
rear-end accidents and other accidents [43]. The impact of snow and ice on transport
safety is mainly in reduced visibility and the road friction coefficient. At the same time,
according to the physical and chemical properties of Hazmat, certain types of Hazmat
will change state under high temperature or cold conditions and influence the safety
of load-bearing equipment. Additionally, adverse weather conditions can also have a
negative impact on the rescue work of Hazmat transport accidents. Furthermore, although
nighttime (23:00–06:00) prohibitions have been developed and implemented for Hazmat
road transport vehicles, transport companies are driven by would-be interests to keep
drivers in transport, which will lead to driver fatigue in the early morning and loss of
accurate perception of the road environment and the ability to deal with emergencies. At
the same time, because of the inherent physical and chemical characteristics of Hazmat,
after an accident occurs, leakage, fire and explosion can easily occur; in the case of a
concentration of a large number of vehicles, mass death and injury can easily occur.

(3) Proposals to Improve Safety in Hazmat Transport on Highways.

Modifications to accident-prone exits, such as installing speed feedback devices, appro-
priately increasing the distance between exit signs and ramps, placing crash barrels in exit
triangles, and establishing emergency rescue facilities and equipment storage stations for
Hazmat in service areas near entrances and exits, are suggestions for improving safety [14].
According to regional, seasonal, and other characteristics, regular Hazard surveys and
updates of the permitted hours for road transport in Hazmat should be conducted. In
addition, the following recommendations warrant further consideration: strengthening
the inspection of fatigue driving at night, establishing joint liability and several liabilities
between enterprises and drivers for fatigue driving, increasing the cost of noncompliance,
and forcing enterprises to take primary responsibility for traffic safety. Road operators are
able to deploy real-time weather monitoring systems and establish variable speed limit
signs and treble horns to set reasonable speed limits and provide drivers with real-time
information on the weather and road environment based on weather conditions.

4.2. Performance of the Prediction Models

The features that strongly correlate with accident severity under different road types
are used as the input of each prediction model; the output results are also evaluated based
on the evaluation indexes, and the evaluation results are shown in Table 6. From this
analysis, it can be seen that XGBoost is more suitable for predicting the severity of road
transport accidents involving Hazmat that occur on urban roads and highways, and NNC
is more suitable for predicting the severity of accidents that occur on rural roads.

Table 6. Model assessment results.

Models
Urban Roads Rural Roads Highways

Accuracy Recall AUC Accuracy Recall AUC Accuracy Recall AUC

OL
PDO

0.516
0.376

0.503 0.603
0.389 0.506

0.506
0.612

0.472
0.517CAS 0.435 0.448 0.457

NNC
PDO

0.801
0.772

0.870 0.815
0.828 0.915

0.915
0.794

0.800
0.860CAS 0.876 0.920 0.774

RF
PDO

0.776
0.676

0.801 0.764
0.640 0.817

0.817
0.787

0.717
0.831CAS 0.966 0.940 0.903

XGBoost
PDO

0.872
0.873

0.943 0.832
0.763 0.889

0.889
0.854

0.819
0.921CAS 0.951 0.890 0.973

5. Conclusions

Safety accidents involving Hazmat during road transport occur occasionally, often
causing high casualties, property damage and environmental damage, and the safety man-
agement of Hazmat transportation has gained widespread concern in society. Exploring the
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leading causes and predicting the severity of Hazmat road transport accidents on different
road types using road types as grading criteria is meaningful for building a community
with traffic safety as a priority.

The main contributions of the paper are summarized below:

(1) The use of ARM can both compensate for the negative impact of correlation be-
tween risk factors as independent variables in accident severity analysis and fill the
shortcoming in which machine learning cannot provide a reasonable explanation
for the antecedents and consequences of accident occurrences. This approach also
provides meaningful relationship maps for factors that are strongly associated with
the occurrence of accidents of different severities under different road types.

The contributory factors for accidents of different severity on different road types
explored using the Apriori algorithm are shown below:

(a) The features that had a strong association with the occurrence of PDO accidents
during the transportation of Hazmat on urban roads were WEA, TS, SC, FAT and VSS,
and the rule with the highest lift value was {WEA-1, TS-1, SC-1}→ {Severity-PDO}.
The features that had a strong association with the occurrence of accidents involving
human casualties were VSS, ESS, TS, WEA and QUA, and the rule with the highest
lift value was {VSS-1, ESS-1, TOD-1}→ {Severity-CAS}.

(b) In accidents involving the transport of Hazmat occurring on rural roads, IN, SC,
WEA, VT and ST were strongly associated with the occurrence of PDO accidents,
and the highest lift value was found for the association rule {IN-0, SC-1, WEA-1}→
{Severity-PDO}. The occurrence of CAS accidents had a strong association with QUA,
ESS, TS, VSS, SC, WEA, TON and MON, and the highest lift values of the association
rules were {QUA-0, TOD-1, VSS-1}→ {Severity-CAS} and {MON-10, WEA-1, SC-1}
→ {Severity-CAS}.

(c) The occurrence of PDO accidents on highways had a strong association with IN, SC,
WEA, and FAT. {IN-0, SC-1, WEA-1}→ {Severity-PDO} was the rule with the highest
lift value. Casualties on highways were more likely to be associated with ESS, TOD,
VSS, WEA, and SC, and {SC-2, WEA-2, TOD-3}→ {Severity-CAS} was the rule with
the most significant lift value.

Based on the results of the study, possible preventive measures provided for the safety
of road transport of Hazmat on different road types are as follows:

(a) To improve the safety of road transportation of Hazmat in urban areas, the road
administration unit needs to continuously ensure good road surface conditions. The
transportation management department should improve access standards and moni-
toring of Hazmat transport vehicles entering urban areas. Law enforcement depart-
ments need to increase the frequency of supervision, prosecution and punishment
of Hazmat transport violations at night to eliminate dangerous driver behaviors.
However, the main consideration is to avoid the routing of Hazmat transport vehicles
through densely populated urban areas;

(b) Strengthening the monitoring and punishment of the illegal transport of Hazmat;
improving the basic knowledge of traffic safety, safety and risk awareness of par-
ticipants in traffic travel; optimizing the traffic infrastructure; and setting up more
Hazmat rescue stations and equipping them with special materials for Hazmat acci-
dent rescue can reduce the incidence and severity of Hazmat road transport accidents
in rural areas;

(c) The safety of highway transportation can be improved by establishing a whole-process
supervision system for the transportation of Hazmat with the help of fifth-generation
(5G) networks, big data, the Internet of Things, biotechnology and other technologies.
The supervisory system can maintain continuous attention to driver fatigue, the state
of Hazmat, the driving speed of the vehicle, and the driving environment of the
highway and make appropriate interventions according to the actual situation in a
timely manner.
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(2) Selecting multiple prediction models, the features that exhibit strong correlation rules
with accident severity are used as inputs to the prediction models, allowing the best
prediction model to be determined for each road type for accident severity prediction
in the transportation of Hazmat. The risk features discovered by the Apriori algorithm
on different road types that lead to accidents of different severity were input into
different prediction models for case studies and it was found that, when predicting
the severity of Hazmat road transport accidents, XGBoost should be chosen for urban
roads and highways, and NNC should be chosen for rural roads.

(3) Limitations and future research.

(a) In this paper, when classifying the severity of Hazmat road transport accidents,
only human casualty determinants are considered, and the salient features of
environmental damage caused by Hazmat transport accidents are not reflected.
In future research, it will be necessary to quantify the data on damage to the
environment to achieve a more comprehensive analysis of the severity of
accidents;

(b) In this paper, when analyzing the factors influencing accident severity, objec-
tive factors such as roads, vehicles and the external environment are considered
to influence accident severity, but the subjective aspects of drivers’ psychologi-
cal and physiological states are not analyzed. In future research, we need to
obtain more information about the subjective state of drivers through ques-
tionnaires, surveillance videos and physiological state testing instruments to
analyze the influence of drivers on the occurrence of accidents.
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