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Abstract: Compound extreme events can severely impact water security, food security, and social
and economic development. Compared with single-hazard events, compound extreme events cause
greater losses. Therefore, understanding the spatial and temporal variations in compound extreme
events is important to prevent the risks they cause. Only a few studies have analyzed the spatial and
temporal relations of compound extreme events from the perspective of a complex network. In this
study, we define compound drought and heatwave events (CDHEs) using the monthly scale standard
precipitation index (SPI), and the definition of a heatwave is based on daily maximum temperature.
We evaluate the spatial and temporal variations in CDHEs in China from 1961 to 2018 and discuss
the impact of maximum temperature and precipitation changes on the annual frequency and annual
magnitude trends of CDHEs. Furthermore, a synchronization strength network is established using
the event synchronization method, and the proposed synchronization strength index (SSI) is used to
divide the network into eight communities to identify the propagation extent of CDHEs, where each
community represents a region with high synchronization strength. Finally, we explore the impact of
summer Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) on CDHEs in
different communities. The results show that, at a national scale, the mean frequency of CDHEs takes
on a non-significant decreasing trend, and the mean magnitude of CDHEs takes on a non-significant
increasing trend. The significant trends in the annual frequency and annual magnitude of CDHEs are
attributed to maximum temperature and precipitation changes. AMO positively modulates the mean
frequency and mean magnitude of CDHEs within community 1 and 2, and negatively modulates the
mean magnitude of CDHEs within community 3. PDO negatively modulates the mean frequency
and mean magnitude of CDHEs within community 4. AMO and PDO jointly modulate the mean
magnitude of CDHEs within community 6 and 8. Overall, this study provides a new understanding
of CDHEs to mitigate their severe effects.

Keywords: compound drought and heatwave events; complex network; event synchronization;
atmospheric circulation patterns

1. Introduction

Global warming has led to an increase in drought and heatwave events [1,2]. The
conjoined extreme events of droughts and heatwaves are considered as compound drought
and heatwave events (CDHEs) [3–5], which have severe impacts on socioeconomic devel-
opment and the environment. For example, severe drought and heatwaves in the 2003
European summer resulted in around 40,000 deaths [6]. Drought and heat anomalies in
the central United States has caused at least USD 30 billion in damages [7]. Therefore, it is
essential to study the spatial and temporal variations in, and spatial influences of, CDHEs
to mitigate their effects.

There is no unified standard for the definition of CDHEs, because drought events and
heatwave events correspond to a variety of definitions. Drought events are usually defined
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by various indicators, such as the standardized precipitation index (SPI) [8,9], the stan-
dardized precipitation evapotranspiration index [10,11], and the Palmer drought severity
index [12,13]. Heatwave events are mainly defined by relative thresholds (percentile thresh-
olds), absolute thresholds, and durations [14,15]. In recent studies, the definition of CDHEs
mainly refers to the combination of drought and heatwave event definitions mentioned
above [4,16–18]. There are also studies that directly describe the properties of CDHEs
by corresponding metrics. For instance, Wu et al. [19] proposed a dry–hot magnitude
index (DHMI) to characterize the magnitude of CDHEs. Their results show that high-
magnitude CDHEs mainly occur in northeastern and southwestern China. Wu et al. [20]
derived a standardized compound event indicator and a standardized dry-hot index to
evaluate the severity of changes in CDHEs in the warm season. Their results show that the
severity of CDHEs increases significantly in most parts of China, and temperature is the
dominant driving factor compared with precipitation. The variation in various properties
(frequency, magnitude, severity, etc.) of CDHEs, and the potential linkage of such variation
to atmospheric circulation patterns, has also been investigated. Hao et al. [16] applied a
logistic regression model to examine the relation between the occurrence of compound
events and El Niño–Southern Oscillation (ENSO) represented by NINO34. The results
show that ENSO plays an important role in the occurrence of CDHEs during the warm
season in the northern parts of South America, southern Africa, southeastern Asia, and
Australia. In China, there has been a significant increase in the frequency and spatial
extent of compound dry-warm events, which is partly related to atmospheric circulation
patterns [21]. Mukherjee et al. [22] used a Poisson generalized linear model to analyze
the relation between the frequency of seasonal CDHEs and the warm and cold phases
of ENSO, Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). The
results show that ENSO is strongly related with CDHEs over the southern hemisphere,
PDO influences the frequency of CDHEs over western North America during the boreal
summer, while NAO is weakly related with CDHEs. The composite analysis, correlation
analysis, and logistic regression model have all been used to investigate the influence of
various atmospheric circulation patterns on CDHEs in China. These methods found that
the Atlantic Multidecadal Oscillation (AMO) affects CDHEs for about 18.52% of mainland
China, while NAO and PDO, respectively, account for around 14.64% and 12.96%, and
ENSO affects CDHEs by about 5.27% [23]. In general, previous studies analyzed the spa-
tial and temporal variations in properties of CDHEs using various definitions or metrics,
revealing that atmospheric circulation patterns have a profound impact on CDHEs.

The complex systems theory applied to the study of extreme events has received
increased attention. Boers et al. introduced network divergence to directed networks to
predict extreme rainfall events in the central Andes [24]. Complex networks have been used
to reveal global patterns of extreme rainfall teleconnections, and Rossby waves were shown
to be the physical mechanism of these teleconnections [25]. Konapala and Mishra [26]
applied the complex network approach to study the spatial and temporal evolution of
droughts in the continental USA. They found that drought events propagate differently at
different thresholds associated with their initiation. However, complex network approaches
have rarely been applied to the study of CDHEs.

The objective of this study is to evaluate the spatiotemporal variations and propagation
extent of CDHEs for the period of 1961–2018 in China, based on monthly SPI, daily
maximum temperature, and a complex network approach. The correlations between AMO,
PDO, and the frequency and magnitude of CDHEs are employed to explore the possible
physical mechanism of the formation of CDHEs. The results of this study will enhance our
understanding of compound extreme events and provide suggestions for decisionmakers
to mitigate the negative impacts of these events in China.
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2. Data and Definition
2.1. Data

Our study is based on monthly precipitation data and daily maximum temperature
data from the CN05.1 dataset [27]. The time span of precipitation and maximum tem-
perature data is from 1961 to 2018, the resolution is 0.25◦ × 0.25◦, and there are 163 grid
points in the north–south direction and 283 grid points in the east–west direction, where
the number of grid points within China is 15,247 (precipitation and maximum temperature
data for Taiwan Province are missing).

AMO and PDO are major large-scale circulation patterns that influence the climate of
East Asia. The AMO index is defined as the average anomalies of sea surface temperature
(SST) in the north Atlantic [28]. Its positive (negative) phase usually indicates that SST is
warmer (cooler) than the average SST across the north Atlantic Ocean. The PDO index
is defined as the leading principal component of the north Pacific (NP) monthly SST
anomalies [29]. Its positive (negative) phase corresponds to cool (warm) SST in the central
and western NP. In this study, we found that more than 83.5% of CDHEs occur during
June, July, and August (JJA) in China (as shown in Figure 1); thus, we focused on the
impact of the AMO and PDO indexes in JJA on CDHEs, where the temporal series of
the AMO and PDO indexes in JJA are derived from the China National Climate Center
(http://cmdp.ncc-cma.net, accessed on 18 November 2021), and shown in Figure 2.

Figure 1. The proportion of CDHEs in different months for the period of 1961–2018.

Figure 2. Temporal series of AMO (blue) and PDO (red) index during JJA for the period of 1961–2018
after 9 year moving average.

http://cmdp.ncc-cma.net
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2.2. Defining Compound Drought and Heatwave Events

CDHEs are defined as extreme disaster events of drought in conjunction with a
heatwave. The influences of drought events are usually long-lasting, so the monthly SPI is
calculated to characterize the degree of drought in a given month [11], and−1 is selected as
the threshold of drought conditions. According to the World Meteorological Organization’s
recommended criteria for heatwaves [30], we define a heatwave as an event with a daily
maximum temperature (Tmax) ≥ 32 ◦C and a duration of ≥3 consecutive days. As shown
in Figure 3, the occurrence of a CDHE can be defined as a binary variable, where 1 is
for occurrences and 0 is for non-occurrences. ∆t represents the duration of a CDHE, and
∑ ∆T represents the accumulative temperatures of a CDHE, which are the sum of the daily
maximum temperature exceeding the threshold for the duration of a CDHE. The SPI of the
month in which the CDHE is located, and its accumulative temperatures are used for the
subsequent calculation of DHMI. More details are described in Section 3.1.

Compared with previous studies, we focused not only on the interannual variation in
the frequency of CDHEs, but also on the interannual variation in the magnitude of CDHEs,
where the magnitude of CDHEs is represented by DHMI.

Figure 3. The schematic diagram of CDHEs. L is the total number of months for the period of
1961–2018. The top y-axis represents the occurrence of CDHEs, 1 for occurrences and 0 for non-
occurrences. The bottom y-axis represents the maximum temperature. ∆t represents the duration of
a CDHE and ∑ ∆T represents the accumulative temperatures of a CDHE.

3. Methodology
3.1. The Drought–Heatwave Magnitude Index

The magnitude of a CDHE is jointly determined by drought degree and heatwave
conditions; then, the DHMI of a CDHE can be defined as [19]:

DHMI = P
(
∑ ∆T

)
× (∆SPI) (1)

where ∑ ∆T represents the accumulative temperatures of a CDHE, P(∑ ∆T) is obtained
using a nonparametric method to estimate the cumulative density function (CDF) of
∑ ∆T, transforming ∑ ∆T to a non-exceedance probability ranging from 0 to 1. A larger
∑ ∆T value corresponds to a higher probability of P(∑ ∆T) [31]. The degree of drought
is represented by monthly SPI. ∆SPI proposed by the runs theory [32,33] is the absolute
value of the difference between the SPI for the month in which the CDHE occurs and the
drought threshold. Therefore, a larger ∆SPI indicates a more severe drought. DHMI can
also be treated as a weighted value of ∆SPI, so its maximum value is the maximum value
of ∆SPI.
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3.2. Event Synchronization

The method of event synchronization is used to reveal the global pattern of extreme
rainfall teleconnections [25] and predict extreme floods [24]. In this study, grid i and grid
j are selected to describe the definition of synchronized events. We suppose that, for
grid i, a CDHE occurs at a moment ti

m; for grid j, a CDHE occurs at a moment tj
n, where

m ∈ [1, M], and n ∈ [1, N]. M and N denote the total number of CDHEs at grids i and j,
respectively [34]. CDHEs occurring on consecutive days are counted as single events, and
the occurrence time of each CDHE is determined as the time corresponding to the first day
when the event occurs. A dynamical delay τ

i,j
m,n is introduced to decide whether a pair of

events occurs at ti
m, and tj

n is counted as a synchronized event. Its definition is as follows:

τ
i, j
m,n = min


{

ti
m+1 − ti

m, ti
m − ti

m−1, tj
n+1 − tj

n, tj
n − tj

n−1

}
2

 (2)

Furthermore, we introduce a maximum delay (τmax = 2 days) to constrain the forma-
tion of CDHEs [24]. f (i/j) is used to define the number of times a CDHE shortly occurs in
grid i after it occurs in grid j, i.e:

f (i/j) =
M

∑
m=1

N

∑
n=1

Sij (3)

with

Sij =


1 i f 0 < ti

m − tj
n ≤ min

(
τ

i, j
m,n , τmax

)
1/2 i f ti

m = tj
n

0 else

(4)

and analogously for f (j/i). Qij denotes the synchronization strength between grids i and j.
Its definition is as follows

Qij =
f (i/j) + f (j/i)√

M× N
(5)

where Qij is normalized to Qij ∈ [0, 1]. There is Qij = 1 if CDHEs are fully synchronized
between grids i and j.

3.3. Network Construction

In this study, the synchronization strength network is established through traversing
the synchronization strength for all possible pairs of grid points, where the grid points
are defined as nodes, and the synchronization strength between grid points is the weight
of the connected edges in the network. To eliminate minor edges, we prune the network
using Q95, corresponding to the 95th percentile of all synchronization strengths. Take grids
i and j as examples: there is a connected edge between grids i and j if Qij ≥ Q95. Finally,
we extract some edges with higher weights through the abovementioned principle. The
total number of edges in the synchronization strength network is 2.496 million, which also
indicates that the network has a large scale.

3.4. Complex Network Metrics

The establishment of the synchronization strength network provides a possibility to
identify the propagation extent of CDHEs. Complex network metrics aim to quantitatively
describe the topological characteristics of nodes and edges in the network.

The degree centrality is a measurement to evaluate the local importance of nodes in
the network, and the degree value of node i is defined as:

ki =
θ

∑
j=1

Aij (6)



Sustainability 2021, 13, 12774 6 of 15

with

Aij =

{
1, i f node i and j is connected

0, otherwise
(7)

where ki is the degree value of node i, θ is the total number of nodes, Aij is the adjacency
matrix, and Aij = 1 if node i and node j are connected; otherwise, Aij = 0. A higher
degree value for a node indicates that the node is connected to more nodes that are strongly
synchronized with its CDHEs.

The average distance of nodes is introduced to describe the average status of the
geographic distance of all edges for a node, and its mathematical expression is given as:

ADi =
∑
(

Dij × Aij
)

ki
(8)

where ADi is the average distance of node i and Dij is the geographic distance between
node i and node j. The average distance of nodes is concerned with whether a single node
has the possibility of connecting to distant nodes.

For node i, the synchronization strength index SSIi is proposed to quantify the ability
of node i to form a region with high synchronization strength. In general, the regions
with high synchronization strength that are formed should satisfy three conditions: the
degree of nodes in the region is larger, the average distance between these nodes and its
neighboring nodes is shorter, and the synchronization strength between neighboring nodes
is stronger. Thus, the definition of SSIi is given as:

SSIi = normalized
(

ki × CCi
ADi

)
(9)

with
CCi =

2× Eexisted
ki × (ki − 1)

(10)

where CCi is the clustering coefficient of node i, Eexisted is the number of existing edges
between neighboring nodes of node i, and CCi is used to measure the clustering degree
of node i in the network [35,36]. A node with a larger SSI is more likely to form an initial
region with high synchronization strength, and the occurrence of CDHEs in the region is
more synchronous.

3.5. Community Detection

Community detection is a method for discovering closely related components in a net-
work, and it is utilized to identify the propagation extent of CDHEs. The synchronization
strength between the nodes within the community is stronger; conversely, the synchro-
nization strength is weaker between different communities. The existing algorithms of
community detection mainly include the fast Newman and GN algorithms for unweighted
networks [37,38], and the spin glass algorithm, random walk algorithm, and label prop-
agation algorithm for weighted networks [39,40]. The spin glass algorithm, developed
from the theory of spin glass in physics, is suitable for weighted networks with a larger
scale, and is used to divide communities in the synchronization strength network. The
mechanism of this algorithm can be briefly described as the connection or disconnection
between nodes, and the community structure of the network is interpreted as the spin
configuration that minimizes the energy of spin glass [41]. The communities derived from
the spin glass algorithm are cohesive subgraphs.

For community detection, the modularity Mod is introduced to compare the division
quality under different numbers of communities. The definition of modularity Mod is
given as [42]:

Mod =
1

2ew
∑
i,j

[
wij −

wi ∗ wj

2ew

]
δ
(
Ci, Cj

)
(11)
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where Mod is the global weighted modularity, Mod ∈ [0, 1]. ew is the sum of the weights
of all edges, wij is the weight of the edge between node i and node j, wi is the sum of the
weights of edges connected to node i, and analogously for wj. A higher Mod indicates that
the nodes within each community are more closely related and more divergent between
the nodes of different communities. Ci and Cj are the communities of node i and node j,
respectively. If node i and node j belong to the same community, Ci = Cj, δ

(
Ci, Cj

)
= 1;

otherwise, δ
(
Ci, Cj

)
= 0.

4. Results and Discussions

The annual frequency and annual magnitude of CDHEs are examined in this study.
The annual frequency of CDHEs is defined as the total number of heatwaves in drought
months of each year, while the annual magnitude of CDHEs is calculated as the mean
DHMI of all CDHEs occurring in the same year. In Section 4.1, we first analyze the
linear trend in the mean frequency and mean magnitude of CDHEs over all grids during
1961–2018. For spatial variation, we calculate the mean annual frequency and mean annual
magnitude of CDHEs, and then analyze the trends in the annual frequency and annual
magnitude of CDHEs in each grid based on the linear fitting method for the period of
1961–2018. In Section 4.2, the synchronization strength index (SSI) is proposed to initially
identify the number of communities and the spin glass algorithm is used to derive the
propagation extent of CDHEs. We also explore the influence of AMO and PDO on the
variations in the frequency and magnitude of CDHEs in each community.

4.1. Spatiotemporal Variation Analysis of CDHEs

From a national perspective, as shown in Figure 4, the trend in the mean frequency of
CDHEs over all grids is −9.645×10−4 yr−1 with p = 0.401 (Figure 4a), and the trend in the
mean magnitude of CDHEs over all grids is 7.991×10−6 yr−1 with p = 0.959 (Figure 4b);
these values indicate a non-significant (p > 0.05) decrease in the mean frequency of CDHEs,
as well as a non-significant increase in the mean magnitude of CDHEs.

We further investigated the spatial distribution of the characteristics of CDHEs be-
tween different regions, the mean annual frequency and mean annual magnitude of CDHEs
in each grid are presented in Figure 5a,b; we found that the grids where CDHEs had not
occurred from 1961 to 2018 were mainly located at high altitudes of the Chinese mainland
(as shown in Figure 5c). Because high-altitude areas are relatively cold, air temperature
struggles to surpass the threshold temperature corresponding to the definition of heat-
waves, which is not conducive to the formation of CDHEs. The spatial distribution of the
mean annual frequency of CDHEs is shown in Figure 5a. It can be seen that the mean
annual frequency of CDHEs in Northeast China (NEC) and the middle-eastern region of
North China (NC) is less than 1, while the mean annual frequency in the western region of
Northwest China (NWC), the western region of NC, the eastern region of Southwest China
(SWC), most regions of central China (CC), East China (EC), and South China (SC) is more
than 1; the mean annual frequency of CDHEs in southern Guangxi province and northern
Hainan province exceeds 2, and the maximum mean annual frequency is 2.6. As shown in
Figure 5b, we found that the spatial distribution pattern of the mean annual magnitude
of CDHEs in the northern China (including NC, NEC, and NWC) is relatively similar to
that of the mean annual frequency, and the mean annual magnitude of CDHEs reaches a
maximum (0.27) in the eastern region of Xinjiang province. The mean annual magnitude
exceeds 0.2 in the western Chongqing province, southern Guangxi and Jiangxi provinces,
and northern Hainan province.
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Figure 4. Temporal series of the mean frequency (a) and mean magnitude (b) of CDHEs over all
grids for the period of 1961–2018 in China. Black solid lines represent the results of linear fitting.

The joint analysis of the mean annual frequency and mean annual magnitude of
CDHEs shows that the high mean annual frequency and high mean annual magnitude
of CDHEs in the western region of NWC and NC may be attributed to the fact that the
corresponding grid points are located in the desert, where the continuous high temperature
and precipitation deficit are more conducive to the formation of CDHEs, which also makes
the magnitude of CDHEs higher. The reason for the low mean annual frequency and
mean annual magnitude in NEC and the middle-eastern region of NC is the low maximum
temperature in the region [43,44], which inhibits the formation of CDHEs and also makes
the accumulative temperatures of CDHEs lower than those of CDHEs in other regions.
Except for the northern China, the spatial distribution patterns of mean annual frequency
and mean annual magnitude of CDHEs are dissimilar. At low latitudes, the number
of drought months probably determines the mean annual frequency of CDHEs due to
high maximum temperatures. The accumulative temperatures of CDHEs and the drought
degree of the month in which CDHEs occur together determine the mean annual magnitude
of CDHEs.

Trends in the annual frequency and annual magnitude of CDHEs in each grid are
shown in Figure 6a,b. There is a significant increase in the annual frequency of CDHEs
in NC, as well as in some parts of NWC. This may be due to the effect of unchanged
precipitation and increased maximum temperature during JJA in these regions, as shown
in Figure 6c,d. The significant increase in maximum temperature is more likely to lead
to heatwaves. Therefore, the significant increase in the annual frequency of CDHEs in
these regions can be attributed to the rise in maximum temperature. The regions where
the annual frequency of CDHEs decreases significantly are mainly located in the western
region of NWC, the northern region of CC, the western region of EC, and the southern



Sustainability 2021, 13, 12774 9 of 15

region of SC. In the western region of NWC, which is located in the desert and has an
environment characterized by a high temperature, there is potential for more heatwaves. A
significant increase in precipitation in this region makes it possible to convert from drought
to non-drought months and may lead to a significant decrease in the annual frequency
of CDHEs in this region. The possible mechanism for this in the southern region of SC
is similar to that of the western region of NWC. The reason for the significant decrease
in the annual frequency of CDHEs in the southern region of SC is a significant increase
in precipitation. In the northern region of CC and the western region of EC, unchanged
precipitation and a decreased trend in maximum temperature are generally consistent
with the results of previous studies [20,45], and likely inhibit the formation of CDHEs in
these regions.

Figure 5. The spatial distribution of the mean annual frequency (a), mean annual magnitude (b) of CDHEs for the period of
1961–2018, elevation (c) and seven regions (d) in China.

According to the definition of the annual magnitude of CDHEs, the annual magnitude
trend is likely affected by the individual or combined effect of variations in precipitation
and temperature. For instance, with precipitation unchanged, the annual magnitude
of CDHEs is expected to increase with the increase in maximum temperature. In some
parts of NWC and NC, the annual magnitude shows a significantly increased trend. The
precipitation decreases significantly, and the maximum temperature shows a significant
increase in the eastern region of NC, which may cause an increase in ∆SPI and accumulative
temperatures, resulting in a significant increase in the annual magnitude of CDHEs in this
region. Except for the eastern region of NC, the interannual precipitation is unchanged,
and the significantly increased maximum temperature dominates the significant increase in
the annual magnitude of CDHEs. The regions showing a significant decrease in the annual
magnitude of CDHEs are mainly located in the western region of NWC, CC, and the eastern
region of SWC, where the western region of NWC and the eastern region of SWC show a
significant increase in precipitation and a non-significant increase in maximum temperature;
as a result, a significant increase in precipitation probably becomes the main factor that
leads to a significant decrease in the annual magnitude. Precipitation in the northern and
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central regions of CC shows a non-significant increase, but the maximum temperature in
the former shows a non-significant decrease; the combined effect of maximum temperature
and precipitation may contribute to the significant decrease in the annual magnitude of
CDHEs, while the maximum temperature in the latter shows a non-significant increase;
thus, the main reason for the significant decrease in the annual magnitude of CDHEs is
that the change in the annual magnitude in this region is more sensitive to changes in
precipitation than it is to maximum temperature.

Figure 6. Trend analysis of the annual frequency (a) and annual magnitude (b) of CDHEs, and the maximum temperature
(c) and precipitation (d) during JJA for the period of 1961–2018 in China. Black dots indicate statistical significance at a 0.05
significance level.

4.2. The Propagation Extent and Driving Factors of CDHEs

In this study, we use the method of event synchronization to establish the synchro-
nization strength network, which is applied to reveal the synchronism of the occurrence
time of CDHEs among nodes. A higher synchronization strength between a pair of nodes
indicates that there are more CDHEs occurring at similar time points, and it also implies
that the total number of CDHEs between nodes is similar. If a region exists in which the
relations among nodes are relatively close, the occurrence time of CDHEs in the past may
be similar in this region, and CDHEs are more likely to propagate within the region. In
order to find the abovementioned regions, we propose an SSI based on the degree value,
as well as the average distance and clustering coefficient of nodes in complex networks.
The SSI of nodes is shown in Figure 7.

We found six regions that are formed by some nodes with high SSI (SSI ∈ [0.6, 1.0]).
According to the definition of SSI, these six regions are initially identified as core regions
where CDHEs can easily propagate. However, this method does not provide a clear
boundary of the propagation extent of CDHEs. The spin glass algorithm, a nonoverlapping
algorithm of community detection, is used to detect closely related components in the
network. In comparison with the connected edges between communities, the connected
edges between nodes within a community are denser and have higher weights; thus,
each community can be considered as the propagation extent of CDHEs. In this study,
the number of communities is initially determined to be four to eight, with reference to
the number of core regions. Furthermore, the modularity Mod is introduced to judge
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the quality of community detection under the different numbers of communities. The
modularity of the number of communities from four to eight is shown in Table 1.

Figure 7. The synchronization strength index (SSI) of nodes. Black dashed box indicates regions
where the SSI ∈ [0.6, 1.0].

Table 1. The modularity under the different numbers of communities.

The Number of Communities 4 5 6 7 8

The modularity Mod 0.667 0.680 0.687 0.691 0.688

We found that the highest value of Mod occurs when the number of communities
is seven. With this number of communities, the northern regions of NWC and southern
regions of SWC are classified as same community. However, spatial verification shows that
this teleconnection does not exist; thus, we chose eight, corresponding to the second highest
Mod, as the number of communities for subsequent community detection. Meanwhile, in
order to ensure the local optimum of community detection, we also calculated the modu-
larity when the number of communities was 9, 10 and 11, and found that the modularity
decreases as the number of communities increases. The results of community detection
with eight communities are shown in Figure 8. It can be seen that community 1, 2, 3, 5,
and 7 contain six core regions, indicating that the proposed SSI is indicative for the initial
determination of the number of communities in the spin glass algorithm, and the spin glass
algorithm further discovers the closely related components in the synchronization strength
network and provides clear boundaries. Each community can provide the propagation
extent of CDHEs, and the total number of CDHEs is relatively close between nodes within
a community.

AMO and PDO have been proven to influence the formation of CDHEs in China [23,28].
In this study, we correlate a temporal series of the mean frequency and mean magnitude
within different communities with a temporal series of AMO and PDO indexes during JJA,
aiming to explore the driving factors of CDHEs in different regions of China. The results of
the correlation analysis are presented in Tables 2 and 3. As shown in Tables 2 and 3, the
variations in the mean frequency and mean magnitude of CDHEs within community 1
and 2 are significantly and positively correlated with the AMO index, implying that the
AMO pattern may modulate variations in the frequency and magnitude of CDHEs within
community 1 and 2, and that the frequency and magnitude of CDHEs within community 2
are more positively modulated by the AMO pattern. In community 7 and 8, which are
also located in the northern China, variations in the mean frequency and mean magnitude
of CDHEs are not significantly correlated with individual patterns, but variations in the
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mean magnitude of CDHEs in community 8 are significantly correlated with the com-
pounding effect of AMO and PDO; the results of the standardized regression coefficients
for individual patterns show that AMO plays a dominant role in positively modulating
variations in the mean magnitude of CDHEs in community 8. Similarly, variations in the
mean magnitude of CDHEs in community 6, located in the southern regions of SWC, are
significantly correlated with the compounding effect of AMO and PDO, and AMO also
dominates in positively modulating variations in the mean magnitude of community 6. Pre-
vious studies [23] have shown that the warm AMO phase tends to increase the frequency
of CDHEs in northern China and the southern regions of SWC, and AMO is significantly
and positively correlated with temperature in most of these regions. When AMO is in the
warm phase, the warming of the northern China and the southern regions of SWC may
lead to a high magnitude of CDHEs; this also explains the positive modulation of AMO in
the frequency and magnitude of CDHEs in communities located in the northern China and
the southern regions of SWC. During the warm phase of AMO, the western North Atlantic
releases more heat flux from the ocean into the atmosphere, which triggers two types of
stationary wave trains that propagate eastward. One part is an arching wave train that
propagates from the western North Atlantic toward the polar region and even farther into
northeastern Asia (the positive polar-Eurasian pattern), and the other part is a Rossby wave
train zonally propagating from the western North Atlantic to East Asia (the negative Silk
Road pattern). These wave trains form a downward motion in most of China, providing
favorable conditions for high temperatures and precipitation deficits; when AMO is in the
cold phase, the reverse applies [46]. Community 3 is located in the central-eastern region
of China, where the correlations between the mean frequency of CDHEs and individual
patterns are negative and none of them are significant, but the mean frequency of CDHEs
is significantly and positively correlated with the compounding effect of AMO and PDO,
which indicates that AMO and PDO jointly influence the variations in the frequency of
CDHEs in this region. According to the results of the standardized regression coefficients,
the contribution of AMO to the variations in the mean frequency of CDHEs is greater than
that of PDO. For the variation in the magnitude of CDHEs within community 3, the AMO
pattern is significantly negatively correlated with the variation in the mean magnitude of
CDHEs. AMO has a significant positive correlation with precipitation and a non-significant
positive correlation with temperature in the central-eastern region of China. The increase
(decrease) in precipitation may inhibit (promote) the formation of CDHEs and decrease (in-
crease) the magnitude of CDHEs. Therefore, AMO may negatively modulate variations in
the frequency and magnitude of CDHEs, which is consistent with the results in this study.

Figure 8. The spatial distribution of communities when the number of communities is 8.
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Table 2. The single and multiple correlation coefficient between temporal series of AMO, PDO index during JJA and the
mean frequency of CDHEs in 8 communities.

Teleconnection Pattern

Community
1 2 3 4 5 6 7 8

AMO 0.27 * 0.40 ** −0.23 0.05 −0.06 0.15 0.07 0.13
PDO −0.03 −0.19 −0.16 −0.26 * −0.07 0.06 −0.07 −0.10

AMO and PDO 0.27 * 0.41 ** 0.32 * 0.26 * 0.11 0.18 0.09 0.15

Note: the significance level of correlation p < 0.01 is denoted as **, 0.01 < p < 0.05 is denoted as *.

Table 3. The single and multiple correlation coefficient between temporal series of AMO, PDO index during JJA and the
mean magnitude of CDHEs in 8 communities.

Teleconnection Pattern

Community
1 2 3 4 5 6 7 8

AMO 0.28 * 0.48 ** −0.27 * 0.06 −0.01 0.10 0.04 0.25
PDO −0.04 −0.20 −0.17 −0.27 * −0.09 0.23 0.05 0.06

AMO and PDO 0.28 * 0.49 ** 0.36 ** 0.27 * 0.09 0.28 * 0.07 0.28 *

Note: the significance level of correlation p < 0.01 is denoted as **, 0.01 < p < 0.05 is denoted as *.

The variations in the mean frequency and mean magnitude of CDHEs within commu-
nity 4 are significantly negatively correlated with the PDO pattern, which may be attributed
to the significant negative correlation between PDO and temperature in the region. The
potential mechanism of this correlation can be explained by the EAP teleconnection wave
train [29]. The variations in the mean frequency and mean magnitude of CDHEs within
community 5 do not significantly respond to AMO or PDO patterns. A reason for this may
be that temperature and precipitation within community 5 are not sensitive to changes in
AMO and PDO patterns [23].

5. Conclusions

In this study, we define CDHEs using daily maximum temperature and a monthly
scale SPI index, and focus on the spatial and temporal variations in the annual frequency
and annual magnitude of CDHEs during 1961–2018; this analysis shows that, on a national
scale, the mean frequency and mean magnitude of CDHEs, respectively, show a non-
significant decrease and a non-significant increase. In China, CDHEs rarely occur in
areas with high altitude or low temperature. The spatial distribution of the mean annual
frequency and mean annual magnitude of CDHEs is more consistent in northern China,
while spatial distribution is divergent elsewhere. The trends in the annual frequency and
annual magnitude of CDHEs within each grid point are also discussed, and significant
increases or decreases in the annual frequency and annual magnitude can be attributed to
the individual or combined effect of variations in precipitation and maximum temperature.

We further obtained the propagation extent of CDHEs through the constructed syn-
chronization strength network combined with the proposed synchronization strength
index, and discussed the correlation between the mean frequency and mean magnitude of
CDHEs, AMO, and PDO within each community to explore possible physical mechanisms.
AMO, through two types of teleconnection wave trains, positively modulates the mean
frequency and mean magnitude of CDHEs within community 1 and 2, and negatively mod-
ulates the mean magnitude of CDHEs within community 3. PDO negatively modulates
the mean frequency and mean magnitude of CDHEs within community 4. AMO and PDO
jointly modulate the mean magnitude of CDHEs within community 6 and 8. CDHEs have
a serious impact on the development of society, and there is minimal research regarding
the spatial propagation direction of CDHEs, these research have positive implications for
forecasting and emergency management of compound disaster events. In future research,
we will study the spatial propagation of CDHEs from the perspective of complex networks.
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