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Abstract: The emission estimation of the oil and gas sector, which involves field test measurements,
data analysis, and uncertainty estimation, precedes effective emission mitigation actions. A systematic
comparison and summary of these technologies and methods are necessary to instruct the technology
selection and for uncertainty improvement, which is not found in existing literature. In this paper,
we present a review of existing measuring technologies, matching data analysis methods, and
newly developed probabilistic tools for uncertainty estimation and try to depict the process for
emission estimation. Through a review, we find that objectives have a determinative effect on the
selection of measurement technologies, matching data analysis methods, and uncertainty estimation
methods. And from a systematic perspective, optical instruments may have greatly improved
measurement accuracy and range, yet data analysis methods might be the main contributor of
estimation uncertainty. We suggest that future studies on oil and gas methane emissions should
focus on the analysis methods to narrow the uncertainty bond, and more research on uncertainty
generation might also be required.
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1. Introduction

At present, methane is the second largest greenhouse gas in the world, accounting
for 20% of global greenhouse gas emissions [1]. It is a strong, short-lived greenhouse
gas [2,3], having an indirect impact on human health and affecting the decomposition of
some substances in the atmosphere during the process of decaying [4]. Methane emitted
by energy activities accounts for about 20% of the anthropogenic methane emissions, the
emission of the oil and gas sector accounts for the majority of the methane produced by
energy activities [5]. Methane emission reduction prevents the negative climate effect of
methane as a “low carbon fuel”, cuts down the global carbon intensity [6–9], contributes
to the achievement of climate goals [10–12], and brings about a cobenefit in the economy,
public health, and other fields [13–15]. As a result, the importance of mitigating methane
emission from oil and gas has become increasingly prominent and has widely concerned
the international community.

To better manage methane emissions, it is necessary to establish a deep understanding
of the total amount of methane emission of different stages in the oil and gas supply chain.
Estimations of methane emissions are provided, and three kinds of activities are usually
performed in the estimation process: field test measurements to obtain raw data of methane
emission sources, data analyses to calculate the emission rate, and uncertainty estimations
to evaluate the credibility of the estimation results. The above three activities are conducted
separately and sequentially. In recent years, advanced technologies and data analysis
methods have been developed and applied to improve the estimation accuracy and lower
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the uncertainty. Studies also showed that certain kinds of measurement technologies, data
analysis methods, and uncertainty estimation methods were often applied together. This
is because the application of data analysis methods requires certain kinds of technologies
and uncertainty estimation methods, and some emission sources also require specific
instruments and data analysis methods. On the other hand, the application of some
precision measurement instruments in some cases did not lead to an obvious change
of uncertainty. These all indicate that technologies and methods may be regarded as a
united system in the process of estimating methane emission and have an influence on
each other, affecting the final estimation. To sum up, there is a necessity to investigate
the relation between technologies and methods, which may provide instructions to select
proper instruments and analysis methods in different scenes for a more accurate emission
estimation.

A systematic review of the technologies and methods will be of use, but was not found.
Fox et al. [16] studied technologies for close range measurements and methane scanning.
Technologies are classified by their functions, and the development of handheld instru-
ments, fixed sensors, mobile ground labs, aircraft, unmanned aerial vehicles, satellites,
and their application in leakage detection and repair (LDAR) were described and simply
compared. How data acquired from these instruments is analyzed was not explained. The
National Academies of Sciences, Engineering, and Medicine [17] summarized and briefly
described the existing methane emission measurement plans in various fields classified by
“top-down” and “bottom-up” and explained the sources of uncertainty. However, a specific
implementation of the above-mentioned measurement technologies was not described
in the literature, and this report did not specifically explain the specific application of
these technologies in the oil and gas sector. The Greenhouse Gas Emission Reporting from The
Petroleum and Natural Gas Industry: Background Technical Support Document is a comprehen-
sive technical guidance report edited by USEPA [18]. In the report, several engineering
methods of estimating methane emission were summarized, with some newly developed
top-down measurement technologies poorly described. Methods for uncertainty estima-
tion were not explained in this report. Brandt et al. [19] summarized the characteristics
of several top-down technologies, but this summary was based on the conclusions of
existing studies, ignoring the technical details. Uncertainty analyses are attracting more
and more attention, and new methods of uncertainty analyses are also emerging. However,
an uncertainty analysis was only regarded as an independent step in emission estimation
in existing studies, the influence of technologies and data analysis was not discussed and is
thus not clear. Moreover, the factors which may affect the result of an uncertainty analysis
were also not discussed. To sum up, measurement instruments and data analysis methods
are usually introduced together without investigating the reasons for these combinations.
Other literatures introduced the technology used in the specific research only, with no com-
parisons. A systematic comparison and summary of the technologies and methods, which
may reveal their relationship, instruct instrument, and method selection and improve the
uncertainty estimation, may be of importance.

Therefore, this paper will try to depict the procedure of methane emission estimation
of the oil and gas sector, reveal their coinfluence on the estimation result, and present their
combined relationships by literature review. To achieve this goal, this article reviewed
the frontier of the three aspects, respectively and discussed how they interact with each
other. For technologies, measuring instruments and their application in different scenes
are introduced separately, so as to better present the technology characteristics and the
relationship between the objectives and the instruments. The contribution of this article
includes:

(1) summarizing the latest technologies and methods used in methane emission estima-
tion in the oil and gas sector,

(2) revealing how the technologies and methods interact in actual estimation activities
and how the technologies and methods coinfluence the estimation results,
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(3) proposing some recommendations on how to obtain an emission estimation with a
higher accuracy based on the results of this review.

This paper is organized as follows: Section 2 summarizes the existing measurement
instruments. Section 3 explains the application of these instruments in different objects.
Section 4 introduces the data analysis methods that are used in different measurement
scenes. Section 5 mainly introduces the prevailing probabilistic uncertainty estimation
methods. In Section 5, we present a discussion based on the reviewing work. This paper is
concluded in Section 6, where recommendations are presented as well.

2. Measurement Technologies: Instruments

Measurement instruments and their mechanisms are introduced in this section. We
will not discuss technical details, but will mainly focus on technical characteristics, such as
special scale, resolution, and detection limit, etc.

2.1. Optical

Optical instruments can be either active or passive based on technology detail. See
Table 1 for a comprehensive comparison.

Table 1. Comparison of Different Optical Technologies.

Active Passive

Mechanism Beer–Lambert law Beer–Lambert law, thermal
radiation

Results
Column density on the laser

path, need ancillary scanning
instruments

Use array detectors and generate
multipixel images

Light source
Narrow band: Laser

broadband: thermal or plasma
light

Not required (natural light as
background or difference in

temperature between the gas and
background)

Reflection
Required most of the time;

except for cavity ring-down
spectroscopy

No

Typical application CRDS, CEAS, and Fourier
infrared spectroscopy Thermal imager

Quantification Yes No

Active measurements are based on the Beer–Lambert law, which means methane
molecules can absorb light at a specific wavelength, and there is a quantitative relationship
between the transmitted light intensity and the incident light intensity [20]. By measuring
intensity of the incident and transmitted light at a specific wavelength, the methane content
in the measured area can be ascertained [21]. The absorption spectrum for the methane con-
centration quantification can also be called infrared absorption spectrum because the strong
absorption peak of methane is located in the infrared region. The narrow band absorption
spectrum usually uses lasers as a light source, such as the direct absorption spectrum (DAS)
and wavelength modulation spectrum (WMS) of a tunable diode laser, cavity ring-down
spectrum (CRDS), cavity-enhanced absorption spectrum (CEAS), midinfrared quantum
cascade, tunable diode laser differential absorption spectroscopy (TILDAS) [22–24], and
interband cascade laser. The broadband absorption spectrum uses thermal light sources,
plasma sources, and other broadband light sources [25]. Typical broadband absorption
spectra include the Fourier infrared spectrum [24], differential absorption spectrum, and
nondispersive infrared spectrum. Such instruments are equipped with laser transmitters
for the high requirements for the signal, so these measurements are “active”. A surface for
reflection is also required during measurements to capture the signal from the instrument
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itself, so active measurements cannot be deployed to open surroundings with a cloudless
sky and open land. One exception is the cavity ring-down spectrometer. A CRDS samples
ambient gas into a high-finesse optical cavity, therefore reflecting planes are not necessary
in this case [26]. The absorption peak of water vapor coincides with that of methane, so
water vapor with a high concentration may interfere with the measurement of methane in
some cases.

The results of active measurement are generally reported as methane concentration
in the gas column in the measured direction, which is also called column density. The
direct results from satellite spectra are usually reported as column density. The column
density measuring instrument can carry out measurements for a wider range in a fixed
state, but a mathematic model is needed when quantifying methane point concentrations.
Combined with instrument parameters, CRDS can give out high sensitivity results of
the point density of methane and is rather easy to operate. However, when conducting
multipoint measurements, CRDS has to be facilitated with mobile vehicles, which increases
the use cost [27]. CRDS is also limited by the unavailability of lasers in all spectral regions
and a small wavelength range over which the high reflective mirrors can maintain their
reflectivity [28].

Active optical instruments have a wide range of applications. Box type instruments
can be used to measure methane concentrations in small spaces or locations [29]. Some
instruments can be equipped on planes or satellites for measurements in a large scale.
Picarro CRDS products are particularly widely used for both bottom-up and top-down
methane leakage estimation with an accuracy level of ppb and a rather small measurement
range of 100 ppm [30]. Studies of column density optical measuring instruments are
continuously carried out. Such instruments are used in LDAR programs [31] as well as
concentration quantification, and their accuracy gradually approaches the ppb level [32].

Passive measurements are based on the Beer–Lambert law or thermal radiation.
Compared with active instruments, passive optical instruments have no need to carry
a laser transmitter. They use natural light or the thermal radiation of the measured
object itself and its surroundings to carry out the measurement, so reflective surfaces
are also unnecessary. Since most of the passive instruments use array detectors, they can
directly generate multipixel images showing methane leakage points and the approximate
concentration distribution of the methane leakage. Mathematical models have to be used
for inversion and for emission flux quantification, though this process requires many
mathematical assumptions, making the quantification rather inaccurate.

Thermal imaging technology uses sensors to convert the thermal radiation directly
into visible light images. The representative products of thermal imaging technology
include GasFindIR series gas imagers produced by the company FLIR in the United States
and the Second Sight series gas imagers produced by the company Bertin Technologies
in France. This kind of equipment has a relatively simple structure and low maintenance
costs, but requires a relative temperature difference between the measured gas and the
background [25]. Another optical method for measuring methane concentrations is to use
the natural background light as the radiation source to measure the methane absorption
intensity on the path. However, since a good natural background light is required as
the measurement reference, the results of this method will be affected by environmental
conditions, such as wind velocity, temperature, wind, and humidity [16]. Some researchers
analyzed the effectiveness of passive optical methane measurements by modeling. The
results show that the detection distance is the key index affecting the effectiveness. An
infrared detector can detect 80% of the leakage within 10 m, which means optical instru-
ments can be particularly helpful for detecting the existence of “super emitters”. At the
same time, the background of the object will also affect the effectiveness of the leakage
detection; the sky or low emissivity background behave well in promoting the effectiveness
of leakage detection [33]. Methane emission rates cannot be obtained directly from passive
measurements. An early study by Schulz et al. [34] showed that a minimum leakage
of 2 L/min could be detected by a staring focal-plane-array infrared camera system in



Sustainability 2021, 13, 13895 5 of 29

experimental tests, but this study did not reveal a method to deduce the emission rates
from the image. Some new studies tried to set up a computer analysis method with a
neural network model to analyze whether there is leakage from the images obtained by
infrared cameras [35]. Methods for a direct quantitative calculation of the emission rates
from images are still under development.

2.2. Chemical

Methane participates in chemical reactions when chemical instruments work. Detailed
detection mechanisms include detecting specific groups generated in methane combustion
in a hydrogen flame, detecting positive ions generated by methane ionization under
ultraviolet irradiation, detecting electric signals in electrochemical reactions of methane,
and detecting signals generated by catalytic oxidation. A flame ionization detector (FID)
and photoionization detector (PID) based on the first two mechanisms could be used
for methane quantification [36]. Electrochemical detection can be realized by a fuel cell
or biofuel cell [37,38]. The mechanism of catalytic oxidation can be described in detail
as follow: The resistance of a thermal sensor will be changed due to the heat released
by methane oxidation, and the change of the electrical signal can be used to derive the
methane concentration. The problem is that when the methane concentration is too high,
the violent catalytic oxidation of methane raises the temperature of the thermal sensor to an
abnormal level, resulting in irreversible damage, which is also called “high concentration
activation” [39]. Therefore, several instruments, including an HiFlow Sampler and a CGI-
201 [40], etc., have adopted the method of combining a thermal conductivity sensor and
catalytic oxidation sensor together to realize the methane concentration measurement in
the whole concentration range. For these instruments, the catalytic oxidation sensor is used
in the low concentration range, and the thermal conductivity sensor is activated in a high
concentration range. Chemical measurements methods cannot be used in extremely low
temperatures; instruments needing ignition cannot be used in closed spaces.

Compared with optical instruments, the resolution of portable chemical measurement
instruments is poor, but the concentration ranges are wider. The combustible gas detector
CGI-201 used in the research of Hendrick et al. [40] has a resolution of only 100 ppm [41],
but it is able to endure pure methane, while the upper limit of CRDS in the same study is
~40 ppm. This makes the portable chemical instruments suitable for field tests, especially
for large concentration measurements.

2.3. Other Technical Options

Acoustic technologies analyze the sound signal produced by methane leakage to
obtain information on the leakage point. One of the basic acoustic approaches is to directly
analyze the sound signal transmitted by the pipeline to locate the leakage point. By
installing sound sensors outside the pipeline, the sound signal generated by the leakage
point outside the pipeline can be captured, and the pipeline leakage point can also be
analyzed. This method works well in detecting the underground leakage point. Ultrasonic
waves can be used to detect leakage points in long-distance transmission oil and gas
pipelines, while sonar can be used to detect pipeline leakage underwater [21]. Acoustic
instruments are helpful for detecting leakages but cannot be used for leakage quantification.
Most of these instruments have a very limited detection range and can only be used for
pipeline leak detection. At the same time, acoustic technologies have higher requirements
for signal processing and are susceptible to the noise interference from the pipeline network.

Thermal conductivity. Because the thermal conductivity of methane is higher than
that of air, the temperature of the thermal sensor will drop faster in an airflow containing
methane, thus the methane concentration in the sample can be calculated by measuring
the resistance change of the sensor. Thermal conductivity sensors have a detection range
for methane concentration of 4–100% [39], which means they are not suitable for low
concentration methane measurements. The core of thermal conductivity sensors is semi-
conductor elements. Studies on semiconductor elements are also progressing in order to
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realize rapid measurements of methane at a low temperature [42,43]. From the existing
studies, the resolution of thermal conductivity instruments equals that of portable chemical
instruments.

Chromatography. Chromatography is a common gas composition analysis technology
in laboratories with a complex mechanism. Some gas chromatographs use flame ion
detectors. Gas chromatography (usually referred as GC) can be used for the accurate
quantification of the methane content in a sampled gas, so as to calibrate the sensor or
accurately analyze the gas concentration in the field [44]. However, due to its huge volume
and relatively complex operation, GC has not been that convenient for field tests. Williams
et al. [45] sampled soil gas with chambers and analyzed these samples with a Varian-GC.
Larger scale atmospheric surveying was completed by a mobile workstation equipped
with a Picarro G2210-i analyzer.

Flow rate. It is natural to measure the velocity of a leakage flow to determine the
methane emission rate. Some specific technical options for the measurement include: cali-
bration bags (17–408 m3/h, ±10%), flow meters, and anemometers (0.4–200 m/s, 0.9–1.5),
etc. [37,46]. It is worth noting that the above equipment is only capable of measuring the
gas flow rate, and the estimation of the methane leakage requires further measurements of
the methane concentration in a sample gas. At the same time, most of these measurements
require close operation to the facilities, which increases the labor cost and lowers the safety.
It is also a technical option to estimate the methane leakage of a pipeline using the flow
rate difference between upstream and downstream of a pipeline. But this method might be
inaccurate due to the fluctuation of the flow meter, and it also counts in the volume of the
stolen gas. A comparison of different flow rate meters is shown in Table 2.

Table 2. Comparison of different flow rate meters.

Instrument Low Detection Limit High Detection Limit Uncertainty

Turbine meter 0.1–0.2 cfm (0.17–0.34 m3/h) a 200–400 cfm (340–680 m3/h) a

Anemometer 30 ft/min (0.15 m/s) a 4000 ft/min (20 m/s)–200 m/s a,b −10%~+50% b

Calibration Bags 17 m3/h 408 m3/h a,b ±10% b

a: Subramanian et al. 2015 [46]; b: UN, 2019 [37].

Soap bubbles. Using soap bubbles is an old method for leak detection. In some
studies, this method is used for the first inspection of a facility leakage [47], but it requires
high labor costs to use this method in a large area; at the same time, the soap bubble
inspection must be operated close to the leakage point, which is a threat the personal safety
of the operators [37]. Soap bubbles cannot be used for quantitative detection.

2.4. Summary

In Section 2, instruments are introduced based on their technical mechanisms. De-
tection limit, resolution, and applicable spatial scale of the instrument determine the
application scene. From the review, optical, chemical, and thermal conductivity based
instruments are most commonly seen in studies. Optical instruments are more adaptive
in the spatial scale. CRDS can measure the concentration of a point with high precision,
while Fourier infrared spectrum-based instruments can be used on satellites for long-range
measurements. Instruments based on semiconductors (chemically or thermally conductive)
might behave worse than CRDS, but they have a wider detection range and are cheap in
price, which makes these instruments prevailing in actual use.

The above instruments can be used to quantify the emission rate. We also noticed
that some of the instruments cannot be used to quantify the methane concentration, but
they (e.g., passive optical instruments) maybe powerful when determining where methane
is emitting in the monitored space, i.e., leakage detection. Detection is also vital in the
process of methane emission control, for it is necessary to discover all the leakage points
before obtaining an accurate emission estimation, as well as repairing the leakage points
as quickly as possible. The latter process, also known as leak detection and repair, has
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been the focus of more attention in recent years because of its important role in cutting
methane emissions in the oil and gas sector. Interested readers can refer to the introductory
materials about leakage detection and measurement [48,49].

Table 3 contains a brief summary and comparison of the instruments.

Table 3. A brief summary of different measuring instruments.

Representative
Instruments

Can Be Used for
Quantification? Detection Limit Resolution Spatial Scale Other Features

Optical-CRDS yes 0–40 ppm 0.5–1 ppb Point
Optical-other

active instruments yes ppmv, ppbv Long distance

Optical-passive No (under
development) - - Medium distance

Chemical-GC yes 0–100% Point

Chemical-catalytic
oxidation yes 0–5% (according to

HiFlow Sampler) 100 ppm Point

Hybrid with
thermal

conductivity
sensors

Thermal
conductivity yes 5–100% Point

Flow meters yes In Table 2 Point Not accurate
Acoustic no - - -

Soap bubbles no - - -

3. Measurement Technologies: Applications in Different Scenes

Instruments are applied to measure the emission of different objectives in the oil
and gas supply chain, including well completion, liquid unloading, pneumatic devices,
compressors, dehydration facilities, gathering and boosting stations, pipelines, flaring, and
well pad, etc. They vary in their spatial scale and emission rate, so different measuring
instruments have to be chosen for different objectives. Moreover, to adapt to different
scenes, measuring instruments are sometimes fixed to vehicles, aircrafts, or satellites, which
enriches the technical options.

This section mainly discusses the adaptation of different technical instruments in
different scenes. Methods for emission quantification are mainly discussed. The differences
of the technical options are discussed from mainly two aspects. The first is the spatial scale
of the objectives. The second is the distinction of bottom-up and top-down methods. This
paper further divides emission sources into three categories according to their spatial scale.
The first type is the components, which have the smallest spatial scale and represent typical
bottom-up measurements. The second type is the facilities and stations. Measurements of
these objectives are top-down. In the third type, we regard the Earth or continents as an
entire emission system, and top-down observations are deployed for designating emissions
to different sources.

3.1. Type1: Measurement of Methane Emission from Components

Measurements of component emission provide detailed information of the methane
emission from complicated facilities and are used to correct emission factors. Components
are small in size, and these measures are designed to reach a high precision level. Objectives
included in this category contain valves, pipelines, compressors, and wellhead casings, etc.

Portable devices are usually light in weight, and some can be handheld. These
devices may integrate data recording systems, GPS positioning systems, and cameras. A
HiFlow Sampler is equipped with a catalytic oxidation sensor and semiconductor thermal
conductivity sensor, which can directly measure the emission of some small components
with sealing bags. Handheld devices are flexible in use, but need to be run manually, which
requires a higher labor cost. For leakage detection, optical instruments are commonly used.
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The CRDS can also be used for measurements on a component level. Detailed in-
formation of the measurement process will be introduced in the next section. Hendrick
et al. [40] used the cavity ring-down spectrometer to measure the methane emission rates
of underground fractures.

3.2. Type2: Methane Emission Measurement of Facilities and Stations

Facilities and stations consist of a number of various components, so the methane
emissions of these objects do not come from single sources. The measurement of facilities
and stations is a type of top-down measurement. Different strategies are developed to
provide adequate data for mathematical models for data analysis. Technical options for
such measurements include: fixed sensor network, mobile workstation, aircraft, or small
UAV.

Fixed sensors are normally made based on optical, chemical, or semiconductor sen-
sors, which can be deployed in risky conditions instead of people. Sensors can monitor the
methane concentrations in a fixed area in real time, so it is effective for leakage detection,
especially for areas with a high component density. A comprehensive analysis of the data
of the sensor network can reveal the distribution of the emission sources and their emission
rates in the area. The sensor network is an important method to realize high quality leakage
detection and repair [16]. A big obstacle to this plan is that the total cost will be too high,
because the price for a single sensor remains high, and expanding the detection range of the
sensor or reducing the cost becomes a solution to fix this problem. The Advanced Research
Projects Agency-Energy (ARPA-E) MONITOR program has funded 12 research projects
to reduce the cost of the sensor network with high measurement accuracy [50]. There are
also studies exploring the possibility of using low-cost sensors instead of high-cost sensors.
Riddick et al. [51] established a nonlinear correction model for the low-cost Figaro TGS2600
sensor through controlled release experiments in a laboratory. The results of the low-cost
sensors can be modified to reliable concentration values in the range of 1.85–5.85 ppm
through the model.

Mobile workstation. When we install measuring instruments (such as CRDS) to vehi-
cles, we get mobile workstations. A MW keeps the precision of the measuring instrument
and increases the mobility of them, which enables the multipoint sampling of methane
concentrations in large areas. In some studies, measuring instruments are even installed on
ships to obtain emission data along a shipment route [52]. Anemometers, GPS, and other
measuring instruments for atmospheric parameters are equipped as well, for these data
will be vital in analysis methods, such as inversion or OTM33a. In addition to measuring
the concentration of appointed positions, some studies installed instruments on other vehi-
cles (such as taxis) which are not particularly designed for methane detection. They can,
instead, obtain the spatial distribution of methane of a wider range [16], so as to analyze
the emission sources and their emission rates. Generally speaking, mobile workstations can
only obtain methane concentration data horizontally, and the concentration distribution at
different heights has to be obtained by modified sampling devices.

Aircraft and UAVs are similar to mobile workstations, but are not restricted by geo-
graphical conditions. They can obtain three-dimensional methane distribution information.
The sampling range of aircraft is larger, the sampling speed is faster, and the measurement
range is wider than that of mobile workstations. UAVs are limited by their load capacity
and endurance time, so some precise but heavy instruments cannot be carried by UAVs;
moreover, UAVs are limited by weather conditions. These restrictions become the obstacles
to the development of UAV methane detection, and the uncertainty of UAV measurement
still remains high. Golston et al. [53] developed a set of methods to detect and quantify
methane emissions with a UAV system. Two methods based on the Gaussian diffusion
equation and transection integration were developed, respectively. Data from aircraft
measurements are analyzed by the transection method described in the next section, and
optimizing flying routes that affect the estimation attracted research attention [54]. The
high cost of aircraft maintenance makes this measurement plan expensive, and limitations,
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such as no-flight zones and a minimum flight height also restrict the application of this
technology. Shah et al. [55] conducted a downwind UAV measurement in the UK ignoring
the need of site access. For optical imaging technology, the cloud layer, ground reflection
property, and aircraft flight speed will also affect the actual measurement accuracy [16].

3.3. Type3: Methane Emission Measurement across the Globe

Methane emission estimation across the globe is a typical top-down process. There
are two ways to conduct this estimation. The first is to retrieve methane emissions by all
kinds of sources from data from meteorological observation stations. The second is to
retrieve emission estimations from satellite observations. Technologies used by meteoro-
logical observation stations resemble the ones used in normal measurements. At present,
methane monitoring satellites, including SCIAMACHY jointly developed by Germany,
the Netherlands, and Belgium; GOSAT from Japan, TROPOMI (tropospheric detector)
from Europe, and GHGSat from Canada have been put into operation successfully. Other
satellites or monitoring programs, such as MERLIN, COOL, and MethaneSAT, are under
development. The above satellites are equipped with devices, such as thermal infrared and
near-infrared sensors for carbon observation (Fourier Transform Spectrometer), a scanning
imaging absorption spectrometer, a push-broom imaging spectrometer, a Fabry–Perot
imaging spectrometer, and an imaging grating spectrometer [56–58]. Most of these tech-
nologies are based on short-wave infrared reflection (SWIR). For example, MERLIN uses its
laser to generate infrared signals, and the others use natural solar backscatter signals [59].
Jacob et al. [59] summarized the basic parameters of these technologies, as listed in Table 4.
In general, the spatial resolution and column accuracy of satellite measurements are being
continuously improved. The precision of some satellite measurements is equivalent to that
of on-the-ground measurements [32], which means that the satellites initially designed for
methane detection can be used for high-precision quantitative measurements of methane
concentration. The MethaneSAT (planned launch in 2022) by EDF could reach 2 ppb at a
pixel size of 1 km by 1 km, further demonstrating the technical possibilities for using satel-
lites to conduct quantitative analyses [60]. However, while satellites can monitor methane
emissions in a large area for a long time, they cannot distinguish different sources (e.g.,
biosource emissions and emissions from energy activities) from each other. Furthermore,
the measurements are often affected by clouds and ground radiation. In summary, with
technological development, satellites have a huge potential to be deployed in long-range,
continuous methane monitoring. A detailed introduction of the retrieving process is in the
following section.

3.4. Summary

In Section 3, we show the application of different instruments when measuring the
emission of different sources. We may find that the spatial scale of the measured objectives
greatly influences the choice of top-down and bottom-up methods. For middle- or large-
size objectives, it is nearly impossible to estimate the methane emission by bottom-up
methods. There are many reasons leading to this judgment: small components are vast in
number, a one-by-one measurement results in unaffordable time and labor costs, and the
emissions of some large components cannot be measured by bottom-up methods (discussed
in Section 4) but only through top-down inversion. The development of leak detection
and repair methods (e.g., fixed sensors array and airplanes) also indicates the potential of
top-down methods in methane emission quantification. As a result, the measurements of
middle- or large-scale objectives are mainly top-down. In addition, in these cases, high
precision instruments have to be chosen, or the poor quality of raw data from top-down
methods may lead to great uncertainty or method failure. In this way, we demonstrate how
the size of the objectives determines the top-down and bottom-up selection and instrument
decision.

Figure 1 presents the relationship between the measured spatial scale and measure-
ment instruments.
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Table 4. Parameters of Different Satellites.

Instrument Agency Data Period Fitting Window/Spectral
Resolution (nm) Pixel Size (km2) Coverage Precision

SCIAMACHY ESA 2003–2012 1630–1670 (1.4) 30 × 60 6 days 1.5%
GOSATi JAXA 2009– 1630–1700 (0.06) 10 × 10 3 days 0.7%
TROPOMI ESA, NSO 2017– 2310–2390 (0.25) 7 × 7 1 days 0.6%
GHGSat GHGSat, Inc. 2016– 1600–1700 (0.1) 0.05 × 0.05 1–5%
GOSAT-2 JAXA 2018– 1630–1700, 2330–2380 (0.06) 10 × 10 3 days 0.4%
CarbonSat ESA proposed 1590–1680 (0.3) 2 × 2 5–10 days 0.4%
IMG MITI 1996–1997 7100–8300 (0.7) 8 × 8 along track 4%
AIRS NASA 2002– 6200–8200 (7) 45 × 45 0.5 days 1.5%
TES NASA 2004–2011 7580–8850 (0.8) 5 × 8 along track 1.0%
IASI EUMETSAT 2007– 7100–8300 (1.5) 12 × 12 0.5 days 1.2%
CrIS NOAA 2011– 7300–8000 (1.6) 14 × 14 0.5 days 1.5%
MERLIN DLR/CNES 2020– 1645.552/1645.846 pencil along track 1–2%
GEO-CAPEp NASA proposed 2300 nm band 4 × 4 1 h * 1.0%
GeoFTS NASA proposed 1650 nm and 2300 nm bands 3 × 3 2 h * <0.2%
geoCARB NASA proposed 2300 nm band 4 × 5 2–8 h * 1.0%
G3E ESA proposed 1650 nm and 2300 nm bands 2 × 3 2 h * 0.5%

Abbreviations: ESA—European Space Agency; JAXA—Japan Aerospace Exploration Agency; NSO—Netherlands Space Office; MITI—
Japan Ministry of International Trade and Industry; NASA—US National Aeronautics and Space Administration; EUMETSAT—European
Organization for the Exploitation of Meteorological Satellites; DLR—Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace
Center); CNES—French National Center for Space Studies; GHGSat, Inc.—A private Canadian company; *: Over a continental scale domain;
Adapted from Jacob, et al., 2016. [59].

Figure 1. Methane measurement technologies operated across different spatial scales.

4. Data Analysis: From Methane Concentration to Emission Flux

Most instruments can only give out methane concentration values of either a point or
a column average. The concentration data can only represent the distribution of methane in
space and cannot be directly used to calculate the total methane amount. An emission rate
has to be calculated by concentration data, so that the total amount of methane emission
can be calculated, and the analysis of emission-related costs can be continued. Therefore,
the estimation of the methane emission rate from the concentration is actually the key step
to estimating the total emission. There are several methods for calculate emission rates.
Different methods follow different steps, resulting in a different calculation simplicity,
different uncertainty, and different applicability. In addition to some cases where the
emission rates can be directly measured, methods for calculating emission rates can be
summarized as follows: engineering estimation, chamber sampling, models, OTM33a, and
inversion. Further introduction is as follows.

4.1. Engineering Estimations

Engineering estimation methods, as the name implies, are used in engineering cases.
They are simple methods carried out with parameters of the objective when direct mea-
surements cannot be carried out, so the accurate emission rate is not easily available.
Engineering estimations are suitable for the rapid estimation of methane emissions caused
by common engineering practices, e.g., component maintenance, such as pumps Greenhouse
Gas Emission Reporting from The Petroleum and Natural Gas Industry: Background Technical
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Support Document [18] provides engineering calculation formulae for the following types of
objectives: natural gas driven pneumatic pumps, natural gas driven pneumatic manual
valve actors, natural gas driven pneumatic bled devices, acid gas removal vent stacks, blow
down vent stacks, and dehydration vents, etc.

The formula used in the engineering estimation is based on theoretical calculations,
proven equations and models, or experiments. The input and output parameters are fixed.
Sometimes software or calculation tools based on other commercial programs are designed
for easy use. The input parameters used in engineering estimations are easy to measure
in actual engineering operations, such as temperature and pressure, or parameters of the
objective, such as length, diameter, or volume, etc. Riddick et al. [61] used a formula
including temperature, relative humidity, and the resistance of the semiconductor sensor
in samples and in clean air to estimate the emission rate of an abandoned wellhead.
Xie et al. [62] used a formula to estimate the pollutant emissions by offline detection.
Engineering estimation methods are convenient to use, but the uncertainty of the results is
great, so they are not widely used when a more accurate estimation is required.

Underground gas pipelines are special components that need to be focused on. Pipes
are buried underground but still emit methane in some conditions. A case study indicates
that among the methane leakages from medium pressure gas transmission pipelines made
of organic materials, accidental leakage accounts for 99% of the total leakage [63]. There
are several ways to detect the leakage of underground pipelines. One is to monitor the
difference of the gas flow between upstream and downstream of the pipeline. An abnormal
fluctuation of the flow rate indicates the existence of a leakage. This method can also
give out a quantified estimation of the methane emission, but some errors may exist.
Ground monitoring vehicles can also be used as a method to detect the leakage point
and estimate the leakage volume of the underground pipeline. The relationship between
the maximum methane concentration detected on the ground and the methane leakage
rate can be established through empirical formulae generated by experiments with a
controlled release and CRDS as a measuring instrument [64]. Based on the field test data
and numerical simulation, Cho et al. [65] established the relationship between the leakage
rate of underground pipelines and the surface methane concentration.

4.2. Chamber Sampling

When using chamber sampling methods (abbreviated as chamber method), leaking
points (or components) are sealed like a chamber, and that’s why this method is called
“chamber sampling”. Chamber sampling is a direct measuring, bottom-up method to
calculate the emission rates of small components with relatively high accuracy.

The chamber method can be adjusted flexibly to the measured objectives. For pipe
joints, valves, and pump bodies, they can be directly wrapped with plastic bags for sealing.
For the casing head, well completion, or liquid unloading, a gas mixture can be gathered
by specific devices, so as to measure the total amount of methane emitted. The chamber
method can also be used to measure the emission rate of cracks. Hendrick et al. [40] took
the underground cast iron pipeline of the Metro Boston area as an example to show the
leakage distribution of infrastructures that tend to leak. They carried out measurements of
land cracks that may emit methane because of the leaky underground pipelines nearby
by the chamber method. Researchers designed many kinds of chambers from plastic
buckets or boxes for different kinds of land cracks. The emission rate was calculated by the
concentration increase of methane in the chamber. When the methane leakage rate was
rather low, CRDS was used to quantify the concentration of methane; when the methane
leakage rate was high (higher than 16,000 g/day in the study), the combustible gas indicator
(CGI; Gas Sentry®, model CGI-201, Bascom-Turner Instruments, Inc., Norwood, MA) was
selected for concentration quantification. In another study, a temporary sampling device
was designed for the wellhead without a plunger lifting device to measure the flow rate of
the backflow gas. The researchers assumed that the methane concentration of the backflow
gas was consistent with that of the methane produced by the oil and gas well, so as to
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avoid the dilution of the backflow gas by the original gas in the sampling chamber. By
multiplying the concentration and gas production rates, the methane emission rate of the
liquid unloading process can be obtained [66].

The emission rate cannot be directly measured by using chamber methods; it is
realized by sampling and analyzing the concentration increase of methane in the closed
chamber. In the research of underground pipelines, researchers developed two different
ways to analyze the concentration data for different types of chambers. Yin et al. [67]
used a similar method to measure the methane leakage rate by analyzing the rising rate
of methane concentration in the sampling bag. Dedikov et al. [36] deployed a cowl with
two openings for flow velocity measurement and gas sampling on the leakage point. In
this case, the concentration data was used directly to estimate the emission rate when the
dilution of emitted gas was ignored. To sum up, chamber sampling is a commonly used
method in component level emission quantification, with rather high accuracy compared
with engineering estimation.

A Bacharach HiFlow Sampler (HS) is actually a chamber sampling instrument. HS is
an instrument developed by the company Bacharach in the United States for measuring the
methane emission rate directly, and it is the only product on the market that can directly
give out the result of the emission rate. Similar measuring systems were reported [36,68,69],
and here we picked the Bacharach HS for an example. HS uses a high-volume suction
device to suck in all the ambient air around the leakage point. By accurately quantifying
the methane concentration and velocity of the inlet air, the total amount of methane
leaked into the surrounding of the leakage point per unit time can be calculated, because
the assumption is that all the methane can be sucked in by HS [70]. In this way, the
methane emission rate can be measured. HS is sometimes used in combination with the
chamber method, which means wrapping up the leakage point and measuring the methane
concentration with the sampler to further obtain the methane leakage rate [71].

HS uses two types of sensors to quantify the methane concentration: one is a catalytic
oxidation sensor, which is suitable for low molar concentration quantification below 5%,
and the other is a thermal conductivity sensor, which is suitable for high concentration
quantification of 5–100%. In order to maintain the accuracy of the instrument, HS needs to
be calibrated regularly, and the calibrating gas should have a similar composition to the
actual samples.

HS is widely used in emission rate measurements for its convenience [66,72–74].
However, some studies found that HS may systematically underestimate methane leakages,
and subsequent studies have confirmed the existence of this phenomenon. Different studies
have put forward different explanations for this phenomenon [75,76]. Modrak et al. [75]
proposed that the sensor failure of HS may be caused by an insufficient dilution of high
concentration methane. Howard et al. [77] further found that the failure of the sensor used
by the HiFlow Sampler in the switching process of the low concentration mode (methane
concentration is less than 5%, using a catalytic oxidation sensor) and high concentration
mode led to the underestimation. In the following three cases, the sensor transition failure
may occur: 1. The calibration is more than ~2 weeks old. 2. The firmware is out of
date.; 3. The composition of the NG source is less than ~91% CH4. Connolly et al. [78]
further explained that HS worked stably under the single mode measurement of the
catalytic oxidation mode or thermal conductivity mode, but the results were obviously
inaccurate in the conversion region. Nonmethane hydrocarbons may also interfere with
HS measurements. According to the studies of Alvarez et al. [71], the leakage of pneumatic
devices and chemical injection pumps was mainly measured by HS in existing studies.
The leakage of the above two kinds of sources accounts for a small proportion of the
emissions in the whole supply chain of the oil and gas sector. Therefore, the inaccuracy of
HS does not significantly affect the estimation of methane emissions of the whole supply
chain. Zimmerle et al. [79] presented a method to correct HS measurement results by tests
afterward. In general, HS is a powerful instrument for methane emission rate measurement
when used correctly.
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4.3. Gaussian Diffusion

At room temperature, methane can be regarded as a kind of buoyant gas with a density
less than air. The diffusion law of methane from continuous point sources can be described
as follows by the Gaussian diffusion equation [80], shown as Equation (1):

Ci(x, y, z) =
Qm,i
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In this equation, Ci(x, y, z) gives out the concentration of methane (a unit of mass/volume),
Qm,i means the methane emission rate (a unit of mass/time), H means the effective height of the
emission point, and σy and σz represent the diffusion coefficient in the y and z directions (the
same unit of length), and u means the average wind speed. The diffusion coefficients σy and σz
can be determined by the air stability parameter determined by the Pasquill–Gifford criterion.
Because the wind speed, wind direction, temperature, and other meteorological parameters
are changing constantly, the average value of the meteorological parameters is usually used in
the process of using the model. The applicability of this model is also affected by many other
factors, such as wind speed and surface roughness [81]. The uncertainty of the model’s results
can be calculated by the Monte Carlo method from the uncertainty of each parameter.

Lan et al. [82] described the detailed process of using this model. Before using the
model, the model parameters need to be set one by one. In Lan’s research, the effective
height h of the well pads is 3 m and 12 m for the compressor stations, so as to consider
the influence of the downwash. Pasquill stability parameters are determined by obtaining
meteorological parameters, such as cloudiness, wind speed, solar altitude, and so on. The
wind speed, cloudiness, and other parameters are obtained by field measurements, and
the sun’s altitude is calculated by local longitude and latitude and sunshine duration.
An important step in using the model is to determine the source of the emissions. An
infrared camera is used to determine the emission point. Generally speaking, emission
sources with high emission rates and relatively small sizes can be regarded as point sources.
In this research, compressor stations and engines are regarded as point sources, while
processing stations and landfills are regarded as a collection of multipoint emission sources
because of their huge size. In the above study, the researchers used the AERMOD model
to consider the influence of the downwash effect on methane diffusion, so as to achieve
a more robust estimation of the methane emission rate. Safitri et al. [81] established a
leakage concentration model based on Gaussian diffusion. Yacovitch et al. [80] developed a
method to guess the source location indicated by “accidental” plumes acquired in between
measurements of large facilities and during long drives across the studied region.

Determining the parameters of the model is one of the core steps in using this model,
and it is also the step that mainly affects the uncertainty of the estimation result. It is a
focus for researchers to estimate model parameters more accurately.

4.4. Tracer Flux

The actual relationship between the concentration increase and the leakage rate is
very complicated. However, for a fixed observation objective, the relationship between
these two variables can be simplified to a fixed coefficient α in the formulae in Equation (2)

∆XCH4 = f (Vrelease) = αVrelease (2)

where ∆XCH4 represents the concentration increase from the background to the total ob-
served methane concentration caused by the emission, and Vrelease represents the methane
emission rate. The coefficient α combines the influence of all other factors, such as me-
teorological conditions, geographical environment, and so on. If α can be obtained by
observing a reference gas with a known emission rate, the emission rate of the observed
objective can be calculated directly from the methane concentration increase ∆XCH4 , and
complex simulations will not be required [19,83,84]. These are the basic ideas behind
how a trace gas method is developed. Lamb et al. [84] summarized the basic steps of this
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method. Allen et al. [85] measured the methane emission rate of 20% of the well completion
flowbacks and 13% of the production sites with this method.

The assumption on which the trace gas method operates is that the coefficient α of
the methane is truly the same as that of the selected reference gas. This assumption puts
forward many restrictions for experimental design. For example, the release point of the
reference gas must be close enough to the emission sources, and the emission sources are rel-
atively clustered. For those cases where the emission sources are dispersed, Lamb et al. [84]
proposed a modified method combining the diffusion model. Roscioli et al. [83] designed
a double trace gas method in the literature for cases where the reference gas release device
cannot be placed close enough to the methane emission source. Nitrogen oxide and acety-
lene were used as reference gases at the same time. When the concentration increase of a
single gas showed no correlation or a bad one with the methane concentration increase,
a relationship between the methane concentration increase and that of the two reference
gases was established. In this way, the relationship between the methane emission rate and
the release rate of the two reference gases was established. This method has been applied
in several studies [46,86,87].

4.5. Transect Integration

Under the law of mass conservation, the total amount of methane in a certain con-
trolled area remains balanced considering the methane exchange of sources, sinks, and
boundaries. This is the fundamental idea of the transect method (also called mass balance
method).

The basic equation of the transect integration is as follows [88,89] in Equation (3):

q =
x

A
k(C(y, z) − C0)u(z)dydz (3)

where q is the methane emission rate between the measured transects, k is the unit con-
version coefficient, and C(y, z)− C0 is the difference between the measured and the back-
ground methane concentration u(z) is the wind speed perpendicular to the section. This
variable can be calculated by taking the projection of the actual wind speed in the normal
direction of the section. At this time, the formula contains a parameter of the included
angle of the normal direction and the wind speed [52,90].

The transection integration method requires methane concentration data at different
heights. A fully developed laminar boundary layer is also required, so there are restrictions
for atmospheric stability and topographical conditions. For measurements on the ground,
Rella et al. [88] designed a measuring device, which can simultaneously measure the
methane concentration at different heights at the same location. They also developed a
series of indicators for data quality assessment, so as to remove abnormal data points and to
reduce the uncertainty of the estimation. For flying measurement campaigns, the methane
emission rate can be calculated directly by measuring the methane concentration at a single
height on a transection for a wide area with the laminar boundary layer fully developed and
the concentration distribution of methane after full mixing vertically uniform. For relatively
clustered emission sources, spiral flights around the emission source can be adopted to
obtain methane concentration values at different altitudes [91]. Conley et al. [92] developed
the method of flying a consecutive loop around a targeted source region at multiple
altitudes. The mechanism and the error analysis methods were also described. Transection-
based and loop-based mass balance methods were both used by Lavoie et al. [93], and the
uncertainties of each factor and the calculated emission rates were discussed. Schwietzke
et al. [94] used this method in their study with the assumptions of a constant emission
rate and an atmospheric environment, a relatively weak diffusion, and a relatively small
chemical reaction rate.
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4.6. Method21

Method21 is a standardized methane leak detection method developed by the United
States Environmental Protection Agency [95]. It can also be used as a quantification method
with data analysis tools [37,96]

The basic operation includes the following steps [18,37]: 1. Scan the components at
1 cm on the surface that may leak with a highly sensitive portable organic gas detector
(with probes). 2. Infer the source of leakage by the concentration change. 3. Finally,
convert the readings of the detector into a methane leakage rate by modification formulae
or correlation curves. “The Protocol for Equipment Leak Emission Estimates” further introduces
several approaches for quantifying methane emission rates by instrument readings. In the
EPA correlation approach, unified correlations for different types of units were provides
for the SOCMI process and the petroleum industry process. In the unit-specific correlation
approach, a complete approach to develop a unit-specific correlation formula was described,
in which detailed emission data, such as bagging results, would be required.

Method21 has been used as a main method for leakage detection for a long time, but
its disadvantages are obvious. First, method21 is labor intensive. There is a tremendous
amount of work to test a station with various components using Method21. Second,
method21 requires operation near the pipeline, which increases the safety risk of the
operators. Finally, method 21 may bring about great error and uncertainty. Trefiak [49]
pointed out that in the process of scanning, a one-centimeter difference in the analyzer
position equated to a 57% chance of missing an actual leak. Considering the testing speed,
limitations, efficiency, accuracy, and cost of leakage detection, “alternative work practice”
shows many advantages. It is now rare to detect and quantify methane leakages by method
21 in reviewed literatures.

4.7. OTM33a Method

The OTM33a method is a top-down method for methane emission quantification
developed by the United States Environmental Protection Agency. It is usually used to esti-
mate the methane emission of middle size sources, such as stations. When using OTM33a,
a complex transport model is not needed. So, this method is more convenient to use com-
pared with the model inversion and has been widely applied in engineering measurements
and scientific studies. According to the introduction of the U.S. EPA, OTM33a can be used
for the following purposes: (1) Concentration mapping (CM) used to find the location of
unknown sources and/or to assess the relative contributions of source emissions to local
air shed concentrations. (2) Source characterization (SC) used to improve understanding
of known or discovered source emissions through direct GMAP observation or through
the GMAP-facilitated acquisition of secondary measures. (3) Emissions quantification (EQ)
used to measure (or estimate) source emission strength [97].

There are many emission quantification (EQ) methods. One of them is called Point
Source Gaussian (PSG). In this EQ approach, the GMAP vehicle is stationary and is placed
at an appropriate downwind observing location where concentration data and wind field
information are acquired for a 15 min to 20 min time period (for a single measurement).
In this approach, variations in wind direction move the plume around the observation
location in three dimensions. Using a PSG data analysis computer program, the acquired
concentration data are binned by wind angle, and the combined information is used to
estimate the emission source mass emission rate using a procedure based on a point source
assumption and Gaussian plume dispersion tables [18,98].

Certain conditions must be met to ensure the effectiveness for the OTM33a PSG
method. First, meteorological conditions have to be relatively stable. Second, there can be
no visible obstacles between the measuring position and the measured objective. Third,
the distance between the measuring position and the objective has to be clearly known,
and there are no other nearby emission sources besides the target source. Fourth, the
emission source has to located close to the ground [18,98,99]. There are three important
parameters in OTM33a models: meteorological parameters, position information, and
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methane concentration. The most important meteorological parameters include wind speed
and direction, which can be measured by anemometers. GPS gives out the positions of
the measured objective and the measuring point. The methane concentration is commonly
measured by CRDS in existing studies. Emission sources can be located by infrared
cameras [100].

In the OTM33a-psg method, it is better to keep the measuring vehicle right downwind
of the plume transport direction. Otherwise, the measurement results will be inaccurate
because the peak concentration of methane plume cannot be measured. USEPA proposed
several nonrepresentative concentration profiles. Robertson et al. [100] proposed two
disadvantages of the OTM33a method: one is that the OTM33a method requires that the
measurement position and leakage center are at the same height, so complex terrain (moun-
tains and multitree terrain) will affect the diffusion properties and also cause problems for
sampling; the other is that the OTM33a method is not suitable for high altitude emission
objects. EPA also discussed in detail the scenarios that may affect the measurement re-
sults, including the inconsistency of the sampling point setting, wind direction, unsuitable
sampling point height, and the impact of various obstacles. Based on a series of measure-
ment experiments, three indicators to measure data quality were proposed: (1) fitted peak
CH4 concentration centered within ±30◦ of the source direction; (2) an average in plug
concentration greater than 0.1 ppm; and (3) a Gaussian fit with an R2 > 0.80.

There is great uncertainty about OTM33a estimations. Heltzel et al. [99] pointed out
that the uncertainty of an uncontrolled OTM33a method can reach ±70%. In order to
solve this problem, Heltzel et al. used controlled release experiments to explore the effect
of sampling frequency, sampling time, selected wind direction range, and other factors
on the uncertainty of the estimation result [99]. They found that the above factors had
a significant impact on the accuracy of the OTM33a method. At present, OTM33a is a
prevailing technical option in short-term measurements.

4.8. Model Inversion

Model inversion is a typical top-down method. In this method, researchers establish
an atmospheric diffusion model to deduce the methane emission rate from methane con-
centrations combining source distribution, geographical conditions, and other information.
Model inversion is widely used in large-scale methane emission estimation.

Optimization plays a basic role in the process of inversion [101]. Through iteration,
the input value of the methane emission rate of different sources is found that makes
the output value of the methane distribution in the studied region best match with the
observed distribution [102]. Bousquet et al. [103] summarized several basic elements of
inversion models: 1. Observation of atmospheric methane concentration; 2. Prior estimates
of emission sources (or sinks); 3. Chemical transport model; 4. Inversion algorithm; and 5.
Uncertainty of observed values and prior estimates. These problems will not be explained
in detail. For a further introduction of the modeling process, algorithm problems, source
and sink treatment, and elimination of water vapor interference, readers may refer to the
research of Enting, Newsam, Fung, and Houweling, and so on [104–107]. Barkley et al. [108]
proposed a simplified “inversion” method, which stimulates the methane concentration
by a transport model, finds a scalar multiplier to minimize the cost function representing
the difference between the observation and stimulated result, and then multiplies the
multiplier with the original emission rate (in percent of production) to estimate the total
emission rate.

The atmospheric distribution of methane can be obtained by satellite observation or
ground measurements. Miller et al. [47] estimated the anthropogenic methane emissions
over the US using observations at the surface, on telecommunications towers, and from
aircraft. The Permian map project of the EDF shows a variety of data collecting methods,
including sensor network fixed on towers, vehicles carrying measuring instruments, and
small aircraft [109]. Accurate time and space correspondence between the sampling po-
sition and its methane concentration is necessary for inversion models. The uncertainty
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of inversion is related to the performance of the measuring instruments, atmospheric
conditions, topography characteristics, and the inversion model itself [110].

Top-down methods expand the spatial and temporal scope of the emission measure-
ment, and reveal the existence of some undetected emission sources, which are difficult to
find by traditional bottom-up methods. But there are also some problems for top-down
methods.

The first problem comes with the priori data used in model inversion. Inaccurate
posterior spatial distribution of the emissions sources will influence the performance of
inverse modeling [111]. Studies show that the influence of prior data on model inversion is
obvious, especially when several emission sources in a region are close to each other [112].
For prior emission databases, such as the Emissions Database for Global Atmospheric
Research (EDGAR) and the Green Gas and Air Pollution Interactions and Synergy (GAINS),
problems, such as the lack of uncertainty estimation, errors for source patterns, and inac-
curate emission estimation for some regions, remain unsolved. Some studies complied a
high resolution inventory for individual countries [112–115]. Some other databases, such
as NOAA, can be referred as well [116].

The second problem deals with the distinction of different methane emission sources.
The direct measurements of concentration cannot distinguish methane from different
sources, such as fossil fuel and biological sources [117,118]. Carbon and hydrogen isotopes
are used to break down emissions by source [119]. The sampling study of Los Angeles
City by Townsend-Small et al. confirmed that the methane emitted by fossil fuel has a
significantly different composition of C-13, D, and radiocarbon from biological sources. It
was found that the methane emission in Los Angeles City mainly comes from natural gas
pipelines, power plants, and other energy activities by analyzing the isotope composition
of the samples collected from the city. The source of methane can also be distinguished by
characteristic hydrocarbon compounds, such as ethane, assuming that all ethane emission
is due to the natural gas system [110]. Allen et al. [120] summarized several methods
used for attributing methane emissions. Maazallahi et al. [121] used the ratio of ethane to
methane to help attribute the source of methane emission.

Apart from model inversions, Buchwitz et al. [122] developed a fast data-driven
method, in which the gradient of the methane concentration is used in analyzing the
methane emission rate without a transport model. This method was applied in the research
of Zavala-Araiza et al. [123] about methane emission in Mexico, and the estimation result
was compared with the GOSAT inversion-based estimation by Maasakkers et al. [115] and
airborne-based measurement results based on transection integration.

The model inversion method leads to great uncertainty. Several studies showed that
the estimation of inversions may generate an uncertainty of about 20% [124,125].

4.9. Summary

In Section 4, methods for analyzing the methane emission rate from concentration data
are summarized. These data analysis methods can also be regarded as measurement plans
that provide instructions for arranging the instrument in the measuring process as well.

The application of these methods is constrained by the objectives and method char-
acteristics. Bottom-up methods, such as the chamber sampling and method 21, can be
used to estimate the emission rate of components (where CRDS and semiconductor-based
instruments are used). Top-down methods are widely used in assessing the emission of
wells, stations, or even basins. Noteworthy is that different data analysis methods behave
very differently in estimation uncertainty. Top-down methods introduce great uncertainty
due to the model structure, the assumptions when applying the models, and the approxi-
mation when determining some parameters in the model, e.g., the diffusion factor in the
Gaussian diffusion model. However, as discussed above, the choice of the data analysis
method is greatly influenced by the objectives. As a result, the objectives have an indirect
impact on the final estimation. To improve the estimation quality, it might not work to
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simply improve the precision of the measurement instruments. A systematic review of the
objectives, instruments, and data analysis methods is necessary.

5. Uncertainty Estimation: Probability Methods

Traditionally, when compiling an inventory, the emission of a certain type of source
was estimated by multiplying the activity data with the emission factors, and sum up
the emission of the different sources to estimate the total emission of a system [126,127].
Then, the uncertainty of the total emission estimation can be calculated by certain basic
mathematical work. However, studies showed that the super emitters caused by undetected
abnormal operations of facilities skewed the probabilistic distribution of the observed
emission rate [128,129]. This distribution was found to be “heavy tailed” [130,131]. This
means that previous estimates of total methane emissions using emission factors derived by
the Gaussian distribution assumption may lead to systematic errors of methane emissions.

In view of the above problems, probability methods are introduced for a better estima-
tion of the uncertainty. The Monte Carlo method is the most widely used method, and the
probabilistic distribution must be obtained from field test data before performing Monte
Carlo experiments. In the following sections, the methods of characterizing the distribution
and the basic process of the MC method will be introduced.

5.1. Characterization of the Emission Distribution

After the Gaussian assumption of emission rate distribution is overturned, a new
distribution needs to be found for probabilistic estimation methods for emission and
uncertainty estimation. There are two possible solutions: parameter estimation or the
Bayesian estimation.

The first step for parameter estimation is to select a prior distribution (set). Then, we
analyze the field test dataset with commercial software to estimate the parameters of the
prior distribution. The last step is to test the consistency between the distribution and
the target dataset by other statistical methods. When more than one prior distribution is
fitted in this process, the goodness of fit is compared between different distributions, and
the best-fit distribution is chosen as the distribution of the target dataset. The lognormal
distribution, Weibull distribution, gamma distribution, and extreme value distribution are
common prior distributions in the literature. Among the results, the lognormal distribution
fits most datasets best, and the Weibull distribution is the second common distribution.
Zaimes et al. [132] characterized the influence of different factors in liquid unloading
by establishing probabilistic models. Data collected from the DI desktop, GHGRP, and
previous estimations were applied in the estimation. Lognormal distribution best fitted
most of the emission data, but the total amount of data is rather small, so further research
is required to conduct more measurements and optimize the estimation. It should be noted
that obtaining the distribution of emission sources by parameter estimation can simplify
the calculation, but it may introduce biases due to parameter estimation.

The Bayesian method can be adopted if the distribution of an emission source is
not assumed in advance [133–135]. The spirit of the Bayesian method is to modify the
prior distribution with observations. A typical Bayesian estimation equation is shown in
Equation (4):

P
(
Q
∣∣cy, I

)
=

P(Q|I)P
(
cy
∣∣Q, I

)
P
(
cy
∣∣I) (4)

In this formula, cy (in ppm ×m) is the cross plug integrated above-ambient methane
mixing ratio. Practically, cy can be estimated as cy = ∑ ca∆x, where ∆x (in m) is the distance
between the geo-referenced mixing ratio data, and ca is the above-ambient methane mixing
ratio. I stands for the underlying information, including source information and the
prevailing meteorological conditions. P(Q|I) is the primary PDF, which represents the
distribution of Q prior to the observation of cy. P

(
cy
∣∣Q, I

)
is the likelihood function, which

is the probability of observing cy given Q and I. P
(
cy
∣∣I) is the evidence term that simply

ensures that P
(
Q
∣∣cy, I

)
integrates to unity.
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P(Q|I) and P
(
cy
∣∣Q, I

)
are needed before calculating P

(
Q
∣∣cy, I

)
. Zhou et al. (2021)

formulated these two equations as Equations (5) and (6):

P(Q|I) =

{
1/(Qmax −Qmin), j = 1

P
(
Q
∣∣cy, I

)
j−1, j > 1 (5)

P
(
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)
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2π
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− 1
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(
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y (Q)
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e

)2
)

1
cyσLN

e
√

2π
exp

(
− 1

2

(
ln(cy) − ln(cM

y (Q))
σLN

e

)2
) (6)

where cM
y (Q) is the modeled cy as a function of the candidate emission rate Q. σG

e and σLN
e

are the “error terms” for the Gaussian and lognormal likelihood functions, respectively,
and are measures of the uncertainty when comparing the modeled cM

y (Q) against the
measurement cy. The detailed parameterization process of σG

e and σLN
e can be referred

to [135]. A typical form of cM
y (Q) can be expressed as Q

U
Dz, where U is the plume advection

speed, and Dz accounts for the plume vertical dispersion [134]. In short, a Gaussian or
a lognormal distribution was used to establish the relationship between the observed
concentration and leakage rate. After the first observation, a uniform distribution was
used as the initial distribution of leakage, and the posterior distribution of the leakage
concentration determined by the previous measurement was the prior distribution of the
concentration in the later measurement.

5.2. Application of Monte Carlo method

Monte Carlo is a method to carry out random trials with the help of a computer. The
distribution of the studied variables can be obtained by repeated computation rather than
mathematical deduction. It shows great power in the field of emission and uncertainty
estimation.

Estimating the uncertainty range of total emissions with the Monte Carlo method is
gradually becoming the most popular method for uncertainty estimation. The traditional
square synthesis method for uncertainty calculation assumes normal distribution, so
this method fails when the Gaussian assumption is turned over. Provided the Gaussian
assumption is still valid, the result of the square synthesis is narrower than the actual 95%
confidence interval, which means the square synthesis method shrinks the uncertainty
range, which is normally defined as a 95% confidence interval. This is also another reason
for the Monte Carlo method’s prevalence.

For the Monte Carlo method, as long as repeated tests can be carried out, the cumula-
tive distribution function of the test results can be used to calculate the confidence interval
and then the uncertainty. The basic process of the Monte Carlo method can be described
as follows: First, obtain the empirical distribution or the fitted distribution (parameter
distribution) of the emission rate using the field test dataset. To solve the problem of a
lack of samples, the bootstrap method is applied in some studies [136]. Second, assign the
methane emission for all the active emission sources randomly. Third, sum the emission
of all the emission sources in the model to calculate the total emission. Fourth, repeat
the above procedures for rounds (usually 10,000) to find the empirical distribution of
the total emission. Then the statistics can be determined by the empirical distribution.
Marchese et al. [137] presented a detailed process in conducting the Monte Carlo method
in a more complicated condition. The Monte Carlo method can be used to calculate the
uncertainty of an emission factor, the emission of a specific type of emission source, and the
total emission [138]. It can also be used to estimate uncertainty in diffusion models [139].
Cui et al. [140] proposed a probabilistic method to better characterize the lognormally
distributed emission and estimate the uncertainty from model inversion, which was quite
similar to a Monte Carlo-based method.
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For the Monte Carlo method, there is also a problem to solve. The total number of
samples in the existing studies is relatively small compared to the population of all emission
sources, and the sampling time is also short. As a result, it is difficult to confirm that the
existing samples have fully revealed the characteristics of “heavy-tail distribution”. A
comparison between separate studies shows this limitation. In order to better describe the
heavy-tail distribution, some researchers conducted a stratified sampling with an assigned
probability of an abnormally high emission. The probability of the appearance of a super
emitter was determined by the sampling results. This parameter decided the probability of
whether a component would be defined as a super emitter, and a Monte Carlo simulation
for the total emission estimation was conducted based on the above assumption [131,141].
In this process, determining the appearance probability of “super emitters” is the core
step. Zavala-Araiza et al. determined the parameter according to the proportional loss rate.
Littlefield et al. [142] combined the Monte Carlo method with a lifecycle-analysis model to
estimate the methane emission from the US natural gas supply chain. In this process, they
set different kinds of distribution models for different stages of the supply chain to obtain
a better Monte Carlo stimulation result.

5.3. Summary

In Section 5, we briefly discussed the development of the probabilistic uncertainty es-
timation method and some unsolved problems. The probabilistic methods were developed
because of the discovery of the nonnormal distribution law of emission rate, and the more
information we can obtain from measurement activities, the better we may characterize the
actual distribution of emission rate.

From this aspect, we may better understand the relationship among uncertainty estima-
tions, measurement technologies, and data analysis methods. Methane leakage rates derived
from concentration measurement activities and data analysis processes, can be regarded as the
material of uncertainty estimations. Abundantly high accuracy and low uncertainty emission
rate estimations can provide enough information for probabilistic uncertainty estimation
methods. In contrast, the great uncertainty of top-down methods and the lack of data may
greatly influence the estimation quality. To enhance the estimation quality, the improvement
of mathematical tools applied in uncertainty estimation may be necessary, but a high quality
dataset obtained upstream in the process may be of greater use.

6. Results and Discussion

By literature review, this paper summarizes methane emission measurement technol-
ogy, the adaptability of technology and application scenarios, the methods of calculating
emission rates from methane concentrations, and the methods of analyzing the uncertainty
of methane emissions. Optical and chemical instruments are the main instruments used
in actual measurements and research. Engineering estimation and chamber sampling are
two bottom-up methods for emission rate quantification. Top-down analyzing methods
include the diffusion model method, trace gas method, transection integration, method21,
OTM33a, inversion, and some other model methods. Probabilistic methods are playing
an increasingly important role in uncertainty analysis. The development of the Monte
Carlo method makes it possible to deal with probability models with complex distribution
patterns and to estimate the uncertainty of complex problems with computers.

Based on that, this paper depicts the procedures of estimating methane emission in
the oil and gas sector and reveals the impact of these steps on each other. We further
discussed the matching relationship among instruments, objectives, analysis methods, and
uncertainty estimation. The procedure can be summarized as Figure 2. To estimate the
emission of small size sources, bottom-up methods are usually selected. CRDS, GC, and
semiconductor instruments and other chemical instruments are used in these cases. For
middle- or large-size sources, CRDS and optical instruments, such as a Fourier spectrum,
are used in top-down methods, and in very rare cases, semiconductor sensors are also
applied. Then emission flux rate of the measured emission objectives is given as the result
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of a data analysis step. After mathematical treatments of the emission rate of a similar
kind of source, we can characterize the distribution of this emission source. Based on the
probabilistic distribution, the emission rate and uncertainty of the oil and gas sector can be
estimated by the Monte Carlo method.

Figure 2. Relationship among the instruments, objective and flux calculation, and uncertainty analysis methods.

Generally speaking, we find through reviewing that current field tests mainly focus
on the measurement of methane emissions from medium size objectives, that is, the
measurement of emissions from some operations, such as liquid unloading, and sites,
such as gathering and boosting stations. Measurements are mainly based on the OTM33a
method and transection integration, and probabilistic uncertainty estimation methods
have a wider application than ever. The reason for this phenomenon is that the discovery
of “super emitters” has greatly changed our understanding of methane emissions in the
oil and gas sector. To further investigate the property of highly skewed distributions, a
large amount of data is required. For this, bottom-up measurements can be representative
but not cost-effective for continuous observations in a large area. Satellite observations
can provide important reference for the global atmospheric methane budget [117] but are
limited by their spatial resolution. Satellites cannot conduct continuous observations of a
single area with high temporal resolution as well. As a result, field tests of medium-scale
objectives become inevitable for studying the characteristics of heavy-tail distribution, and
the complexity of the data analysis makes the Monte Carlo method a hot spot. In these
cases, high precision optical instruments have to be applied because the gas concentration
is rather low in top-down scenes. Despite the fact that CRDS is highly accurate, top-
down data analysis methods introduce great uncertainty. Thus, despite the measurement
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technologies and methods that have been developed, the final estimation of an emission
resource or a system seems to still fluctuate, and the uncertainty bond is still great.

There are limitations of the existing studies.
Firstly, the existing observation dataset is still insufficient. As a random process, the

occurrence time of an unintended methane emission event is uncertain, and the fluctuation
of emission rates is difficult to observe. At present, researchers are sampling by conducting
a number of short time observations. But the total sampling number is still mathematically
small, which means the dataset is not yet big enough to reflect the characteristics of the
heavy tail. To solve this problem, more observations or continuous long-time measurements
may be of help. Some studies have made continuous observation attempts [143,144].

Secondly, the “leakage threshold” is not scientifically defined. Because of the widespread
methane emission sources in addition to energy activities, methane concentration increases to
background values have no direct connection with leakages or emissions caused by energy
activities. This problem is particularly obvious in the downstream of the oil and gas supply
chain. Thus, before estimating the emission rate, a “leakage” or “emission source” has to
be firstly defined. Different researchers defined the leakage threshold accordingly, ignoring
sources when concentrations were below the threshold or made special treatments [145,146],
which may lead to source ignorance and bring about inconsistency between studies.

Thirdly, the composition of uncertainty can be further discussed. As discussed above,
every step in the process of estimating methane emissions may introduce uncertainty of
the final result. However, the mechanism of uncertainty generation remains unclear, and
the influence of each step in the emission estimation process requires further investigation.
The problem of uncertainty composition is especially obvious for the data analysis process
with models. Proper decomposition of the uncertainty may reveal the main contributor in
the estimation process and provide effective support to improve the estimation quality.

7. Conclusions and Recommendations

By literature review, this paper summarizes the methane emission measurement tech-
nology, the adaptability of technology and application scenarios, the method of calculating
emission rate from methane concentration, and the method of analyzing uncertainty of
methane emission. Based on that, this paper depicts the procedure for methane emission
estimation in the oil and gas sector, discusses the relationship among technologies, data
analysis methods, and uncertainty estimation methods.

Through the review, we obtained the findings as outlined below:

(1) Objectives show a determinative effect on the final result. To be specific, the spa-
tial scale of the measured objectives greatly influences the choice of top-down and
bottom-up methods. The selection of methods, which is constrained by the objectives
and method characteristics, further determines the instrument options with the de-
tection limit, resolution, and applicable spatial scale requirements. All of the above
determines the raw data quality for uncertainty estimation, thus impacting the final
estimation of the methane emission rate and its uncertainty.

(2) Data analysis processes may mainly contribute to the final uncertainty. We have
observed the prevalence of optical instruments, top-down data analysis methods, and
probabilistic uncertainty estimation strategies, which can be attributive to improve the
estimation quality. However, from a systematic perspective, data analysis methods
might be the main contributor of estimation uncertainty. The discovery of “super
emitters” led to the investigation of the probabilistic distribution of emission sources,
which further requires studies on a large-scale with concentration measurements and
high accuracy data analysis methods.

(3) Based on the reviews and discussions, this paper gives three recommendations for
improving methane emission estimation quality. First, data analysis methods can
be further improved, which may greatly control the uncertainty generated in this
procedure. Second, more studies can be conducted on the uncertainty in the estima-
tion process. The decomposition of total uncertainty and the uncertainty generating
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mechanisms in the inversion models and the Monte Carlo method are both worth in-
vestigating. Third, more observations and a clearer definition of the leakage threshold
are needed.

In this paper, we provided a rather rough classification and comparison of different
kinds of emission sources, technologies, and methods. A detailed discussion may provide
more insight into the characteristics of them, as well as their contributions in the measuring
process. Methodologies in the technology and method selection can be further refined in
future studies.
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