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Abstract: Understanding the impacts of climate variability and change on terrestrial ecosystems
in Africa remains a critical issue for ecology as well as for regional and global climate policy mak-
ing. However, acquiring this knowledge can be useful for future predictions towards improved
governance for sustainable development. In this study, we analyzed the spatial–temporal charac-
teristics of vegetation greenness, and identified the possible relationships with climatic factors and
vulnerable plant species across Africa. Using a set of robust statistical metrics on the Normalized
Difference Vegetation Index (NDVI3g) for precipitation and temperature over 34 years from 1982 to
2015, relevant results were obtained. The findings show that, for NDVI, the annual rate of increase
(0.013 y−1) was less than that of decrease (−0.014 y−1). In contrast, climate data showed a sharper
increase than a marked decrease. Temperature is increasing while rainfall is decreasing, both at a
sharp rate in central Africa. In Africa, tree cover, broadleaved, deciduous, closed to open (>15%) and
shrubland plant species are critically endangered. The tropical vegetation devastated by the climate
variability, causes different plant species to gradually perish; some were cleared out from the areas
which experienced degradation, while others were from that of improvement. This study provides
valuable information to African governments in order to improve environmental sustainability and
development that will lead to the sustainability of natural resources.

Keywords: climate variability; vegetation dynamics; Africa; plant species

1. Introduction

In the climate system, vegetation cover influences energy, water and gas interactions
with the atmosphere by acting as a principal source and sink in biogeochemical interac-
tion. Hence, climate determines the natural vegetation distribution [1]. If there are any
component changes, the dynamic equilibrium between climate and vegetation will also
possibly be modified. In Africa, the disturbance is likely to appear from June 1997 to May
1998. The global climate system was disrupted by the most significant El Niño/Southern
Oscillation (ENSO) phenomenon observed during this century [2,3]. Regarding the re-
sponses of the terrestrial biosphere in Africa, the most anomalous conditions normally
occur over equatorial eastern Africa [4]. Further, the high increase in temperature [5], and
interannual variability of rainfall resulted in a strong negative impact on vegetation and
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agriculture, hence the food security status of the region [6], especially in maize production
in southern Africa [7]. Thus, the high spatial and temporal rainfall variability endures
a daunting challenge for the management of agricultural activities in this continent [8].
Droughts and flooding events occur [9], while the risk of drought in southern Africa has
been identified to increase by 12% in El Niño years [10].

A proper understanding of vegetation dynamics, in terms of space and time, can
reverse the situation, and lower the impacts and losses already caused in affected areas so
as to reduce the sufferings of the vulnerable population. Thus, it is substantial to quantify
the vegetation change magnitude to understand and monitor the greenness and ecosystem
dynamics [11]. The management of African tropical forests remains a challenge, and
requires scientific decisions for its sustainability and preservation. This will be achieved
by extensive research to help with vegetation monitoring through different investigations,
since climate change is expected to continue. Researchers predict that climate change and
its effects will continue to occur, as temperatures are expected to rise at 1.5 to 2 times the
rate of the global temperature rise [12]. Rainfall is expected to continue to change, and
the frequency and intensity of drought events are expected to increase as well [13]. The El
Niño phenomenon should also be considered in future scenarios [14].

Many global and regional studies have focused on African vegetation dynamics
and their relation to climate factors. For example, a 6 year regional study (1982–1987)
examined the variability of NDVI and its relation to rainfall in Botswana and showed
that the efficiency of rain use appears to rely more on the underlying soil than on the
formation of vegetation [15]. Chamaille-Jammes, Fritz [16] assessed NDVI and rainfall
relationship in the Hwange National park, Zimbabwe, where their findings revealed that
the rainfall–NDVI relationship is stronger at the seasonal scale, due to the influence of
field features, than at interannual scale. A satellite-derived rainfall and NDVI data for 20
years (1981–2000) were used to detect spatial and temporal interrelationships by applying
component analysis. The findings stated that an earlier event of rainfall and subsequent
“greening” is believed to have resulted in a moisture flux that encourages the next rainfall
event [17]. Georganos, Abdi [18] used Geographically Weighted Regression to examine
the NDVI–rainfall relationship in semi-arid Sahel from 2000 to 2012, and their results
revealed that humid areas significantly correlated more than in wetlands and irrigated
lands. They conclude that the rainfall–NDVI relationship varied temporally due to spatial
trend differences.

Furthermore, climate change assessment in Africa shows a teleconnection trends be-
tween the Pacific Ocean basin climate conditions and vegetation conditions [19]. Kawabata,
Ichii [20] analyzed the annual and seasonal vegetation activities for global monitoring
of vegetation changes and their relationship with temperature and precipitation over a
9-year period. Their results revealed that in large regions of the northern middle-high
latitudes and in tropical regions, particularly in western Africa, the gradual increase in
temperature increased the vegetation. However, vegetation decreased in the arid and
semi-arid southern hemisphere caused by the decrease in annual rainfall during this pe-
riod. The influence of climate change on the productivity and phenology of vegetation in
Sub-Saharan Africa was assessed, and the results showed that SSA vegetation is driven
by various factors, particularly, rainfall in West Africa and parts of Central Africa, and
ENSO as the key driver in Eastern and Southern Africa [21]. A long-term study (1982–2015)
by Kalisa, Igbawua [22] assessed the climate impact on vegetation in east Africa, and the
results revealed both positive and negative correlations before and after 1998, respectively,
while NDVI correlated higher to rainfall than to temperature.

However, most previous studies conducted at regional scale were performed at short-
term intervals and hardly took the endangered species across the vegetation biomes in
Africa into account. There is a lack of accurate and updated information on the current
status of African vegetation due to the limited design of effective policies on land degrada-
tion, desertification, forest management and food security. Therefore, there is a need for
long-term continental studies which can address these research gaps in Africa. To this end,



Sustainability 2021, 13, 1234 3 of 22

the objectives of this study are to: (1) investigate, at a continental scale, African spatial–
temporal vegetation greenness changes and endangered plant species from 1982 to 2015,
(2) assess the climate spatial–temporal changes and their effects on vegetation change, and
(3) identify the regions that may be vulnerable to climate change using NDVI as a reflective
indicator. Assessing the dynamics of African vegetation with climate change will help deci-
sion makers to understand how best to reduce disasters resulting from reduced vegetation
so as to ensure the sustainable development of natural resources at continental scale.

2. Materials and Methods
2.1. Study Site and Data Description
2.1.1. Study Area

Africa is the largest continent of all tropical land masses and takes second place
among the world′s seven continents. It covers an area of 30 million km2, accounting
for 20% of the world′s total land area. It extends about 8050 km from its northernmost
point in Tunisia to its southernmost point in South Africa, and 7560 km wide, from its
westernmost point in Senegal to its easternmost point in Somalia [23]. Africa generally
falls under four seasonal temperatures, which are summarized and arranged as Summer
(December–January–February), Autumn (March–April–May), Winter (June–July–August)
and Spring (September–October–November) [21,24], but vary from country to country.

The climate system of the African continent is varied from humid equatorial to the
Mediterranean climate system. Africa has five climate zones (Figure 1): tropical; arid hot
and cold; temperate dry, hot, cold and warm; the boreal warm and cold, and the polar
tundra found at the top of high mountains [25]. Rain in African does not fall in all parts
at the same level. Some parts receive year-round precipitation (tropical rainforest) while
others receive seasonal precipitation. In addition, some parts receive heavy rainfall while
others receive very little (<250 mm y−1 in desert). Rain patterns tend to decrease the
further you move from the equator. Rain is negligible in the Sahara Desert, at the horn
of Africa, and in the Kalahari Desert. African vegetation is also distributed according to
rain and climatic zones, where the NDVI average ranged from 0.79 in tropical to 0.24 in
arid (Figure 2). According to the land cover map defined by the European Space Agency
(ESA, Paris, France) Climate Change Initiative (CCI, Noordwijk, The Netherlands) project,
among the 25 vegetation classes found in Africa, shrubland is the dominant one because it
covers more than 20% of all African vegetation cover (Figure 3).

2.1.2. NDVI Data

The third-generation Normalized Difference Vegetation Index (NDVI3g) time series
of Global Inventory Modeling and Mapping Studies (GIMMS) has been available for
more than 34 years, since 1981 [21,26]. The spatial and temporal resolution of these data
are 0.083◦ and 15 days, respectively. Despite that, the NDVI is more sensitive to the
effects of soil background and requires remote sensing calibration [27], and this is our
choice because it is widely used and acceptable [28], given that it fulfills all the necessary
calibration requirements. The radiometric calibration, atmospheric attenuation, cloud
filtering, orbital drifting, sensor degradation and all other effects not related to climate
change have been used to confirm this dataset [26]. Therefore, the NDVI3g offers an
extraordinary opportunity to examine the vegetation dynamics in depth, as well as the
exchanges in response to climate changes over a long period. From the half-monthly
NDVI3g datasets, we generated two NDVI time-series: the seasonal NDVI mean and
annual maximum (NDVImax) from 1982 to 2015. We further processed the 34 NDVImax
maps for 34 years, and 34 maps for each season among the four annual seasons, to one
annual composite and four seasonal composites, resulting in 34 time series to be used as
inputs for the trend analysis.
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Figure 3. Spatial distribution of landcover in Africa in 2015. Source: Climate Change Initiative Land
Cover (CCI-LC) maps.

2.1.3. Climate Data

The Climate Hazards Group Infra-Red Precipitation and station (CHIRPS) is a rainfall
dataset with more than 30 years of history. It streaks from 50◦ S to 50◦ N and covers all
longitudes. The datasets are available at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRPS/ from 1981 to the present. The 0.05◦ resolution satellite imagery creates gridded
rainfall time series for trend analysis and seasonal drought monitoring [29]. CHIRPS has a
low systematic and mean absolute errors compared to the Global Precipitation Climatology
Centre (GPCC) and high-quality datasets in Africa [30]. Thus, these precipitation datasets
have been chosen to be used in this study.

The global reanalysis ERA-Interim was produced by the European Center for Medium-
Range Weather Forecast (ECMWF) [31] and the dataset is extended from 1979 to 2019. This
interpolated to regular Lat/Lon grid open-access dataset is available on ECMWF data
archive 2-m monthly mean of the daily mean temperature data with 73 km resolution, and
was used in this paper after being downloaded from https://apps.ecmwf.int/Datasets/
data/interim-full-moda/levtype%3Dsfc/.

2.1.4. Land Cover Data

To assess the characteristics and evaluate the fluctuations in and extinction of vegeta-
tion types, we used a newly improved and consistent Land cover map from 1992 to 2015 of
the European Space Agency (ESA) Climate Change Initiative (CCI) project, downloaded
from an online open-access platform (https://www.esa-landcover-cci.org).

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS/
https://apps.ecmwf.int/Datasets/data/interim-full-moda/levtype%3Dsfc/
https://apps.ecmwf.int/Datasets/data/interim-full-moda/levtype%3Dsfc/
https://www.esa-landcover-cci.org
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2.2. Methods
2.2.1. Pre-Processing of the Data

Before using different datasets with different spatial resolutions, a resampling was
done to a common resolution of 0.083◦ to match their spatial resolution to that of the NDVI
time-series. The NDVI values range from about −0.2 to 0.1 for snow, inland water bodies,
deserts, exposed soils and sparsely vegetated areas, and from 0.1 to 0.1 for increasing
amounts of vegetation [32]. Thus, the NDVI-values lower than 0.1 and desert areas in
general were masked. Fractional vegetation cover (FVC) was estimated for each pixel [33].

2.2.2. Linear Regression Analysis

The spatial and temporal variations in annual and seasonal average NDVI, mean
maximum temperature and cumulative precipitation were carefully analyzed using a linear
regression analysis method in this research. To obtain the slope coefficients of trend lines,
the time series values of each pixel were calculated

Slope =
n ∑n

i=1 XiYi −∑n
i=1 Xi ∑n

i=1 Yi

n ∑n
L=1 X2 − (∑n

L=1 X)2 (1)

where X and Y are the values of the independent (years) and dependent (NDVI values)
variables in the ith year, respectively, and n is the cumulative number of years (from
1982 to 2015) of the study period. Generally, if the slope = 0, the dependent variable
shows a stability while when slope >0, the variation in the dependent variable shows
an increasing trend, while when the slope is <0, it shows a decreasing trend. After that,
the slope (Figure 4a) was multiplied to its p-value (Figure 4b) to clearly show the spatial
distribution of significant trends with their strength (Figure 5a). The integration of the two
maps (Figure 4a,b) were presented in classes.
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slight improvement, stable or without vegetation, significant degradation, and significant improvement; (b) percentage of
each in the four classified trends, where Sl D stands for Slight Degradation; Sl I, Slight Improvement, St and nv, Stable or
non-vegetation; S D, Strong degradation and SI, Strong Improvement.

2.2.3. Vegetation Types Analysis

Through the slope analysis result map, using the tabulation method, we computed
the values of plant species in each type of variation (Table 1) in 1992 and in 2015. Then, we
were able to identify how much of each vegetation type was in each of the five classes of
NDVI trends. Thus, we computed the changes. From here, we were able to identify the
vegetation degradation areas and, within the land cover map, we assessed the plant species
and their transitions, and identified those on the path to destruction (extinction). Statistical
analysis of each type of vegetation was carried out to ensure the true types of vegetation
in danger.

Table 1. Division of the degrees of variation in the NDVI change trend.

Slope Trend Magnitude p-Value Variation

Positive 0.002–0.013 0–0.01 Strong improvement
0.0003–0.002 0.01–0.05 Slight improvement

Negative–Positive −0.0003–0.0003 0.05–1 Stable or non-vegetated area
Negative −0.002–−0.0003 0.01–0.05 Slight degradation

−0.014–−0.002 0–0.01 Strong degradation

2.2.4. NDVI and Key Meteorological Factors Correlation Analysis

Pearson′s correlation coefficients were precisely calculated for each pixel, between
the mean annual NDVI as a dependent variable, and the mean annual temperature and
accumulative annual precipitation as independent variables. To clearly understand and
accurately assess the effect of climate variability on the vegetation change, we also calcu-
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lated this correlation coefficient between the seasonal NDVI and seasonal temperature and
precipitation by using Pearson′s correlation coefficients’ equation

rxy =
∑n

i−1(xi − x)(yi − y)√
∑n

i=1(xi − x)∑n
i=1(yi − y)2

, (2)

where y and x are the predictor (climate) and response (NDVI) variables, respectively.
In the correlation coefficient between two variables, with a value ranging from −1 to

1, having a correlation coefficient greater than zero means a positive correlation between
the two specific variables and having a negative means a negative correlation between
them. This means that a larger absolute value properly indicates a stronger correlation. All
the above-defined seasons were considered for 34 years in this study. Thus, during this
analysis, the non-vegetated areas were masked to better obtain real information.

We also applied the Spearman correlation statistics, which is the most popular non-
parametric tool that can be used to remediate autocorrelation in trend analyses where there
is a need to detrend or to normalize the distribution of analyzed variables [34,35].

3. Results
3.1. Characteristics of Trends in Vegetation Dynamics from 1982 to 2015

Based on the linear regression analysis, possible changes in average NDVI (Figures 4a,b and 5a,b)
over the 34 years considered by this study, revealed an upward trend in vegetation green-
ness across the northern part of Africa, including some portions in northern hot desert
(Sahara), with an annual change up to 0.012 y−1. A significant declining trend in vegetation
greenness was detected in the southern parts of central and eastern Africa, along the corri-
dors of Angola toward southern Madagascar, with a rate as low as −0.014 y−1. In addition,
vegetation in south-central tropical Africa demonstrated a mostly slight degradation and
the desert area, like that in Namibia, demonstrated an increase in NDVI for some parts,
especially in semi-arid zones. The overall trend of vegetation north of the equator shows
an increase; however, the decreasing trends in certain areas cannot be ignored. The south
part of the equator generally shows a slight degradation and stable state of vegetation.
However, some strong degradation is highlighted along the line of tropical boundary from
Angola to Madagascar, just around the southern part of central Africa and that of east
Africa. East Africa shows a strong improvement; however, some parts in Tanzania, Kenya
and Mozambique show a strong degradation.

The rate of vegetation degradation was classified into five classes, and the percentage
of each of the five classes of the mean NDVI trends for the 34 years is shown in Figure 5a,b.
From this, the large part of Africa shows a slight improvement, of 37% of the pixel′s area,
and this number is not bigger than the stable or non-vegetated area, which is about 35.9%
of the pixels. This class occupied 25.76% of stable vegetation, which tends to increase,
and 10.14% of stable vegetation also tends to increase. Further, the number identified as a
strong improvement was also high, at 13.4% of the pixel′s area and the number of pixels
identified as a slight and significant degradation, at 11.5%, and 2%, respectively.

Table 2 shows the sequence of countries with a large area in each class of vegetation
trends. Regardless of the size of each country, Angola typically experienced significant
vegetation degradation to the largest surface area in all African countries, while Sudan ex-
perienced the largest strong improvement (Table 2a). For both slight degradation and slight
improvement, RD Congo was ranked first. For the case of stable or non-vegetated area, the
identified north desert countries were headed by Algeria, with the largest surface area.
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Table 2. The representation of the 9 countries most identified with high vegetation trends (area in pixel).

Strong Degradation Slight Degradation Stable or
Non-Vegetated Area Slight Improvement Strong Improvement

a NDVI Trends Variation Area (in Pixel) for Each Country

Angola 10.21 DR, Congo 44.88 Algeria 168.04 DR Congo 94.12 Sudan 28.44
Tanzania 4.60 Angola 34.39 Libya 146.66 South Africa 63.96 Ethiopia 27.91

Kenya 3.79 Zambia 18.26 Egypt 78.42 Ethiopia 43.30 Chad 26.70
Mozambique 3.50 Mozambique 18.21 Sudan 77.14 Sudan 38.65 South Africa 22.39

Zambia 3.15 14.27 Niger 62.36 Nigeria 38.64 South Sudan 21.72
Madagascar 3.07 Tanzania 13.11 Mauritania 57.63 Namibia 37.88 Nigeria 20.19
DR Congo 2.79 Morocco 10.34 Mali 51.41 Angola 36.70 Mali 16.04
Ethiopia 2.64 Namibia 10.03 DR Congo 40.74 C A R 35.03 Botswana 12.94
Sudan 2.52 Sudan 9.77 Chad 38.84 Tanzania 34.70 Kenya 11.92

b The Percentage of NDVI Trends Based on the Area of Each Country

Djibouti 19.63 Djibouti 53.38 Libya 93.99 Eq G 72.57 Senegal 49.89
Angola 9.93 Angola 33.47 Egypt 90.44 C A R 69.22 Sierra Leone 45.11
Kenya 8.48 Madagascar 30.58 Algeria 79.01 Lesotho 68.01 South Sudan 42.27
Eritrea 7.42 Zambia 30.01 Mauritania 64.42 Congo 64.62 Liberia 33.78
Malawi 7.33 Mozambique 29.28 Niger 62.08 Burundi 64.43 Togo 32.94

Tanzania 6.67 Rwanda 26.50 Mauritius 50.00 Liberia 63.85 The Gambia 31.32

Madagascar 6.58 Malawi 26.01 Sudan 49.29 Swaziland 63.03 Guinea-
Bissau 31.14

Mozambique 5.63 Tunisia 25.80 Mali 48.32 Gabon 62.89 Guinea 31.12
Zambia 5.18 DR Congo 24.25 Tunisia 43.43 Guinea 62.69 Ethiopia 30.68

In the column of Slight Improvement, table a line 8 and table b line 2, C A R stands for Central African Republic. In the same column, table
b line 1, Eq G stands for Equatorial Guinea. In same column, table a line1, DR, Congo stands for Democratic Republic of the Congo.

Based on the results of the percentages of total variations in each country (Table 2b),
Djibouti was identified to have experienced the most degraded vegetation, as its area of
significant vegetation degradation is greater than its remaining parts, and no part of it has
ever seen a strong improvement. Although Madagascar was not identified in the first five
strongly degraded countries, the area from its central part to its southern part revealed a
strong degradation. Furthermore, Sierra Leone and Liberia did not experience any strong
degradation, but a great improvement. The island of Mauritius neither experienced a
strong improvement nor a strong degradation. Further, based on the surface area of the
countries, Djibouti is also the first with slight degradation, (Table 2b).

3.2. Trend Dynamics Per Vegetation Type

After assessing the rate of vegetation increase and decrease, the authors detected the
areas where changes were recorded. Based on an area (in %), occupied by each vegetation
type and other land cover in 1992, changes in the vegetation in this area until 2015 were
calculated according to the vegetation rate resulting from NDVI trend analysis for 34 years
(1982–2015). The results in Figure 6 show the vegetation fluctuation in each of the five
classified vegetation trends of the annual mean NDVI from 1982 to 2015. Considering
the percentage of vegetation cover changes between 1992 and 2015 for each vegetation
type, the type of “Tree cover, Broadleaved, Deciduous, closed to open (>15%) (TBDCO)
and Shrubland” were the most severely degraded in Africa, yet they were in the opposite
classes. The TCBDCO accounted for more than 74%, 37.3%, 18.4% and 4.1% of cleared
vegetations in the area that experienced strong, slight degradation, stable or non-vegetated
area, and slight improvement respectively. They also increased by 8.7% in terms of strong
improvement, whereas shrubland had about 63.1%, 47.2%, 30.6% and 23.5% of the cleaned
vegetation of strong, slight improvement, stable or non-vegetated area and slight degra-
dation, respectively, with a 1.1% increase in strong degradation. Figure 6 also shows that
the “Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%)”
and other types of vegetation only experienced degradation in areas where NDVI had
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either strongly improved or strongly decreased. This is explained by the fact that their
percentages are in the negative. These types of vegetation were replaced by those with an
increase in such areas, such as “Herbaceous cover” and “Rainfed cropland”. All these types
of ravaged vegetation cover are found in regions known for recurrent flooding, droughts,
agriculture activities, logging and an increase in population. Thus, stakeholders are urged
to take action on flood mitigation programs, logging and family planning, strictly for the
prevention of ecosystems, using the efforts of local communities and local government.
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Figure 6. Vegetation exchange in % from 1992 to 2015 classified in the NDVI trend result of the
vegetation dynamics (1982–2015) where, 10: rainfed cropland; 11: herbaceous cover; 12: tree or shrub
cover; 20: cropland, irrigated or post flooding; 30: mosaic croplands (>50%)/natural vegetation
(tree, shrub, herbaceous cover) (<50%); 40: mosaic natural vegetation (tree, shrub, herbaceous cover)
(>50%)/cropland (<50%); 50: tree cover, broadleaved, evergreen, closed to open (>15%); 60: tree
cover, broadleaved, deciduous, closed to open (>15%); 61: tree cover, broadleaved, deciduous, closed
(>40%); 62: tree cover, broadleaved, deciduous, open (1540%); 70: tree cover, needleleaved, evergreen,
closed to open (>15%); 80: tree cover, needleleaved, deciduous, closed to open (>15%); 90: tree cover,
mixed leaf type (broadleaved and needleleaved); 100: mosaic tree and shrub(>50%)/herbaceous
cover (<50%); 110: mosaic herbaceous cover (>50%)/tree and shrub (<50%); 120: shrubland; 122:
deciduous shrubland; 130: grassland; 150: sparse vegetation (tree, shrub, herbaceous cover) (<15%);
151: sparse tree (<15%) ;152: sparse shrub (<15%); 153: sparse herbaceous cover (<15%) ;160: tree
cover, flooded, fresh or brakish water; 170: tree cover, flooded, saline water; 180: shrub or herbaceous
cover, flooded, fresh/saline/brakish water; 190: urban areas; 200: bare areas; 201: consolidated bare
areas; 202: unconsolidated bare areas; 210: water bodies. Following the legend of the global Land
Cover map using the United National Land Cover Classification System (UN-LCCS), which is quite
compatible with the plant functional types used in many models.

3.3. Climate Variability Trends from 1982 to 2015

Figure 7 shows the spatial distribution of annual climate change trends from 1982
to 2015. Except for the southwest Sahara, which shows a slight increase in temperature,
the significant rate of increase rises up to 0.0734 ◦C y−1 of the temperature identified
throughout the eastern Sahara Desert and strongly along the Sahel zone. Likewise, we
identified a similar trend in northern Ethiopia, eastern Kenya and western Uganda. The
significant decrease rate to −0.047 ◦C y−1 is identified in the western part of west Africa,
in southeast Somalia, west Kenya and in the southern part of Africa. The eastern-north
central and eastern Africa generally showed a slight decrease.
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from 1982 to 2015.

The precipitation variability during the 34 years of the study showed a significant
increase at the rate of 21.17 mm y−1 in some parts, like that along the Sahel from Senegal to
Ethiopia, yet did not occur in Djibouti and western part of Eritrea. This increase was seen
again in the middle part of Madagascar and northern part of Tunisia, Algeria and Morocco,
and in the high mountains of Ethiopia, South Sudan and northern Uganda. It further
was identified in the northern and central part of southern Africa and south-central and
eastern Africa. The observed significant decrease, to the rate of−14.1126 mm y−1, occurred
strongly in central Africa, especially in the DR Congo, Angola, Gabon and south Cameroon.
The same scenario occurred in southwestern, eastern and in east-southern Africa.

The spatial distribution of the seasonal climate and vegetation change trends from
1982 to 2015 is shown in Figure 8. The NDVI rate strongly increased in the tropical northern
hemisphere and decreased in the southern hemisphere during the spring (SON) season,
while the opposite trend is seen in autumn (MAM). Vegetation below the Sahel area has a
strong increasing rate during summer (DJF), but was gradually reduced in autumn and
increased back to the Sahel area during winter (JJA). Furthermore, central and west African
vegetation strongly decreased during spring and summer, while, during winter, that in
central and southwestern Africa showed a strongly increasing pattern.

The temperature reflected different spatial trends in every season, with the greatest
increase generally observed in the northern part of Africa during the different seasons.
During the spring season (SON), the temperature increased almost throughout the conti-
nent, with a significant increase occurring in northeast Africa, the Sahel zone and western
Madagascar. The rate of change was from −0.062 to 0.093 ◦C y−1. Even though this season
does not show the greatest increase in temperature, a significant increase was displayed in
most parts of Africa. However, during this season, the sub-Saharan areas are predominated
by a slight increase in temperature. In summer, the temperature shows a decrease, mostly
northwest of the Sahara Desert and in part of Southern Africa, while an increase occurred
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in central and north-west Africa. During this season, the rate of change was from −0.077
to 0.085 ◦C y−1.
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Further, during the autumn (MAM), the temperature continued to decrease, mostly in
the sub-Sahara, especially in the high mountains, while an increase is recorded north of
the Sahara, precisely along Sahel, and in Algeria, Tunisia and Morocco. The winter (JJA)
shows a wide area of decrease in temperature; however, its rate of decrease (−0.047 ◦C y−1)
is very small compared to rest of the three seasons and it possesses the biggest rate of
increase (0.105 ◦C y−1). While most parts of the continent show a decrease in temperature,
central-western Sahel has a strong increase.

Although temperature and precipitation are recorded differently over the seasons,
they both seem to be similar in some areas. In winter (JJA), precipitation occurred in a
very small part of Africa, with a significant rate of both increase and decrease (17.5 and
−8.194 mm y−1, respectively). This precipitation increases only in areas below the Sahel
line and the Equator, especially in the high mountains of Ethiopia. It is in the same season
that, especially in the West African countries bordering the ocean from Guinea Bissau
to Gabon, a significant decrease in precipitation is also observed. These rates of change
continue spreading in the spring, especially eastward. The rate of increase is strong in the
Horn of Africa, and a sharp decline spreads strongly throughout Central Africa, particularly
in Cameroon, Gabon, Democratic Republic of the Congo and the Central Africa Republic.

In summer (DJF), the rate of increase in precipitation over the 34 years in this study was
observed only in the southern part of Africa, with a rate of 10.658 mm y−1. The significant
increases turned out to be the continuation of spring (SON) in the southeast direction. It is
in this season that a small rate of decrease in precipitation (−5.401 mm y−1) was observed.
Central African countries generally have a problem of reduced rainfall occurrence in all
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seasons, except in autumn (March to May), where some of its parts experience an increase
in rainfall. This is consistent with the apparent decrease in vegetation and the increase in
temperature in this region.

3.4. Correlation between NDVI and Climate Variability

The spatial analysis of correlation coefficients between the annual average NDVI and
the annual cumulative precipitation and the annual average temperature in the entire
African continent is presented in Figures 9 and 10. Moreover, to find the relationship
between vegetation dynamics and climatic variability, the correlation coefficients were
found at the annual and seasonal levels. The mean NDVI revealed a positive correlation
coefficient with precipitation in most vegetated areas, especially in arid steppe hot areas
and its surrounding desert, hot zone. However, we cannot ignore some parts which showed
negative correlations, like Serra Leone, Guinea, the eastern part of Democratic Republic
of the Congo, Malawi, East Zambia, west Mozambique, Burundi and west Tanzania. The
NDVI and precipitation, correlation coefficient rates during the 34 year period was up
to 0.930 at 69% and down to −0.774 at 31% of the vegetated area. The part along the
Sahel presented a high positive correlation coefficient, while the part in central Africa
showed a slight negative correlation between annual mean NDVI and cumulative annual
precipitation (Figure 9a). The significance test (Figure 9c) showed that there is no significant
correlation between mean NDVI and cumulative annual precipitation, given that only 20%
(positive 12.7% and 7.3% of negative) shows a p-value between −0.05 to 0.05. The main
part, i.e., 61.2% shows a slight positive correlation, while the slight negative correlation
was 23.7%.

The correlation coefficient rate between the annual NDVI and the mean temperature
is shown in Figure 9b, and represents a higher negative rate, which is negatively correlated
at −0.873 and positively correlated at 0.844. A very strong negative correlation coefficient
(−0.873) was identified in the northern part of Southern Africa, especially around Namibia
and Botswana, in south Madagascar, west of Ethiopia and the middle parts of Somalia.
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from1982 to 2015. Notably, −0.05–0 and 0–0.05 are considered a negative and positive significant correlation, respectively,
while <−0.05 and >0.05 are considered slight negative and positive significant correlations, respectively.

In contrast, the highest correlation coefficient (i.e., 0.844) is observed in most parts of
west African countries, north and west of Central Africa and in the Nile delta of Egypt.
In addition, the evergreen forest in the tropical climate zone of Africa showed a positive
correlation between mean NDVI and temperature. The significance test (Figure 9d) showed
no correlation of significance when only 11.7% (positive 5.9% and negative 5.8%) showed
p-values between −0.05 and 0.05. A slight positive correlation is shown by the main part
by 53%, while the slight negative correlation was 35%.

Furthermore, the mean NDVI illustrates different amounts of responses to changes
in seasonal precipitation and temperature (Figure 10a,b). Based on these results, in most
of the vegetated areas in the study area, a positive correlation between the average NDVI
and the accumulated seasonal precipitation is identified, and the correlation coefficients
varied according to the seasons and space in the study area. On a seasonal scale, the area in
all seasons accounted for up to 50% of the pixels with a positive correlation coefficient. A
seasonal descending order, based on positive correlation coefficients of the simulated pixels,
were observed in spring (SON), autumn (MAM), summer (DJF) and winter (JJA), with
67.21%, 63.28%, 54.82% and 50.95%, respectively. In winter, which shows a few positive
correlation coefficients between the mean NDVI and precipitation, negative correlation
coefficients were also found in the most vegetated areas, especially in south-east Africa,
including Madagascar. In contrast, for the spring season, the negative correlation coefficient
was most evident in the desert areas.

The correlation coefficients between the mean NDVI and temperature in all seasons
exhibited an obvious spatial difference, mostly with a negative correlation, while none had
a percentage lower than fifty. In addition, the biggest positive correlation coefficient rate
identified from September to November was accounted for, from −0.852 to 0.811. During
the spring season, African vegetation and temperature experienced both strong positive
and negative correlations in different parts. It was in the autumn season (MAM) that the
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biggest negative correlation (−0.894) was recorded, particularly in the southern parts of
Africa. Moreover, occupation of the space counted by pixels with negative correlation,
which were the most predominant, was observed in chronological order, as follows: winter
(JJA), summer (DJF), spring (SON) and autumn (MAM), as 74.95%, 68.45%, 66.66% and
65.64%, respectively. Further, a negative correlation between the mean NDVI and the
temperature occurrence in winter was observed in most parts of strongly vegetated African
countries along the Sahel region and Southern Africa, while a positive correlation was
observed in the high mountains of eastern countries and eastern-northern parts of the DR
Congo, and tropical west Africa.
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The summer was the second highest in terms of pixel occupancy; the temperature
strongly devastated the NDVI in east Africa, and southern Africa within the Kalahari
Desert. During the spring season, the vegetation of east Africa and southern Africa and
almost the entire of Madagascar, show a strongly negative correlation with temperature,
while it showed positive correlations in most regions of central and southern west Africa at
high correlation. In autumn, the correlation coefficient is significantly negative in southern
Africa, in the southern part of Madagascar and in most regions of east Africa. Positive
correlation coefficients were observed in central Africa and northeast Madagascar.

Moreover, Spearman correlation analysis was performed, where a very strong cor-
relation between NDVI and precipitation is considered to be 0.98% (0.5 positive and
0.48 negative); strong correlation at 3.13% (1.64% of positive and 1.48% of negative); mod-
erate correlation at 13.77% (7.08% of positive and 6.69% of negative); weak correlation
at 32.77% (16.46% positive and 16.11% of negative) and very weak correlation at 49.55%
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(24.65% positive and 24.915 of negative). For NDVI and temperature, a very strong cor-
relation is 1.43% (0.69% of positive and 0.74% of negative); strong correlation is 6.46%
(3.02% of positive and 3.46% of negative); moderate correlation is 18.14% (8.78% of positive
and 9.36% of negative); weak correlation is 32.01% (15.71% of positive and 16.30% of
negative) and very weak correlation is 41.94% (20.73% of positive and 21.20% of negative)
(Figure A2). The NDVI–precipitation occupied a larger size, between −1 and −0.9525,
from −0.2941 to 0.325 and from 0.9525 to 1 with 62.3%, 53.5% and 63.91%, respectively,
while the NDVI–temperature occupied a larger size on the correlation between −0.9529
and −0.2941, and from 0.3255 to 0.9529, with 57.7% and 55.8%, respectively (Figure A1).

3.5. Residual Analysis

Residual-based NDVI-temperature linear regression analysis was used to remove
the limitation of temporal autocorrelation and to show the normal distribution between
NDVI and climate factors. Figure 11 showed a slight increase in the trend of the NDVI–
temperature relationship in tropical Africa, particularly in tropical rainforests up to 0.056 y−1

and a slight decrease in arid and semi-arid regions of the Sahara and Kalahari Deserts
−0.54 y−1. In the tropical savanna and temperate zones, especially in northeastern south-
ern Africa, eastern Africa and southwestern Central Africa, NDVI–precipitation residuals
increased slightly, to 0.74 y−1. In tropical rainforests, tropical monsoons, arid and semi-arid
zones, it declined slightly to −1.2 y−1. These findings suggest that the average patterns
in NDVI–temperature residuals and NDVI–precipitation have strong geographic charac-
teristics. The outcome revealed that positive NDVI–precipitation residuals in areas with
increasing vegetation trends are spatially aggregated, and are mainly located along the
Sahel belt, in the eastern semi-arid zone, in some parts of western Africa and southeast
Africa. Regarding NDVI–temperature, it is obvious that the main increases are seen in the
slight increase in vegetation in Madagascar and in some tropical regions.
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4. Discussions
4.1. Analysis of Vegetation Trend Dynamics

One of many ways in which change in vegetation can be revealed and quantified is by
analyzing the fluctuating time series of consecutive years and providing the direction of
change through slope analysis [36]. Trends with zero slope values are stable vegetation,
while the positive and negative trends represent an increase and decrease in vegetation,
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respectively [37]. For this study, the results revealed that over 79.16% of Africa showed
improved vegetation density. This is consistent with the results of Ndayisaba, Guo [11],
which reported that over 82.1% of vegetation was improving. This resulted from the
increase in precipitation, and reforestation. The highlight is that, in 2011, there was a
significant increase in vegetation, although it is not clear whether there were any special
precipitation anomalies. Our results are consistent with those of Davis-Reddy [21], which
reported a sharp increase in NDVI in 2011 and Brandt, Rasmussen [38], and, equally,
testified to the increase in vegetation cover between 1992 and 2011, resulting in a slight
increase in the population, driven by the increase in CO2 and rainfall. Although the increase
in NDVI has been observed from 1992, a strong increase in all climate zones was noticed
from 2011 to 2015.

Significant degradation occurred in Central and Eastern Africa, bordering the countries in
Southern Africa, from Angola, Zambia and Mozambique to Madagascar (Figures 4a and 5a).
This degradation occurs strongly during summer season, the months from December to
February (Figures 8 and 10a) which may have been influenced by the ENSO events that
were reported to be the strongest during this season [39]. Further, from 1982 to 1984,
especially in arid areas, there has been a dramatic decline in NDVI, possibly due to drought
conditions from 1982 to 1985 in northern tropical Africa [40]. In 1993, there was a sharp
decline in NDVI in tropical, boreal and polar climate zones, and in 1992, there was a sharp
decline for arid and warm temperate zones (Figure 2), which may have resulted from an
obvious drop in rainfall occurrence from 1990. This finding is consistent with the results of
Davis-Reddy [21], indicating that NDVI decreased in Southern Africa in 1992/1993 and
resulted from the warm ENSO phase and low rainfall event.

However, NDVI shows limitations in identifying and attributing changes in vegetation
cover: (1) In arid regions, where seasonal variations in the content of atmospheric aerosol,
such as dust and soil background, can cause significant changes in NDVI that are not
accompanied by vegetation change [41,42], and in heterogeneous savanna regions, NDVI
may have been affected by mixed land cover effects. These areas were masked and the
NDVI value < 0.1 was removed to achieve a robust assessment. (2) The NDVI often tends
to saturate in densely vegetated areas like tropical rainforest; however, these areas were not
excluded from the analysis, to consider the abrupt change and shift which may happen.

4.2. Climate Variability Trends

It is obvious that precipitation is increasing significantly from the Saharan region
to the Horn of Africa, in most of Madagascar, in the northern part of southern Africa
and northern Morocco and Tunisia. It is declining markedly in central Africa, in a small
southern part of west Africa and even in southern Africa. The temperature is notably
decreasing in western and southern Africa, and increasing rapidly in northeastern Africa
and the northwestern part of Central Africa (Figure 7).

Furthermore, the report highlighted wetter rains in Tanzania and Kenya from March to
May. This is consistent with our results, which show an increase in the precipitation rate in
this region (Figure 8). Looking at a small-scale map, the results of increasing and decreasing
precipitation rates are consistent with those of Ndayisaba, Guo [11], which showed that
precipitation decreases in the west and increases in the east of Rwanda. The temperature
increased at a remarkable rate of 0.0734 ◦C y−1, with a decrease of −0.0472 ◦C y−1. This
shows that the temperature has risen to 0.86 ◦C in the last 34 years (1982–2015). The
results are consistent with those of the IPCC 2014, which reported an increase of 0.85 ◦C
for the period of 1880–2012 [43]. Indeed, the IPCC reported that the African land surface
temperature increased by 0.5–2 ◦C over the last century [44].
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4.3. Correlation between Temperature, Precipitation and NDVI

Although a large part of Africa did not show a significant correlation, the annual
correlation between NDVI and climate data in Figure 9 demonstrates a strong positive
correlation between NDVI and precipitation in the semi-arid zone up to 0.930.

In winter (JJA), precipitation in north Africa above the Sahel region decreases; however,
NDVI increases along Morocco and the Nile delta in Egypt. This results from the fact
that, in this season, the temperature is too cold and the decrease in precipitation often
triggers colder weather across the region, which can increase the greenery of the vegetation.
Furthermore, this can result from the use of irrigation in agricultural activities. Moreover,
from December to February, precipitation decreases, resulting in a decrease in vegetation
in south-central Africa, especially in Zambia, Zimbabwe, Mozambique and Botswana. This
may be caused by the drier than normal weather caused by ENSO, as reported by [45].

The annual temperature is positively correlated with NDVI in West Africa and in
the western and northern parts of central Africa (Figures 9b and 10a). This correlation
is also observed from September to November (Figure 10b). The evergreen forest is a
humid tropical zone, which is the main cause of the positive correlation. Furthermore,
this correlation also may be resulted from aerodynamic effects, explained by Sanderson
and Santini [46], as the forest drags and slows the wind speeds, resulting in an enhanced
transfer of heat and moisture between forest and air.

The seasonal correlation between NDVI and climate data showed a strong negative
correlation between temperature and NDVI in south and east Africa during almost all
four seasons (Figure 10), and along southern Sahel in winter. However, it identified a
slight positive correlation in other regions, including deserts. The strong seasonal negative
correlation between NDVI and temperature across the Sahel, in JJA, for a small area in
MAM, and in the west and east of DJF, may be due to reforestation, which decreased warm
days in the region [47].

The seasonal NDVI and precipitation were generally correlated in vegetated areas,
while they were negatively correlated, particularly in desert areas. The forest of western
Madagascar showed a positive correlation with temperature, while it showed a negative
correlation with precipitation over all seasons. Results of non-significant correlation, and
annual changes in precipitation and temperature, were not able to explain the variation
in vegetation, thus there are other factors, like human activities, which may mainly affect
the vegetation. Moreover, there are the other key factors (climate and non-climate) that
are responsible for vegetation cover changes at the country level, e.g., for climate factors,
Igbawua, Zhang [48] reported that the dynamics of vegetation have also affected demog-
raphy and land use, and are responsive to the humidity. The other non-climate factors
which affect vegetation changes in Africa are numerous. For example, recent develop-
mental progress in Africa controls tropical rainforest growths and revegetation due to
stages in urbanization processes experienced at country-levels, including oil spillages in
the mangroves of west Africa [49].

5. Conclusions

Throughout Africa, during the 34-year period (1982 to 2015), the spatial–temporal veg-
etation dynamics were assessed through the NDVI3g time series from the GIMMS analysis.

To overcome data constraints from different regions (arid, rainforest), the datasets are
treated with caution. To identify and analyze the main factors, CHIRPS precipitation and
ERA-Interim temperature datasets were used in this study. The various statistical matrices,
including linear regression and spearman analyses, were applied to help identify the rate
of increases and decreases in vegetation changes in Africa.

The results indicate that vegetation has a positive annual rate of 0.013 y−1 over a
statistical pixel area greater than 79.16% of the total area. The precipitation exhibited
a historic increase of 21.17 mm y−1 and the temperature showed an increase rate of
0.0734 ◦C y−1. It was noted that the rate of decrease (−0.014 y−1) for vegetation occupied a
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statistical pixel area of 20.84% of the total area. This rate is higher than the rate of increase,
at the rate of 0.001 y−1, explaining the implicit strong degradation of the vegetation.

While for temperature and precipitation, the increases are greater than the decreases,
which are −0.0472 ◦C y−1 and −14.11 mm y−1, respectively. Particularly in central Africa,
the findings showed that there was a significant increase in temperature and a significant
decrease in rainfall. Thus, the tropical vegetation has undergone destructive changes, and
therefore gradually perishes different plant species, especially tree cover, broadleaved,
deciduous, closed to open (>15%) and shrubland. These can be attributed to urbanization
processes at the country level, which are currently spreading throughout most parts of
tropical Africa. However, our analysis did not consider urbanization effects, which is a
limitation of the study. Because the simple linear regression analysis is commonly used to
establish relationships between variables, but not their causation, a relationship between
two variables does not mean one causes the other to change. However, our study still
shows the influence of climate variability, given the positive correlation between vegetation
and precipitation throughout Africa, except in deserts, and a strong negative correlation
between vegetation and temperature in almost all the vegetated areas, except the tropical
rainforest zone (Figure 1). Additionally, our study shows a large, stable and a continuous
decrease in vegetation, mostly in the central and eastern parts of Africa. Furthermore, the
increase in temperature caused by global warming remains a serious problem in Africa.
Therefore, it is suggested to ensure the reduction in all sources of temperature rise. We
can conclude that monitoring the level of climate change is essential to identify the onset
of depression, regardless of geographical influences. Future studies should consider a
more detailed investigation of the influence of current urbanization processes on African
vegetation and endangered plant species.
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