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Abstract: System strength is an important concept in the integration of renewable energy sources
(RESs). However, evaluating system strength is becoming more ambiguous due to the interaction of
RESs. This paper proposes a novel scheme to define the actual interaction boundaries of RESs using
the power flow tracing strategy. Based on the proposed method, the interaction boundaries of RESs
were identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems. The
test results show that the proposed approach always provides the identical interaction boundaries
of RESs in KEPCO systems, compared to the Electric Reliability Council of Texas (ERCOT) method.
The consistent boundaries could be a guideline for power-system planners to assess more accurate
system strength, considering the actual interactions of the RESs.

Keywords: interaction boundary; renewable energy sources; system strength; short-circuit ratio;
weighted short-circuit ratio

1. Introduction

System strength is a common concern in the expansion of renewable energy sources
(RESs) [1–3]. Recent studies have been focused on the assessment of system strength in the
power system with a high penetration of RESs [4–6]. The sensitivity of system variables
to diverse disturbances depends on the system strength. One of the indexes to evaluate
system strength is the short-circuit ratio (SCR) from IEEE [7]. The SCR represents the
strength of a bus in a power system with respect to the rated power of a facility [4–6]. The
SCR is defined as the ratio of the short-circuit capacity at where the bus is located to the
MW rating of the device. A weak AC system has an SCR below three, and a strong system
has an SCR greater than five. The system with a lower SCR has large changes in voltages
and other variables caused by disturbance. This contributes to negative impacts such as
high over-voltages, control instability, and low-frequency resonances [8–12].

High penetration of RESs (e.g., solar photovoltaics and wind plants) is often installed
in the optimal locations where resources such as wind or solar power are available for
RESs to maximize their output. These places could be weak AC systems in which the RESs
are remote from synchronous generators and loads. The RESs, which are electrically close
together, can interact with each other and oscillate together. In such a case, the SCR method
is not valid, since this method assumes that an RES cannot interact with other RESs. As
a result, a system strength evaluated by the SCR method cannot reflect the interaction of
RESs. This causes the system strength to be overly optimistic. The excessively optimistic
result of the SCR can make system planners misunderstand the system stability and fail to
reinforce it.
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There is currently no exact guideline to evaluate the system strength of a weak AC
system with a high penetration of RESs. Meanwhile, the paper [13] suggested that the
interaction factors were used to assess the system strength for inverter-based systems.
Other researchers adopted the impedance metrics for system-strength evaluation in the
weak system [14,15]. The Electric Reliability Council of Texas (ERCOT) suggested the
weighted short-circuit ratio (WSCR) to consider the full influence of interaction between
wind plants, and to provide an accurate estimate of the system strength [16–18]. This index
is a proper method to evaluate the system strength for the Texas Panhandle region, where
a high penetration of wind farms exists, and they are closer to each other. The proposed
WSCR method assumes that all wind plants connected to a point of interconnection (POI)
fully interact with each other, as shown in Figure 1.

Figure 1. A sample system with a high penetration of wind plants for calculating weighted short-
circuit ratio.

To consider the effect of interaction between RESs, from [19], the WSCR index can be
defined by:

WSCR =
∑N

i SCMVAi × PRES,i(
∑N

i PRES,i

)2 (1)

where SCMVAi is the short circuit capacity at bus i before the connection of a RES, PRES,i is
the MW rating of RES i to be connected, N is the number of RESs fully interacting with
each other, and i is the RES index. Equation (1) indicates that the electrical distances do not
exist between each wind plant at the POI, since this is equivalent to assuming all RESs are
connected to a single virtual POI. With this method, the WSCR represents a conservative
estimation of system strength [20]. The overly conservative results of the WSCR can result
in inadequate investments in system reinforcement. However, for real power systems,
some electrical distance between each wind plant at the POI does exist. Additionally, the
wind plants will not have fully interacted with each other. These imply that the WSCR
calculation method can neglect electrical distance.

The WSCR method does not provide proper guidelines to determine the interaction
boundaries of RESs. This implies that the interaction boundaries for calculating the WSCR
are not defined clearly. The WSCR calculation method may not be applicable if a high
penetration of RESs is dispersed in power systems. The dispersed RESs can fully interact
with the other RESs outside the boundary. The WSCR value for system strength can be
misrepresented if there are outliers. The ERCOT raised a concern that the boundaries of
the Texas Panhandle are getting blurred due to the expansion of RESs [20]. The WSCR
method may not be accurate in the future. On the other hand, the Australian Energy
Market Operator (AEMO) in Australia prefers to limit the consideration to generators
connected within three buses of the proposed generators under the study [21,22]. However,
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the AEMO does not provide the guidelines to determine the interaction boundaries of RESs
as well as the ERCOT. The WSCR values in the system with a high penetration of RESs
critically depends on where the study area boundaries are drawn. For accurate estimation
of system strength, it is most vital to establish the boundaries of the RESs that actually
interact with each other.

In this paper, we propose a novel scheme to identify the actual interaction area of RESs
by using the power flow tracing method. In the Materials and Methods section, the concept
of power-flow tracing of RESs is introduced and the power-tracing matrix is built. Also, two
algorithms are proposed to determine the actual interaction boundaries of RESs to calculate
WSCR values. Based on the proposed method, the actual interaction boundaries of RESs
are identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems.
In the Results section, the WSCR values with the proposed interaction boundaries are
analyzed in comparison to the ERCOT method. Finally, the actual interaction boundaries of
the renewable energy sources were distinguished at the southwest side of KEPCO systems.

2. Materials and Methods
2.1. Power-Flow Tracing of Renewable Energy Sources

The power flow tracing method deals with the problem of how power flows are
distributed in a meshed AC system [23] The method can facilitate the assessment of how
much real power output from a specific generator flows to a particular load. Assessing
the contributions of generators to individual line flows is also possible. From [23], the key
principle in the method is the proportional-sharing principle, as illustrated in Figure 2a,
where five lines are connected to node i, with three lines as inflows and two as outflows.
The total power inflow through node i is Pin f lows = 50 + 110 + 40 = 200 MW, of which
25% is supplied by lineji, 55% by lineki, and 20% by lineli. An assumption may be made
that each outflow leaving the node i has the same proportion of inflows as the total inflow.
Hence, the 150 MW outflow in lineim consists of 25%× 150 = 37.5 MW supplied by lineji,
55%× 150 = 82.5 MW supplied by lineki, and 20%× 150 = 30.0 MW supplied by lineli.

Based on the power flow tracing method, the contribution of each RES to other RESs
can be traced. This is illustrated in Figure 2b, where each wind plant is connected to a bus.
Inflows at bus 3 consist of the active power from a wind plant at bus 3 and from the other
two RESs near bus 3.

Figure 2. The conceptualization of power tracing. (a) The proportional-sharing principle of the power flows [23]. (b)
Power-flow tracing of renewable energy sources in a four-bus network.

From [23], the interaction at bus 3 may be mathematically expressed as:

P3 = P33 + P13 + P43 (2)

The general expression is:
Pi = Pii + ∑

i∈S,i 6=j
Pij (3)
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where Pi is the interaction at bus i, Pii is the active power from the RES at bus i, Pij is the
active power delivered from the bus i to bus j, and S is the set of buses connected to the
RESs. Based on (3), the power flow tracing matrix describing the mutual interference of the
RESs can be written as:

Power tracing matrix (PM) =

 Pij · · · Pis
...

. . .
...

Psi · · · Pss

, ∀ij ∈ S (4)

where row i of the PM is the active power delivered from bus i to other buses with RESs,
and column j is the active power given from other buses with RESs. Each row and column
in (4) are ordered by placing the bus of interest first to establish the interaction boundary,
and the rest of the buses in the order of closeness to the bus of interest. The mutual influence
of the boundary can be established by analyzing the elements of the matrix.

2.2. Identifying the Acutal Interaction Boundaries of Renewable Energy Sources

The power-tracing matrix needs to be reduced to filter the independent bus and radial
bus from the matrix. Independent buses can be determined by whether the sum of the
active power received on the bus of interest and transmitted on the bus is zero. This means
that the bus does not interact with other RESs. After filtering the independent bus, the
radial bus can be determined by whether the sum of the active power received at the bus of
interest is zero but transferred from the bus is not zero. The radial bus may radially connect
to the bus that received the largest amount of active power transferred from the radial bus.
Those buses may interact with each other. Thus, they may be within the same interaction
boundaries. Algorithm 1 details this filtering process to distinguish the independent and
radial buses.

Algorithm 1: Filtering the independent and radial buses

Input: Power flow tracing matrix (PM)
Output: Reduced power flow tracing matrix (P′M), S′, O
1: O← ∅, Pij ∈ PM, ∀(s) ∈ S
2: for each s in S do
3: if ∑

i∈S,i 6=s
Pis + ∑

j∈S,j 6=s
Psj=0 then

4: O← O∪ {s}, S← S− {s}
5: Eliminate row s and column s of PM
6: end if
7: if ∑

i∈S,i 6=s
Pis=0 then

8: Find j in S such that j 6= s and Psj is the largest for all j in S
9: i = j
10: for each j in S do
11: Pij = Pij + Psj
12: end for
13: S← S∪ {i_s}, S← S− {i, s}
14: Eliminate row s and column s of PM
15: end if
16: end for

The reduced power flow tracing matrix and the filtered list of buses connected to RESs
in Algorithm 1 become inputs in Algorithm 2. The bus of interest is initially included in the
interaction boundary of RESs. The next bus of interest may be included in the boundary if
the power received on the bus of interest from the RESs within the boundary is greater than
the RESs outside the boundary. Algorithm 2 details the decision process for interaction
boundaries. This process is repeated until there are no bounded buses.
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Algorithm 2: Determinng the interaction boundary of RESs

Input: P′M, S′

Output: Bk f or all k
Set k←0, Pin ← 0, Pout ← 0, Bk ← ∅ , U← ∅
1: Reorder P′M and S′ with s* is the first row and column of P′M and first element in S′.
2: Bus of interest s∗ ∈ S′, Bk ← Bk ∪ { s∗}, U← U∪

(
S′ − { s∗}

)
,

3: for each s in S′ do
4: Initialize Pin and Pout
5: if s′ 6= s∗ then
6: For each b in B do
7: Pin = Pin +Pbs
8: end for
9: For each u in U do
10: if u 6= s′ then
11: Pout ← Pout +Pus
12: end for
13: if Pin ≥ Pout then
14: Bk ← Bk ∪ {s′}, U← U− {s′}
15: end if
16: end if
17: end for
18: for b in Bk do
19: Eliminate row b and column b of P′M
20: end for
21: Bk ← Bk , Bk ← ∅
22: k ← k + 1
23: if U 6= ∅ then
24: S′ ← U
25: Send S′ to line 1
26: end if

2.3. Implementation in PSS/E

In the software Power System Simulation for Engineers (PSS/E), the data of power
systems can be modified in a *.raw file that consists of 23 steady parameters to model power
systems. The WECC Type 4 (Fully rated Converter) generator model was used as a wind
plant. According to the grid code, the power factor of RESs was set to ±0.95 in the machine
data of the *.raw file. The full Newton–Raphson method was used to calculate power flow
for tracing the active power. All of the tap and switched shunt adjustments were locked as
a solution option to calculate power flow. To compare the WSCR of the boundary set by the
proposed scheme and the WSCR of the boundary set by ERCOT, the short-circuit capacity
(SCC) calculation was done using the automatic sequencing short-circuit calculation (ASCC)
in PSS/E. Generator reactance was used as sub-transient impedance. The fault applied was
a three-phase fault at the bus connected to the RESs. The system strength was evaluated
through the actual power output of the installed wind-power capacity.

2.4. Description of Case Study in Korean Electric Power Corporation System

The simulation was conducted for the 2022 future scenario of KEPCO systems. To
achieve the “New Renewable 3020 Plan” announced by the Ministry of Trade, Industry
and Energy (MOTIE), a large number of RESs will be installed in the southwest region of
KEPCO systems. In this case study, 6.5 GW of renewable energy sources was installed at
the southwest side of KEPCO systems. The area of interest has 15 RESs buses and five other
buses; three buses are 345 kV, and the rest are 154 kV. The southwest side of the KEPCO
system has a large penetration of RESs. This is illustrated in Figure 3, where the system
is remote from the synchronous generators and the load center. RESs connected to the
southwest system are effectively connected to a POI such that the RESs may interact with
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each other. The interaction boundaries of the RESs become more difficult to determine as
the high penetration of RESs continues to expand on the southwest side of KEPCO system.

1 
 

 

3333 
 

 

Figure 3. The system configuration of the KEPCO system where the RESs are connected.

3. Results

The scheme to identify the interaction boundaries of RESs was demonstrated for a
KEPCO system. The SCCs at buses are summarized in Table 1, and the power-tracing
matrix used in the case study is shown in Table A1 in Appendix A. The result of the
proposed method is shown in Table 2. Each row of Table 2 shows the result of one complete
scheme. The first column of Table 2 is the bus of interest that is connected to RESs, and
chosen at first for determining the interaction boundary. The second column of the table
is the result of Algorithm 1 to filter the independent buses. The order of elements in
the second column is the filtering order. The radial bus is filtered in Algorithm 1 and
then included in the boundary column where the radial bus is connected. The remaining
columns are the result of Algorithm 2, where the interaction boundary is determined. The
order of elements in the first boundary column is the order of determining the interaction
boundary. The first element of the second and third boundary columns is the next bus of
interest in the group whose bus is not included in the previous boundary. The important
observation in this result is that the same boundary is defined even if any bus is initially
selected as the bus of interest. The order of determining the interaction boundary may
vary depending on the bus of interest. This is because the power flow tracing matrix in
Algorithm 2 is rearranged to place the bus of interest in the first row and column.

Table 1. Short-circuit capacity at the buses and active power generation from RESs.

Bus Short-Circuit Capacity (MVA) RES Generation (MW)

AJ#RE 2103 268
SA#RE 2090 600
JD#RE 2911 38
SH#RE 3566 60
HN#RE 3758 170
SJ#RE 2921 30

BH#RE 2961 50
UD#RE 3044 197

SHS1#RE 7968 40
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Table 1. Cont.

Bus Short-Circuit Capacity (MVA) RES Generation (MW)

KC#RE 4499 20
NC#RE 2913 40
WD#RE 1978 375
YA#RE 3763 321
BK#RE 3707 30
YK#RE 2342 23

HON#RE 2182 138
GC#RE 477 200
GH#RE 1593 55
GR#RE 1613 20

Table 2. Interaction boundaries with different buses of interest using the proposed method.

Bus of
Interest

Independent
Buses

First
Boundary

Secondary
Boundary

Third
Boundary

AJ GH, GR AJ, SA, JD, SH, HN, BH, UD, SHS1, SJ NC, WD, YA, BK, KC YK, HON, GC
SA GH, GR SA, AJ, JD, SH, HN, BH, UD, SHS1, SJ NC, WD, YA, BK, KC YK, HON, GC
JD GH, GR JD, HN, AJ, SH, SA, BH, SHS1, UD, SJ NC, WD, YA, BK, KC YK, HON, GC
SH GH, GR SH, JD, AJ, HN, SA, BH, SHS1, UD, SJ NC, YA, WD, BK, KC YK, HON, GC
HN GH, GR HN, JD, SH, AJ, SA, BH, SHS1, UD, SJ NC, YA, WD, BK, KC YK, HON, GC
NC GH, GR NC, WD, YA, BK, KC HN, JD, SH, SHS1, UD, AJ, BH, SA, SJ YK, HON, GC
BH GH, GR BH, UD, SH, HN, SHS1, JD, AJ, SA, SJ YA, KC, NC, WD, BK YK, HON, GC
WD GH, GR WD, NC, YA, BK, KC HN, JD, UD, SH, SHS1, BH, AJ, SA, SJ YK, HON, GC
YA GH, GR YA, NC, KC, WD, BK UD, SHS1, HN, JD, SH, BH, SJ, AJ, SA YK, HON, GC
BK GH, GR BK, YA, NC, WD, KC HN, UD, SHS1, JD, SH, BH, SJ, AJ, SA YK, HON, GC
UD GH, GR UD, SHS1, BH, SJ, HN, SH, JD, AJ, SA YA, KC, NC, BK, WD YK, HON, GC

SHS1 GR, GH SHS1, UD, SJ, BH, HN, SH, JD, AJ, SA YA, KC, NC, BK, WD YK, HON, GC
GH GH, GR BK, YA, NC, WD, KC HN, SHS1, UD, SH, JD, BH, SJ, AJ, SA YK, HON, GC
KC GH, GR KC, YA, NC, BK, WD SHS1, UD, SJ, BH, HN, SH, JD, AJ, SA YK, HON, GC
SJ GR, GH SJ, SHS1, UD, BH, HN, SH, JD, AJ, SA KC, YA, NC, BK, WD YK, HON, GC

YK GR, GH YK, HON, GC SHS1, UD, SJ, HN, SH, JD, BH, AJ, SA KC, YA, NC, BK, WD
GR GR, GH YK, HON, GC SHS1, SJ, UD, HN, SH, JD, BH, AJ, SA KC, YA, NC, BK, WD

HON GR, GH HON, GC, YK SHS1, UD, SJ, HN, SH, JD, BH, AJ, SA KC, YA, NC, BK, WD
GC GR, GH GC, HON, YK SHS1, UD, SJ, HN, SH, JD, BH, AJ, SA KC, YA, NC, BK, WD

Some examples of results are necessary to verify whether the mutual interaction
boundaries are clearly defined. The examples are the results of the second-row case in
Table 2, where AJ#RE is the initial bus of interest. The first example illustrated in Figure 4
is to show and analyze why GR#RE is the independent bus. The closest distance between
GR#RE and another wind plant (SHS1#RE) is 129 km. GR#RE is not interacting with other
RESs because the bus is remote from the other RESs. In addition, the power generation
of GR#RE is relatively small (20 MW), which does not affect the other wind power plants.
This small, generated power will be consumed by line loss and small loads near GR#RE.
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Figure 4. Geometrical distance between GR#RE and other RESs.

A radial bus distinguished by using the power flow tracing method is illustrated in
Figure 5. As mentioned for Algorithm 1, SA#RE transfers power generation only to other
wind power plants and does not receive power from other wind power plants. The wind
power plant closest to SA#RE receives its largest transmitted power. In this case, AJ#RE
receives 600 MW from SA#RE. This means that AJ#RE may be largely interacted with by
SA#RE. The radial bus SA#RE can be bounded together with AJ#RE.

Figure 5. Power-flow tracing of radial bus SA#RE to other RESs.

Determining the interaction boundary of RESs is done by comparing the amount
of power generated by RESs inside the boundary to those outside the boundary. This is
illustrated in Figure 6, where the NC#RE bus receives 0 MW from RESs inside the boundary
and 319 + 0 = 319 MW from RESs outside the boundary. As a result, NC#RE may not
interact with RESs inside the boundary, but rather with RESs outside the boundary. The
NC#RE will not be bounded by the first boundary.
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Figure 6. Interaction boundary determined in NC#RE by comparing the power flow of the RESs inside the boundary with
that of the system.

According to the ERCOT method, two sets of boundaries are made due to the blurry
area, as illustrated in Figure 7. One set of boundaries is group A′, group B′, and group C’,
where the blurry area is included in group A′. The other set of boundaries is group A”,
group B”, and group C”, where the blurry area is included in group B”. Table 3 shows
that the WSCR was calculated with different interaction boundaries determined by the
ERCOT method. The WSCR increases from 1.40 of group A′ to 2.49 of group A” because
the blurry area is excluded in group A′. Instead, the WSCR decreases from 4.18 of group B′

to 1.54 of group B” since the blurry area is included in group B”. The WSCR of group C’
and group C” is the same, since the blurry area is far away from GR#RE. The minimum
WSCR value for this system can change from 1.40 on boundary A′ to 1.54 on boundary B”
due to the blurry area. Given the Texas Panhandle’s critical WSCR value, the first set of
boundaries shows that this system may be weak because 1.40 of boundary A′ is lower than
1.5. On the other hand, the second set of boundaries shows that this system may not be
weak because 1.54 of boundary B” is higher than 1.5. The ERCOT method can change the
WSCR value depending on how the boundary is set, which makes it difficult to consistently
assess system strength.

Table 3. Comparison of WSCR at different interaction boundaries determined by ERCOT method.

Group Bus(#RE) WSCR Group Bus(#RE) WSCR

A′ AJ, HN, SA, NC, SH,
WD, BH, BK, JD, GH 1.40 A” JD, HN, WD

BK, GH, NC 2.49

B′ UD, SHS1, YK, HON,
KC, GC, YA, SJ 4.18 B”

AJ, KC, SA, YA, SH,
YK, BH, HON, UD,

GC, SHS1, SJ
1.54

C′ GR 80.67 C” GR 80.67
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Figure 7. Interaction boundaries on a system using the ERCOT method.

The proposed method provides only one set of the mutual interference boundaries,
which are illustrated in Figure 8. The proposed boundaries are five different groups. Buses in
the blurry area are clearly separated by tracing the actual interaction of wind power plants.
SHS1#RE and SJ#RE are far from the rest of the wind farm in the same group A. However,
they interact with each other as a result of the tracing. Active power from SA#RE and AJ#RE
flows through the 345 kV line, which is connected from SGJ3 to SHS3. This causes SA#RE and
AJ#RE to interact with SHS1#RE and SJ#RE. RESs in group B can significantly interact with
each other within the same group more than RESs in other groups. RESs in group C interact
only with each other within the group, since they are remote from the other RESs. Groups D
and E do not interact with any other RESs. The GR#RE in group D is remote from other RESs,
as shown in Figure 4. The active power generated by RESs at GR#RE is only 20 MW, which
can be consumed by load and line losses. GH#RE has an independent boundary even if the
bus is connected to BK#RE within the (n-1) level. This is because there is a load of 56 MW
connected to GH#RE. Hence, GH#RE does not interact with other RESs, since the 55 MW of
active power generated by GH#RE is all consumed at the load. Interaction boundaries are
always identical even if the bus of interest changes.

Figure 8. Interaction boundaries determined by the proposed scheme.
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The WSCR of the proposed boundaries is shown in Table 4. The minimum WSCR
value for this system is 1.86 in group A, taking into account the actual interaction of wind
power plants using the power-tracking method. This system-strength assessment is always
consistent, as the proposed boundaries are the same, even if the bus of interest changes.

Table 4. The WSCR of interaction boundaries determined by the proposed method.

Group Proposed Boundaries(#RE) WSCR

A AJ, BH, UD, SA, JD, SHS1, SH, HN, SJ 1.86
B KC, NC, BK, YA, WD 3.67
C YK, HON, GC 10.79
D GH 28.96
E GR 80.67

4. Conclusions

This paper proposes a novel scheme to identify the mutual-interference boundaries of
RESs for estimation of system strength. The proposed approach uses the power flow tracing
method to analyze the actual interaction of RESs. Two algorithms used in this scheme
distinguish the independent buses, radial buses, and separate interaction boundaries.

The case study based on KEPCO systems has a blurry area to determine the system
strength due to the expansion of RESs. The results showed that the ERCOT method derives
the different WSCR values depending on where the blurry area is included. The ERCOT
method presents a difficulty for power-system planners in assessing the system strength,
as the blurry area exists. On the other hand, the proposed method always provides
identical boundaries even if the bus of interest changes, compared to the ERCOT method.
These boundaries reflect the actual interaction between RESs using power-flow tracing,
whereas the ERCOT method assumes the full interaction. Thus, the result of the scheme
demonstrates that the WSCR values of the proposed boundary are consistent in the system
even if the blurry area exists. The proposed method can be a better assessment for the
future system integrated with a high penetration of RESs. Future work will focus on the
development of the system-strength index using the proposed scheme.
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Abbreviations

Sets
S Buses with RESs, indexed by s.
S′ Buses with RESs after filtering independent buses and radial buses, indexed by s′.
O Buses not interacting with other RESs, indexed by o.
Bk Buses inside the interaction boundaries of RESs for each k, indexed by b.
U Buses outside the interaction boundaries of RESs, indexed by u.
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Variables
pij Active power flow from bus i to bus j.
s∗ Bus of interest to determine interaction boundaries.

Appendix A

Table A1. Power flow tracing matrix of RESs.

Bus AJ SA JD SH HN NC BH WD YA BK UD SHS1 GH KC SJ YK GR HON GC

AJ 268 0 84 172 6 0 45 0 0 2 17 59 0 5 4 0 0 0 0
SA 600 600 188 385 14 0 101 0 0 4 37 133 0 10 9 0 0 0 0
JD 0 0 38 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0
SH 0 0 0 60 0 0 16 0 0 0 6 20 0 2 1 0 0 0 0
HN 0 0 0 0 170 0 0 0 0 3 0 97 0 0 7 0 0 0 0
NC 0 0 0 0 1 40 0 0 0 4 0 0 0 0 0 0 0 0 0
BH 0 0 0 0 0 0 50 0 0 0 18 1 0 5 0 0 0 0 0
WD 0 0 0 0 9 319 0 375 4 33 0 5 0 1 0 0 0 0 0
YA 0 0 0 0 0 0 0 0 321 0 0 27 0 108 2 0 0 0 0
BK 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0
UD 0 0 0 0 0 0 0 0 0 0 197 13 0 52 0 0 0 0 0

SHS1 0 0 0 0 0 0 0 0 0 0 0 40 0 0 3 0 0 0 0
GH 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0
KC 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0
SJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0

YK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0
GR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0

HON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 138 44
GC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44
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