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Abstract: Extreme temperature events, which are part of global climate change, are a growing
threat to crop production, especially to such temperature-sensitive crops as rice. As a result, the
traditional rice-growing areas are also likely to shift. The MaxEnt model was used for predicting
the areas potentially suitable for rice in the short term (2016–2035) and in the medium term (2046–
2065) and under two scenarios developed by the Intergovernmental Panel on Climate Change,
namely representative concentration pathway (RCP) 4.5 (the intermediate scenario) and RCP 8.5
(sometimes referred to as the worst-case scenario). The predictions, on verification, were seen to
be highly accurate: the AUC—area under the curve—value of the MaxEnt model was > 0.85. The
model made the following predictions. (1) Areas highly suitable for rice crops will continue to be
concentrated mainly in the current major rice-production areas, and areas only marginally suitable
will be concentrated mainly in the rainforest region. (2) Overall, although the current pattern of the
distribution of such areas would remain more or less unchanged, their extent will mainly decrease in
the subtropics but increase in the tropics and in high-latitude regions. (3) The extent of such areas
will decrease in the short term but increase in the medium term.

Keywords: global scale; food security; rice potential distribution; MaxEnt; species distribution
models (SDMs)

1. Introduction

The latest special report from the Intergovernmental Panel on Climate Change (IPCC),
published in 2018 [1], estimates a 1.5 ◦C increase in global temperature in 2040 at the
current rate of global warming. Such a rise has serious implications for rice cultivation:
unless rice varieties adapted to higher temperatures are available, the areas suitable for
rice are bound to shift in the future. Rice is the world’s second largest food crop, the staple
food for over 50% of the world’s population [2,3], and if rice cultivation does not keep
pace with changes in the temperature by relocating, rice production is bound to decrease
substantially [4]. Therefore, to safeguard food security, we need to predict such changes in
spatial terms and temporal terms, which can intuitively reflect the potential distribution of
rice in different scenarios and for different periods, helping to reduce losses according to
local conditions [5].

Two major studies on areas suitable for growing rice are by Liu et al. [6] and by
Wang et al. [4], and both groups used the MaxEnt model. Liu et al. used the MaxEnt
model to simulate the areas suitable for rice over the period 1980–2010. Based on the
distribution probability provided by the model, the areas were graded for their suitability,
and their interannual dynamics examined, but confined the study to China. Wang et al.
used the MaxEnt model to screen the variables: through multiple-criteria decision analysis
(MCDA), they obtained and analyzed the potential distribution of areas suitable for rice
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under four scenarios and for three periods. However, in that study MCDA proved to
be highly subjective because they assigned equal weightings and equal ranges to all the
variables. For this reason, further research is needed on areas suitable for rice under
different representative concentration pathways (RCPs), which are different trajectories of
the concentrations of greenhouse gases (GHGs) adopted by the IPCC to estimate future
rise in global temperatures.

For researching the potential distribution of areas under different crops, two methods
are widely used at present: MCDA and species distribution models (SDMs). MCDA uses
spatial analysis involving overlaying of GIS (Geographic Information System) layers and
evaluating whether a given area is suitable for a given crop by constraining the variables
that affect the growth and yield of that crop [7–9]. The SDMs, which are based on the
niche theory, relate known patterns of crop distribution to environmental variables to
predict potential areas within the study area suitable for the target crop [10–13]. At present,
MCDA is used less often than SDMs because the choice of the variables is subjective, and
it is difficult to arrive at the appropriate weighting for each chosen variable; that is why
SDMs are used more widely for analyzing the distribution of areas potentially suitable for
different crops [14–23].

Among the many types of SDMs, the most widely used and better-performing model
is MaxEnt [24–26], which is known to be good at predicting the distribution of different
species as affected by climate change [20–23,27]—so long as the sampling is unbiased and
the variables highly correlated to one another are avoided while collecting the data [19,28].
However, the importance of proper sampling and of selecting the optimized variables is
often ignored in many studies that use SDMs.

The present study took care to optimize the selection of samples and of variables and
used the MaxEnt model to predict the potential distribution of rice under two scenarios,
namely RCP 4.5 and RCP 8.5, and for two terms, namely the short term (2016–2035) and
the medium term (2046–2065). The specific objectives were (1) to analyze the distribution
characteristics of areas suitable for rice cultivation during the two terms and under the
two scenarios; (2) to elaborate the changes in potential global rice distribution under two
climate-change scenarios; and (3) to offer a set of methods for selecting the sample and the
variables for the MaxEnt model to reduce bias in sampling and to reduce the subjectivity
and multi-collinearity in selecting variables.

2. Materials and Methods

Before the presentation of the materials and methods section, this paper proposed
the following hypotheses: (1) In the next 50 years, the varieties and traits of the rice crop
remain unchanged; (2) in the next 50 years, changes in soil and topography can be ignored.

2.1. Basic Idea and Research Framework

In most of the earlier studies, variables were selected based on experience and
from relevant literature: only a few studies used quantitative methods to select the
variables [19,20,28–31]. For instance, to avoid multi-collinearity of variables, Qin et al. [20]
eliminated from further models those variables that were highly correlated (Pearson’s corre-
lation coefficient ≥ 0.85), and Yi et al. [19] selected the variables by using cross-correlations
(Pearson’s correlation coefficient) and principal component analysis. However, these re-
searchers did not consider whether the chosen variables played a major role in influencing
the distribution of the target species.

In using MaxEnt for simulations, data on the samples and the chosen variables must
be fed into the model. This process was divided into two parts: selecting the parameters
that will form the inputs and testing the accuracy of the model by comparing the values
predicted by the model with the existing data on the distribution of rice-growing areas.
We used the area under the curve (AUC) value of the model and the actual distribution of
rice-growing to test the accuracy of the model.

The overall research framework for the study is shown in Figure 1.
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Figure 1. Research framework for the study.

2.2. Data Collection

The data were divided into two categories: areas currently under rice and values of
the chosen environmental variables. The latter included the global digital elevation model,
global soil parameters, and global climate models. The spatial resolution of all the data
was normalized to 0.25◦ × 0.25◦. Table 1 lists the databases used in the present study
along with some relevant details of each database. To reduce the error and the uncertainty
between data from different climate models and to make the results more reliable, we used
21 types of climate model (Table 2).

Table 1. Databases used in the study.

Data Category Data Name Temporal
Resolution

Spatial
Resolution Source

Environmental
Variables

Global Digital
Elevation Model Data 2010 1 km × 1 km

United States Geological Survey
(USGS)

https://topotools.cr.usgs.gov/
gmted_viewer/

Global-Soil Parameter
Data 2012 30” × 30”

International Soil Reference and
Information Centre (ISRIC)

http://www.isric.org

Climate Models Data 1960 to 2099 0.25◦ × 0.25◦ https:
//cds.nccs.nasa.gov/nex-gddp/

Areas Currently under
Rice

Fraction of
Rice-harvested Area

Data
2000 or 2005 5′ × 5′

(1) http://www.earthstat.org/
harvested-area-yield-175-crops/
(2) http://mapspam.info/maps/
(3) http://www.uni-frankfurt.de/

45218031/data_download

Table 2. Climate models used in the study.

Name of the Climate Model

ACCESS1-0 GFDL-ESM2G * MPI-ESM-MR
CSIRO-MK3-6-0 MIROC5 CESM1-BGC

MIROC-ESM CanESM2 IPSL-CM5A-LR *
BCC-CSM1-1 GFDL-ESM2M MRI-CGCM3
GFDL-CM3 MPI-ESM-LR CNRM-CM5

MIROC-ESM-CHEM * CCSM4 IPSL-CM5A-MR
BNU-ESM INMCM4 NorESM1-M *

* Wind speed used only these four models to calculate the changes between periods.

https://topotools.cr.usgs.gov/gmted_viewer/
https://topotools.cr.usgs.gov/gmted_viewer/
http://www.isric.org
https://cds.nccs.nasa.gov/nex-gddp/
https://cds.nccs.nasa.gov/nex-gddp/
http://www.earthstat.org/harvested-area-yield-175-crops/
http://www.earthstat.org/harvested-area-yield-175-crops/
http://mapspam.info/maps/
http://www.uni-frankfurt.de/45218031/data_download
http://www.uni-frankfurt.de/45218031/data_download
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Many studies have shown that integrating data from multiple models can eliminate
uncertainty to some extent [32–34]. At present, the common integration method is to
average the data from multiple models [35], and we did so for 21 climate models.

2.3. Methods
2.3.1. Data on Rice-Growing Areas

We converted the rice localities raster (obtained from the spatial production allocation
model SPAM, 2005, ver. 2.0) into points and ended up with a total of 67,974 points. To
ensure that the samples meet the requirements of suitable quantity, random distribution,
and global representativeness [36–38] of the distribution of rice-growing areas, we used
the following approach.

First, we obtained data on global grid areas and ascertained how many of the grids
had at least some area under rice. Next, as defined by the IPCC [39], we divided the grids
into four categories based on the proportion (percentage) of rice-growing area to the total
grid area as follows: Group A, below 10%; Group B, 10% or more but less than 33%; Group
C, 33% or more but less than 66%; and Group D, 66% or above. Based on the ratio between
the total rice cultivation area and the number of samples in Group D (we chose Group
D because it has the highest suitability, and the ratio was 62.02), we selected the number
of samples from the other three groups so as to maintain the same ratio and used the
random selection command in MATLAB for selection (the number of sampling points was
increased by 1 for each 62.02 kha under rice; see Table 3). The sampling process is shown
in detail in Figure 2.

Table 3. Number of samples in each group of grids.

Proportion of Rice
Cultivation Area (%) <10 10–33 33–66 ≥66 Total

Number of grids 62,842 3717 1054 360 67,973
Rice-growing areas (kha) 34,634 47,595 33,506 22,327 138,062

Number of samples 559 768 541 360 2228

By using this method, we obtained a total of 2228 samples. Although the figure
accounted for only 3.3% of the total samples, it included 32.5% of the grids in which the
area under rice was greater than 10% of the total (about 75% of the total area under rice).
This sampling method not only covered the overall distribution pattern of rice but also
represented the density of rice cultivation, because more samples came from areas with
high density of rice cultivation. Compared to the earlier studies [29], 2228 meant a larger
sample, which implied more reliable results.

To reduce the impact of random selection on the results, we selected 30 sets of samples
at random (each with the total 2228 samples) and used the MaxEnt model to calculate the
potential distribution of rice-growing areas in each set. The distribution of areas suitable
for rice was averaged over the 30 sets to obtain the final result, and the standard deviation
was calculated to reflect the degree of uncertainty associated with those results.
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cultivation area.

2.3.2. Environmental Variables

Based on earlier research [4,40–46], we selected topography, climate, and soil as the
three most important factors affecting rice cultivation and accordingly collected data on
elevation, 22 climate-related variables, and 20 soil-related variables for predicting the areas
suitable for rice cultivation in the future. We also used the following methods to select the
variables that have a great impact on the natural distribution of such areas. The selection
process (Figure 3) was divided into three steps.

The first step consisted of estimating the probability distribution of each variable
globally and within the rice-growing regions, denoted as P and Q, respectively, and
calculating the Kullback–Leibler divergence (KL divergence) of P from Q (Equation (1)).
That divergence is a measure of the difference between one probability distribution and
another. If two distributions of a given variable are highly similar, that variable is assumed
to be of little significance to the distribution of rice-growing areas. Accordingly, we
eliminated all the variables with KL divergence below 1 and carried over the remaining
ones to the next step.

The second step consisted of feeding the variables selected in the first step as inputs
to the MaxEnt model and, through simulation, obtaining the extent of contribution of each
of those variables, sorting them by the contribution, and retaining those contributing more
than 1% to potential distribution simulation (as recommended by the IPCC [39]).

Because the variables that serve as inputs for the MaxEnt model should not be highly
correlated, the third and the final step consisted of preparing a correlation matrix showing
the correlation of each variable to each of the rest, placing all those with correlation
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coefficient ≥ 0.8 within one group, and finally choosing within the same group only those
whose contributions were higher. Figure 3 shows the process of screening the variables
and Table 4 lists the selected variables.
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Table 4. Selected variables as input for the MaxEnt model.

Variables Category Data Name Variables Content

Climatic Variable

NASA Earth
Exchange Global

Daily Downscaled
Projections

(NEX-GDDP)

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range

BIO3 Isothermality (BIO2/BIO7)
(* 100)

BIO5 Max Temperature of
Warmest Month

BIO8 Mean Temperature of Wettest
Quarter

BIO12 Annual Precipitation

BIO18 Precipitation of Warmest
Quarter

WorldClim 2.0
variables

rds Solar radiation
wind Wind speed

Soil Variable
WISE derived soil
properties (V1.2)

CECS Cation exchange capacity
CFRAG Coarse fragments % (>2 mm)

CNrt C/N ratio
GYPS Gypsum content
ORGC Organic carbon content

TAWC Volumetric water content
(−33 to −1500 kPa, cm m−1)

TEB Total exchangeable bases

Topographic Variable
United States

Geological Survey
(USGS)

DEM
(Digital Elevation

Model)

Global Digital Elevation
Model GMTED2010
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2.3.3. Application and Validation of the MaxEnt Model

MaxEnt combines the data on the presence of a given species within a grid with
environmental variables representing different environmental gradients within that grid
to judge whether the area is suitable for a particular species. The model determines how
similar the environment of other regions is to the environment required by the species on
a scale of 0 (most dissimilar) to 1 (most similar) and can therefore be used to predict the
potential distribution of species and to provide corresponding estimates of the probability
of that distribution [24,47–49].

Of the 2228 samples that served as inputs for the model, 75% were used for training
the model and the remaining 25% for validation. We chose Cloglog as the output format,
representing the probability (ranging from 0 to 1) of potential distribution. All the other
parameters were set at their default values.

We also adopted the receiver operator characteristic (ROC) curve, a common method
of validating the accuracy of MaxEnt, to assess its performance. The area under the ROC
curve (referred to as AUC) is a threshold-independent measure of performance and ranges
from 0 to 1, values greater than 0.75 being taken to mean that the model’s predictions are
reliable and accurate [37,50]. The specific standards are as follows [51]: 0.50–0.60, failure;
0.61–0.70, poor; 0.71–0.80, fair; 0.81–0.90, good; and 0.91–1.00, excellent.

To test the accuracy of the predictions, the results of the simulation were compared to
the actual data on the sowing and harvest of rice. The relevant equations were as follows:

Producer’s accuracy:

pa = 100%× rr
rr + rn

(1)

User’s accuracy:

ua = 100%× rr
rr + nr

(2)

Overall accuracy:

oa = 100%× rr + nn
rr + nr + rn + nn

(3)

where rr refers to the situation in which the actual data and the results of the simulation
both have a value of 1; rn, to that in which the value of the actual harvest data is 1 and
that of the simulation is 0; nr, to that in which the value of the harvest data is 0 and that of
the simulation result is 1; and nn, to that in which the value of both is 0 (1 means exist, 0
means none).

Finally, we drew the scatter plots, the horizontal axis for the predicted suitability for
rice and the vertical axis for the fraction of past data on the area from which rice was
harvested, and then used the scatter plots to assess the extent to which the predictions by
the MaxEnt model matched the past data.

3. Results
3.1. Historical Rice Distribution and Accuracy of Rice Suitability Simulation

The present study considered an area as suitable for rice cultivation under natural
conditions and used the probability of the distribution of such areas as indicators of their
suitability for rice: the higher the probability, the greater the suitability. Based on the
categories used by the IPCC and in earlier research on the topic, we classified the suitability
into four groups as determined by the probability: If the distribution probability (P) was
less than 1%, the area was considered unsuitable; if between 1% and 33%, moderately
suitable; if greater than 33% but less than 66%, marginally suitable; and if greater than 66%,
highly suitable. Next, we mapped the past distribution of land suitable for rice cultivation
(the distribution based on the average probabilities indicated by the model) (Figure 4).

To evaluate the uncertainty caused by random sampling, we calculated the standard
deviation of the results of the simulation (discussed later in Section 4). The average AUC
value of the model was 0.859, indicating that the results of the model were highly reliable.
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Compared with the past-rice cultivation, the values of producer’s accuracy, the user’s
accuracy, and the overall accuracy are shown in Figure 5 and Table 5.
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Figure 5. Spatial consistency between the areas predicted as suitable for rice cultivation and the past EARTHSTAT data on
the areas from which rice was harvested. NN indicates that there is no potential rice distribution in the non-rice distribution
area; NY indicates that there is potential rice distribution in the non-rice distribution area; YN indicates that there is no
potential rice distribution in the rice distribution area; and YY indicates that there is potential rice distribution in the rice
distribution area.
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Table 5. Accuracy of predictions made by the model of areas suitable for rice cultivation.

Earthstat Mirca Spam_ha Spam_ph Average

NN 61.18% 61.03% 61.19% 61.19% 61.2%
NY 31.63% 31.22% 32.09% 32.42% 31.8%
YN 0.14% 0.28% 0.13% 0.13% 0.2%
YY 7.05% 7.46% 6.59% 6.26% 6.8%

Producer’s accuracy 98.1% 96.3% 98.1% 98.0% 97.6%
User’s accuracy 18.2% 19.3% 17.0% 16.2% 17.7%
Overall accuracy 68.2% 68.5% 67.8% 67.5% 68.0%

The overall range of areas predicted by the model as suitable for rice was wider
than that of areas on which rice had been grown in the past (Figure 5). The difference
was due to such socio-economic factors as cultivation history and eating habits, which
affect the decision to grow rice on a given piece of land. The producer’s accuracy of each
set of verification data exceeded 95%, indicating that the areas predicted to be suitable
encompassed more than 95% of the actual area under rice. In general, the method of
predicting potentially suitable areas proved highly accurate.

To verify the accuracy further, we drew the scatter plots, the horizontal axis for the
predicted suitability for rice and the vertical axis for the fraction of past data on the area
from which rice was harvested. The scatter plot of the fraction (ratio) of area under rice
to the total area of the given grid (rice cultivation area/grid area) for each simulated
distribution probability and that for the actual data are shown in Figure 6.
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cultivation.

The predicted distribution probability was positively correlated to the past rice culti-
vation ratio: the higher the predicted probability, the higher was the corresponding ratio,
which proved that the predictions were accurate.

3.2. Potential Global Rice Distribution under Two Climate-Change Scenarios

We mapped the areas likely to be suitable for rice cultivation under two future scenar-
ios (Figure 7). Besides, we have statistics on continents and latitudes for these two aspects
(Figures A1–A4).
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Under the climate-change scenarios, the areas suitable for rice were concentrated
mostly in the tropics and the subtropics, the proportion of highly suitable areas being the
highest between 10◦ N and 30◦ N. According to the statistics, tropical and subtropical
regions accounted for 100% of the highly suitable areas, 97% of the moderately suitable
areas, and 79% of the lowly suitable areas. Asia, South America, and Africa had the largest
proportion of suitable areas, with Asia claiming nearly all (98%) of the highly suitable areas.
The three continents together accounted for 91% of the moderately suitable areas and 80%
of the lowly suitable areas.

The global distribution of suitable areas changed slightly with the scenario, and the
overall pattern was consistent with the past distribution. For example, under RCP 4.5 in
the medium term, the global extent of areas suitable for rice increased only by 2–10% of the
present status, predicting that the overall pattern would change only slightly.

3.3. Changes in Potential Global Rice Distribution under Two Climate-Change Scenarios

In comparing the potential distribution of rice under each scenario with the past
distribution (Figure 8), we divided the degree of change into five levels: large decrease
(decrease greater than 10%), small decrease (decrease of 1% to 10%), no change or slight
change (decrease or increase of less than 1%), small increase (increase of 1% to 10%), and
large increase (increase greater than 10%).

Under the two scenarios, the extent of areas suitable for rice increased in the tropics
and in high-latitude regions and decreased in the mid-latitude regions and in the subtropics.

As can be seen from Figure 8, the overall area decreased in the short term in both
scenarios; whatever increase there was, it was mainly in South Asia, South East Asia, and
in the tropical rainforest areas of Africa, such as the Congo basin and the Amazon plain.
Further, but also in the short term, the areas suitable for rice increased in high-latitude
regions such as southern Siberia under RCP 8.5.
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Figure 8. Potential distribution of areas suitable for rice in short term (2016–2035) and medium term (2046–2065) under two
climate-change scenarios and past distribution.

In the medium term under both scenarios, the areas showed a clear increase, especially
in high-latitude regions, although under RCP 4.5, the area decreased in West Asia (except
the Arabian peninsula), especially in northern China, which showed a significant decrease,
and the Indian peninsula, north-eastern China, and the Brazilian plateau showed a marked
increase. Under RCP 8.5, the overall trend showed an increase, with the regions with
steep increases being the same as those under RCP 4.5, although a few regions showed
a decrease.

Under both RCP 4.5 and RCP 8.5, the proportions of areas with different degrees of
suitability (Figure 9) showed that changes in the medium term were greater than those in
the short term, although the direction of the change was different: a decrease in the short
term and an increase in the medium term, with the extent of change being more under
RCP 8.5.
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4. Discussion
4.1. Preliminary Experiment with Random Samples

Using standard deviation as an indicator of uncertainty between results—the higher
the standard deviation, the greater the uncertainty—100 sets of samples were selected at
random and the sets were numbered from 1 to 100.

The results from these 100 simulations were divided into 32 groups. Because cal-
culating the standard deviation requires a certain minimum sample size, the first group
consisted of sets numbered 1 to 5, with a total of five simulations. The specific method
of forming the groups is shown in Figure 10. We calculated the standard deviation for
each of the 32 groups and thus ended up with 32 groups of standard deviations for every
single grid.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 21 
 

Randomly select 100 Sets 
of rice localities samples

100 rice potential distribution (RPD) 
and labeled with number (1—100)

MaxEnt

Obtain 32 different 
quantities RPD Group

Grouping

Samples 1 Samples 2 Samples 3  

RPD 1 RPD 2 RPD 3  

RDP Group 1
(RDP 1—5)

RDP Group 17
(RDP 1—25)

 RDP Group 1
(RDP 1—6)

RDP Group 1
(RDP 1—7)

RDP Group 16
(RDP 1—20)

RDP Group 18
(RDP1—30)

RDP Group 19
(RDP 1—35)
 RDP Group 32

(RDP 1—100)

Calculate the standard deviation (STD) 
of each grid in each group 

MatLab
STD Map 1
(RDP1—5)

STD Map 17
(RDP1—25)

 STD Map 2
(RDP1—6)

STD Map 3
(RDP1—7)

STD Map 16
(RDP1—20)

 STD Map 32
(RDP1—100)

STD Map 18
(RDP1—30)

STD Map 18
(RDP1—35)

Samples 100

RPD 100

 

Figure 10. Method of forming groups based on standard deviation. 

For each group, the non-zero values were averaged (the zero values can be under-

stood as blank areas), and the results are presented as a scatter plot (Figure 11). The size 

of the sample had little effect on the uncertainty of the results. 

 

Figure 11. Standard deviation in groups of random samples. 

The standard deviations in each group were sorted in descending order and the 

average standard deviations in the top 10%, 5%, 1%, and 0.1% of each group were calcu-

lated to observe the variation among different sample group sizes (Figure 12). 
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For each group, the non-zero values were averaged (the zero values can be understood
as blank areas), and the results are presented as a scatter plot (Figure 11). The size of the
sample had little effect on the uncertainty of the results.
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Figure 11. Standard deviation in groups of random samples.

The standard deviations in each group were sorted in descending order and the
average standard deviations in the top 10%, 5%, 1%, and 0.1% of each group were calculated
to observe the variation among different sample group sizes (Figure 12).
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From the average value of the standard deviations within the top 10%, 5%, 1%, and
0.1% of the groups into which the sampled had been divided, we found that although
the sample size had little effect on the overall uncertainty, the number of sample groups
influenced the degree of uncertainty in areas that showed huge fluctuations: when the
sample was divided into more than 30 groups, the degree of uncertainty in the high-
fluctuation areas decreased significantly. We therefore limited the number of groups to 30.

4.2. Verification from Multiple Sources

Liu et al. [6] used the MaxEnt model to identify areas suitable for rice in the past (1980–
2010) and explored the characteristics of changes in the areas suitable for rice in China
during that period. Comparing our results with those results, we found that although the
present study does not highlight China’s Yangtze river basin as being particularly suitable,
it does highlight the difference between northern and southern China in terms of their
suitability for rice cultivation—a difference that matches the findings of Liu et al.

Wang et al. [4] used the MaxEnt model to select the variables: using MCDA, they
obtained the potential distribution of rice under different scenarios and for different periods;
on comparing our results with those by Wang et al., we noted the following differences.

(1) The distribution of areas suitable for rice in rainforest regions is quite different: We
found rainforest areas to be highly suitable whereas Wang and co-workers found
those regions to be unsuitable for rice, because the researchers took into account
land-use factors and excluded non-arable land from their results.

(2) We found the Indian peninsula to be highly suitable in both the scenarios and in the
short term as well as in the medium term whereas Wang and co-workers believe that
the Indian peninsula will become unsuitable under some scenarios.

(3) We found the mountainous areas in western United States to be unsuitable whereas
Wang and co-workers found those areas to be not merely suitable but highly suitable.
Moreover, the producer’s accuracy in the present study was higher than reported by
Wang and co-workers.

Therefore, we believe that in the future the simulation method suggested in the present
paper will supplement that of Wang and co-workers.



Sustainability 2021, 13, 1580 14 of 19

4.3. Limitation

In this paper, we focused on the impact of the environment variables on the potential
distribution of rice. However, changes in socioeconomic variables, such as population and
markets, which affect crop prices, demand, and planting willingness, and hence limit the
area and distribution of crop cultivation [52–54], were marginally considered. Therefore,
in order to make the predicted results more consistent with reality, a comprehensive
multi-factor crop potential distribution prediction method is imperative.

5. Conclusions

(1) A set of multi-habitat variables and multi-sample point selection methods is proposed
based on MaxEnt and other SDMs. To assess the accuracy of predictions, we com-
pared them with past data using the AUC value and the scatter plot and found the
predictions to be accurate and highly consistent with the past data. A clear positive
correlation was noted between the distribution probability of areas suitable for rice
as predicted and the ratio of area under rice to the total area of each grid in the
past. These results confirm the usability and accuracy of the methods proposed in
this paper.

(2) Areas likely to be suitable for rice were estimated under two scenarios and in the
short term and in the medium term.

• Under both the climate-change scenarios, the main areas suitable for rice were
concentrated in the tropics and the subtropics, accounting for 92% of the suitable
area worldwide, and the largest proportion of highly suitable areas lay in the
region from 10◦ N to 30◦ N, accounting for 77% of the total highly suitable area.

• Under both the climate-change scenarios, Asia, South America, and Africa among
the continents had the largest proportion (82%) of areas suitable for rice, and
Asia accounted for the largest proportion (98%) of highly suitable areas.

• Under both the climate-change scenarios, the distribution of rice cultivation
in the world changed slightly, and the overall pattern was consistent with the
past pattern.

(5) Under both the climate-change scenarios, the areas suitable for rice increased in
the tropics and in high-latitude regions and decreased in the mid-latitude regions
including the subtropics. The areas decreased globally in the near term but increased
in the medium term. The areas suitable for rice in high-latitude regions would
increase significantly in the future, indicating that with the continuing impact of
global warming, rice cultivation in the future would move towards higher latitudes.

In summary, according to the abovementioned changes, we have summarized two
laws of future distribution and changes of rice: (1) The pattern of the distribution of suitable
areas remains more or less unchanged under future scenarios; (2) the extent of suitable
areas will decrease in the short term but increase in the medium term. This paper provides
a set of multi-habitat variables and multi-sample point selection methods for SDMs. Based
on that, the spatial distribution of global suitable area for rice under RCP scenarios is
predicted, which is conducive to the research on rice disaster mitigation.

Further study should take more socioeconomic variables into considerations to im-
prove the simulation accuracy of rice potential distributions (such as market supply and
demand, farmers’ planting willingness, and residents’ eating habits).
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