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Abstract: Assessment of and controlling air pollution are urgent global issues where international
cooperation is deemed necessary. Although a very relevant data source can be obtained through
continuous monitoring of air quality, measuring air pollutant concentrations is quite difficult when
compared to other environmental indicators. We mainly have three different aims for the current
study: (1) we propose the computation of the interval weights of decision makers (DMs) based on a
group multiple criteria decision making (GMCDM) model; (2) we aim to rank the overall preferences
of DMs by the possibility concepts; (3) we aim to evaluate the air quality in China using the most
recent data based on our proposed method. We consider three monitoring stations, namely Luhu
Park, Wanqingsha, and Tianhu, and the data for SO2, NO2, and PM10 are collected for November
2017, 2018, and 2019. The results from our innovative model show that November 2019 had the best
air quality. Finally, robustness analyses are also performed to confirm the discriminatory power of
the proposed approach.

Keywords: air pollution; air quality; uncertain information; group multiple criteria decision making
(GMCDM); China

1. Introduction

The industrial revolution was the trigger for the discharge of harmful substances
into the air at a growing rate, which has been non-stop since 1850. Pollutant sources
are now spread through industries and vehicles and increase from population increase
and intense urbanization. As regards industries, thermal power plants, cement and steel
works, refineries, the petrochemical industry, and mines are the most relevant sources
of pollutants [1]. The negative externalities of air pollution are mostly related to health
problems and environmental hazards; in this last case, the thinning of the atmospheric
ozone layer gives rise to a vicious cycle of global warming and unpredictable climate
consequences in a feedback process. The pollutants can be carried from one place to another
through aerial transport [2–4]. In fact, pesticides have been discovered in Antarctica.

Monitoring and modeling are considered key tools for the environmental assessment
of air pollution impacts, not only in terms of damage caused, but also in terms of future
prospects, acting as a detection system and helping in evaluating and forecasting the
environmental states. However, producing accurate measurements of air pollutant concen-
trations, when compared to other environmental elements, is quite difficult. Atmospheric
dynamics cause its constituents to spread out geographically, very often resulting in a
universal water and soil exposure for large populations without a chance for isolation.
An additional issue is related to the fact that air pollution has a low level of concentration
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and that it interacts with other gases. In fact, many factors affect air quality and change
with time. Broadly speaking, the interaction of multiple factors in the atmosphere leads to
air pollution. It is possible to evaluate air pollution or air quality as an issue of a multiple
criteria decision making (MCDM), which contains several contradictory or countervailing
indicators including various air pollutants, the air quality index (AQI), and gross domestic
product (GDP) per capita [5].

China is facing a number of issues that have a significant impact on both its short-term
and long-term development. Air pollution will not only affect the country’s development
in the long run, but it also has a significant negative influence on people’s lives in the short
run from the perspective of the spread of different diseases [6]. World bank statistics show,
regarding the mortality rate attributed to household and ambient air pollution, that in 2016,
per 100,000 population, 112.7 people in China died because of air pollution, compared
to the significantly lower numbers from the U.K., Germany, France, and Italy, where the
numbers were 13.8, 16, 9.7, and 15, respectively.

Sulfur dioxide (SO2), is one of the key pollutants and contributors to death from air
pollution globally, and it mainly results from power plants burning fossil fuels such as
oil and gas, while other sources include metal smelters and volcanoes. Ships and other
vehicles that burn sulfur also release SO2. Based on the data provided by the Euronews
report [7], in 2018, China was the third ranked country in the world with SO2 emission
reaching 2578 thousand tons, just following India and Russia. Nitrogen dioxide (NO2), is
another air pollutant derived from road traffic and other fuel combustion. NO2 interacts
with water, oxygen, and other chemicals in the atmosphere to form acid rain, which has
a negative influence on the natural environment such as lakes and forest. In addition,
breathing air with NO2 can irritate the airways in the human respiratory system, which
eventually will lead to coughing, wheezing, or difficulty breathing. According to the data
provided by the World Bank, China was the first ranked country with the largest amount
of NO2 emissions as of 2012. According to earthobservatory.nasa.gov, over the period
2015–2019, 30–40 days after the lunar new year, the mean NO2 density in China reached
around or even more than 250,000 umol/m2.

Besides SO2 and NO2, PM2.5, and PM10, denoting air particles with dynamic diameters
less than 2.5 µm and 10 µm, respectively, are also important air pollutant in China [8].
The concentration of PM2.5 in Beijing was higher than the health standard set by the World
Health Organization in 2013 [9], while at a more comprehensive level for 74 major cities in
China over the period in 2013 and 2015, the average PM2.5 concentration was five-times
higher than the health standard set by the World Health Organization [10]. In order to deal
with this issue, the Chinese government not only formulated policies to regulate and control
the emissions, but pollution abatement targets were set for different provinces and cities
based on their own situation. Large efforts have been made by the Chinese government
to encourage the use of clean energy both in industrial production and in the rural areas
of China [11]. In addition to the effort to reduce emissions, the air quality monitoring
and network construction have been strengthened by the Chinese government, which
serve the purpose of studying the space–time features of air pollution in the country [12].
One observation from the research on air pollution in China is that most of the studies
focused on the investigation of PM2.5; the examination of other pollutants such as SO2 and
NO2 has not received enough attention from academic scholars [13].

MCDM problems may arise in different contexts, such as the automobile industry,
construction engineering, manufacturing systems, economic evaluation, medical treat-
ment, strategic planning, and environmental planning, among others [14–18]. Moreover,
the ability of a single DM to assess all important perspectives and nuances of a problem
in a comprehensive manner is limited by the inherent complexity of such socioeconomic
contexts. As a matter of fact, compared to a single DM, a group of DMs generates additional
complexities in the analysis. Typically, GMCDM relies on inviting a mix of internal and
external experts to evaluate each air pollution criterion of every alternative geographical
location on an individual basis. In light of the overall decision, the result is impacted by
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each DM in a different manner by means of their own weights or preferences with respect
to each criterion. Determining DM weights is a crucial step in assuring an accurate and
unbiased overall preference rank.

As regards the methods developed for GMCDM, French [19] used influence relations,
which may exist among DMs, to determine the relative importance of a certain criterion
in light of overall group members. On the other hand, Theil [20] designed a method
based on correlation concepts should the DM inefficacy be measurable. In turn, Keeney
and Kirkwood [21] advised in favor of using inter-personal comparisons to determine
the weighted additive preference function. Ramanathan and Ganesh [22] proposed an
intuitively simple eigenvector-based approach in which group members’ weights can be
extracted according to their own preferences. Martel and Ben Khelifa [23] used individual
outranking indices to address the GMCDM problem. The deviation measures, in which the
additive linguistic preference relations were addressed to determine the DMs weight, were
developed by Xu [24]. Chen and Fan [25] proposed factor scores to rank DM preferences.

In this paper, and different from previous research, we build upon the projection
method designed by Xu [26] to compute the DM weights while ranking the alternatives
based on straightforward and practical computations. It is worth noting that most of the
previously mentioned research works relied on individual DM information structured
as multiplicative preference matrices. Given that the determination of the exact criterion
weights can become a cumbersome task, the use of weight intervals constitutes a flexible
approach to overcome this issue [27].

Putting these methodologies into perspective, the use of MCDM models for measuring
and monitoring air quality is a growing research field with a handful of recently published
papers [28]. While MCDM methods have already been employed in air pollution measure-
ment, the contribution of this research relies on the interval weight computation for each
DM. To the best of our knowledge, this is the first time that a GMCDM model observing
these features has been presented. In this paper, we dig further into computing the interval
weights of DMs based on the projection method. Furthermore, and distinct from previous
research, possibility fuzzy concepts are employed to rank the overall preferences of DMs.
To further clarify, we mainly have three different aims for the current study: (1) we propose
the computation of the interval weights of DMs based on a GMCDM model; (2) we aim to
rank the overall preferences of DMs by the possibility concepts; (3) we aim to evaluate the
air quality in China using the most recent data based on our proposed method.

This paper is structured as follows: The following section provides a literature review
on the assessment of air pollution in China. Section 3 revisits the nonnegative interval
number concept, offering computational and projection rules. Section 4 is devoted to
presenting the novel GMCDM model designed for this research. Section 5 presents an
application to different regions of the Pearl River in China, while the conclusion is provided
in Section 6.

2. Literature Review

The issue related to the assessment of air pollution/air quality has been widely en-
gaged by empirical researchers for different geographical locations, and various approaches
have been used to investigate this topic including land use regression modeling and mobile
monitoring [29–31], statistical analysis [32], multivariate analysis (including hierarchical
agglomerate cluster analysis, principal component analysis, and multiple linear regres-
sion) [33,34], the proposed use of the air quality index [35], and the atmosphere evaluation
and research integrated model [36].

The above-mentioned studies focused on countries/regions outside of China, while at-
tempts have been widely made to evaluate the air pollution/quality in China. The air
pollution index was proposed and used by Wang et al. [37] to assess the urban air quality of
86 cities in China over the period 2001–2011. The findings suggested that although Chinese
cities have suffered the most from PM10, the air pollution index over this period declined
from 7% to 1%, while the PM10 concentrations also experienced a consistent decrease. The
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proposal of the air pollution index should include more comprehensive pollution in the
calculation, which is a limitation of this method and an area of future studies. Li et al.
(2014) also conducted a similar study for Guangzhou, China, over the period 2001–2011.
The results showed that the air pollution index is significantly and negatively affected
by temperature, relative humidity, precipitation, and wind speed, while it is positively
affected by diurnal temperature and atmospheric pressure.

Not only did researchers focus on the evaluation of air quality in China, but the
empirical studies tried also to link the air pollution to other economic aspects such as
energy consumption and economic development. In order to achieve this, the resource and
environmental performance index was proposed by Gao et al. [38] between 2000 and 2012.
The findings show that economic development affects energy consumption and air envi-
ronment, but the influence was not shown to be significantly negative. The authors further
argued that a positive impact of economic development on energy consumption and air
pollution reduction can be achieved by optimizing the energy and industrial structure,
improving energy efficiency, and formulating strict environmental policies.

A number of studies have also assessed the influence of air pollution on the mortality
burden [39]. The log-linear exposure-response function was adopted for the former, and
the integrated exposure response model was employed for the latter. Finally, the findings
suggest that the mortality level is influenced by air pollution by different degrees across
various areas in China. A multi-scale air quality modeling system was used by Gu and
Yim [40] to stimulate air quality in China and to further study concentration-response
functions. Not only is this study different from the previous two from the methodology
perspective, but it is distinct in that it also focused on domestic trans-boundary pollutants
and their impact on mortality. The results showed that 18% of premature mortalities from
air pollution are attributed to the trans-boundary impact. The study further reported that
22% of mortalities in Taiwan were because of the trans-boundary impact from mainland
China.

The linkage between air pollution and daily mortality in 16 Chinese cities over the
period 1996 to 2018 was investigated by Chen et al. [41]. A tapered element oscillating
microbalance is used to measure the concentration of PM10, while ultraviolet fluorescence
and chemiluminescence were employed to measure the concentration of sulfur dioxide and
nitrogen dioxide. In the second stage, two-stage Bayesian hierarchical statistical models
were applied to assess the linkage between air pollution and daily mortality. The findings
suggested that the mortality risk is significantly affected by short-term exposure to PM10.
It further reported that certain groups of people, including females, older people, and less
educated people, are more vulnerable to PM10.

An interesting piece of research was conducted by Sueyoshi and Yuan [42] to assess the
regional performance in China over the period 2005–2012 under the non-parametric data
envelopment analysis. In the model, total population, investment for preventing industrial
pollution, electricity consumption, and final consumption of people were included as
inputs. From the environment perspective, four undesirable outputs were used: PM2.5,
PM10, SO2, and NO2, Finally, the gross regional product was used as the desirable output.
The results showed that the northwest region is the area to which more economic resources
should be distributed. In addition, the cities located in this area (including Beijing, Tianjin,
Shanghai, and Chongqing) should have enhanced regulations on energy consumption for
environmental protection purposes.

3. Preliminaries

In this section, we provide some preliminaries for the next sections. For this purpose,
first, we introduce the interval numbers along with their operational rules, and then, the
projection method is given.

3.1. Interval Number

Definition 1. A non-negative interval number is defined as α = [α, α ] = { x| 0 < α ≤ x ≤ α }.
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Definition 2. Consider two interval numbers α = [α, α] and β = [β, β], and let η be a non-
negative real number, then:
(a) α = β⇔ α = β and α = β;
(b) α + β = [α + β, α + β];
(c) ηα = [ηα, ηα].

Definition 3. Suppose A = {αi|αi = [αi, αi], i = 1, 2, . . . , k}. The weighted average operator of
A is defined as:

WAOA =
k

∑
i=1

wiαi (1)

where W = (w1, w2, . . . , wk)
T is called the weight vector and

k

∑
i=1

wi = 1.

Definition 4. Let α and β be the same as Definition 2 and lα = α− α and lβ = β− β show
respectively the length of α and β. We define the degree of possibility as [43].

P(α ≥ β) = max{1−max(
β− α

lα + lβ
, 0), 0} (2)

Now, we propose a method to rank the interval arguments. In the proposed method,
first using Equation (2), each αi = [αi, αi] is compared with other αj = [αj, αj], j =
1, 2, . . . , n, and we assume pij = p(αi ≥ αj). Then, we construct the matrix P as be-
low:

P = [pij]n×n (3)

in which pij ≥ 0 for all i, j.
Next, we sum up all the components in each row of P; that is,

pi =
n

∑
j=1

pij, i = 1, 2, . . . , n (4)

Finally, using the pi, i = 1, 2, . . . , n, values, the interval numbers αi = [αi, αi], i = 1, 2, . . . , n
are ranked.

3.2. Projection Method

Definition 5. Suppose ν is a vector such that ν = (ν1, ν2, . . . , νn). Then, the module of ν is
computed as:

|ν| =
√√√√

n

∑
j=1

ν2
j (5)

Definition 6. The inner product of two vectors ν = (ν1, ν2, . . . , νn) and ω = (ω1, ω2, . . . , ωn)
is calculated as:

νω =
n

∑
j=1

νjωj (6)

Definition 7. Assume ν and ω are the same vectors as above. We define the projection of ν and
ω by:

Prjω(ν) = |ν| cos(ν, ω) = |ν| νω

|ν||ω| =
νω

|ω| (7)

Figure 1 shows the projection of two vectors. Frankly speaking, the bigger Prjω(ν)
represents that ν approaches with a greater degree to ω. Using a similar method, the
projection between the matrices is introduced.
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PrjB(A) =
∑m

i=1 ∑n
j=1 aijbij√

∑m
i=1 ∑n

j=1 b2
ij

(8)
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and there are t decision maker (DM), D1, D2, ..., Dt which construct decision committee and the
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k=1 λk = 1 . Besides, let
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Now we present an MADM approach with uncertain information. The procedures of the proposed
approach are described below.
Step 1. First construct decision matrix for each DM. Namely, D(K), k = 1, 2, ..., t.

Dk = ([xk
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m1, xk
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12] · · · [xk
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

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Rk = ([
min xk

ij

xk
ij

,
min xk

ij

xk
ij

])m×n, j ∈ J′ (11)

Figure 1. Projection of vector ν and ω.

Definition 8. Let A = [aij]m×n and B = [bij]m×n be two matrices. We define the projection of A
on B as below:

PrjB(A) =
∑m

i=1 ∑n
j=1 aijbij√

∑m
i=1 ∑n

j=1 b2
ij

(8)

4. Determining the Weights of DMs

Suppose there are m alternatives A1, A2, . . . , Am and n attributes u1, u2, . . . , un. More-
over, the weight vector of the attributes is denoted by W = (w1, w2, . . . , wn)T such that
0 ≤ wj ≤ 1 and ∑n

j=1 wj = 1, and there are t decision makers (DMs), D1, D2, . . . , Dt,
who construct the decision committee, and the weight vector of the DMs is denoted by
λ = (λ1, λ2, ..., λt)T , where λk ≥ 0, ∑n

k=1 λk = 1. Let M = {1, 2, . . . , m}, N = {1, 2, . . . , n}
and T = 1, 2, . . . , t}.

Now, we present an multiple attribute decision making (MADM) approach with
uncertain information. The procedures of the proposed approach are described below.
Step 1. First construct the decision matrix for each DM, namely D(K), k = 1, 2, . . . , t.

Dk = ([xk
ij, xk

ij])m×n =




u1 u2 · · · un

A1 [xk
11, xk

11] [xk
12, xk

12] · · · [xk
1n, xk

1n]

A2 [xk
21, xk

21] [xk
22, xk

22] · · · [xk
2n, xk

2n]
...

...
... · · · ...

Am [xk
m1, xk

m1] [xk
12, xk

12] · · · [xk
mn, xk

mn]


 (9)

Step 2. Use the following formulae to normalize the decision matrix.

Rk = ([
xk

ij

max xk
ij

,
xk

ij

max xk
ij
])m×n, j ∈ J (10)

Rk = ([
min xk

ij

xk
ij

,
min xk

ij

xk
ij

])m×n, j ∈ J′ (11)

The benefit criteria and cost criteria are represented by J and J′, respectively.
Step 3. Compute the weighted normalized decision matrix by:
Vk = ([vk

ij, vk
ij])m×n

= ([wjrk
ij, wjrk

ij])m×n =




u1 u2 · · · un

A1 [vk
11, vk

11] [vk
12, vk

12] · · · [vk
1n, vk

1n]

A2 [vk
21, vk

21] [vk
22, vk

22] · · · [vk
2n, vk

2n]
...

...
... · · · ...

Am [vk
m1, vk

m1] [vk
12, vk

12] · · · [vk
mn, vk

mn]


 (12)
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for all k ∈ T.
Step 4. In this step, the positive ideal solution (PIS) and the negative ideal solution (NIS) are
determined. Suppose we show these solutions by A+ and A−, respectively. Thus, we have:

A+ = ([v+ij , v+ij ])m×n =




u1 u2 · · · un

A1 [v+11, v+11] [v+12, v+12] · · · [x+1n, x+1n]
A2 [v+21, v+21] [v+22, v+22] · · · [v+2n, v+2n]
...

...
... · · · ...

Am [v+m1, v+m1] [v+12, v+12] · · · [v+mn, v+mn]


 (13)

In this study, we assume:

[v+ij , v+ij ] = [min vk
ij, min vk

ij], j ∈ J (14)

[v+ij , v+ij ] = [max vk
ij, max vk

ij], j ∈ J′ (15)

and:

A− = ([v−ij , v−ij ])m×n =




u1 u2 · · · un

A1 [v−11, v−11] [v−12, v−12] · · · [x−1n, x−1n]
A2 [v−21, v−21] [v−22, v−22] · · · [v−2n, v−2n]
...

...
... · · · ...

Am [v−m1, v−m1] [v−12, v−12] · · · [v−mn, v−mn]


 (16)

in which:

[v−ij , v−ij ] = [max vk
ij, max vk

ij], j ∈ J (17)

[v−ij , v−ij ] = [min vk
ij, min vk

ij], j ∈ J′ (18)

Step 5. Calculate the projection ProjA+(Vk) of A+ (k ∈ T) on the PIS Vas follows:

PrjA+(Vk) =
∑m

i=1 ∑n
j=1 vk

ijv
+
ij√

∑m
i=1 ∑n

j=1(v
+
ij )

2
(19)

In a similar way, we compute the projection from the NIS.
Step 6. Next, compute the projection ProjA−(Vk) of A− (k ∈ T) on PIS V via:

PrjA−(V
k) =

∑m
i=1 ∑n

j=1 vk
ijv
−
ij√

∑m
i=1 ∑n

j=1(v
−
ij )

2
(20)

Step 7. Employ the values of ProjA+(Vk) and ProjA−(Vk) to determine a relative closeness
to ranking all DMs. Similar to the TOPSIS method, each individual decision’s closeness in
relation to A+ is defined as:

RCk =
ProjA−(Vk)

ProjA+(Vk) + ProjA−(Vk)
, k ∈ T (21)

Step 8. It is clear that if Vk is closer to A+ and more remote from A−, then RCk approaches
one. Hence, by considering the relative closeness, we rank all members of the decision
committee. Therefore, we define the weight of the kth DM as:

λk =
RCk

∑t
k=1 RCk

, k ∈ T (22)



Sustainability 2021, 13, 1686 8 of 13

Step 9. Finally, all decision matrices Vk, k ∈ T, are integrated into a matrix V by:

V =
t

∑
k=1

λkVk = ([vij, vij])m×n (23)

Next, we sum all interval numbers in each row of matrix V. Therefore, the total evaluation
of alternative Ai (i ∈ M) is derived:

vi = [vi, vi] =
n

∑
j=1

[vij, vij], i ∈ M (24)

Now, we employ Equation (3) to construct the matrix P = [pij]m×m. Then, using
Equation (4), all vi (i ∈ M) are ranked in descending order using the values of pi (i ∈ M).
Finally, the alternatives are ranked by the pi values in descending order.

Comparing the Proposed Approach with Other Methods

Here, the proposed method in this study is compared with two different MCDM
methods, the traditional TOPSIS and the extended TOPSIS proposed by Ye and Li [44],
which are similar approaches to this research in the literature. These methods were selected
as the background of the proposed method. Compared with the method of traditional
TOPSIS and the approach proposed by Ye and Li, this method has several differences.
First, the PIS and NIS in traditional TOPSIS are vectors, which are derived from alternatives,
while in the proposed method, the PIS and NIS are matrices, which are derived from the
decision matrices of all DMs. This description of the procedure of the proposed method
is clear and simple for high-dimensional TOPSIS in the framework. Second, the relative
importance of the DMs is different, and the weight of each DM is determined by his/her
own decision matrix. When the decision matrix is closer to the PIS and farther away from
the NIS, the decision is better; furthermore, the weight is greater. The best decision is made
by a (some) pseudo-DM(s), whose decision is PIS (the average matrix of all group decision
matrices). From this point of view, a DM’s decision matrix is closer to the PIS, that is to
say, a decision matrix is closer to the average matrix of group decision matrices, then it is
better to represent the majority in the mean sense; when a DM’s decision matrix is closer to
the NIS, the decision has a larger bias in the mean sense; meanwhile, when the DM has
maximum regret, the proposed method assigns low weights to those “false” or “biased”
ones. Therefore, it is suitable for those situations in which the DM wants to have maximum
group utility and minimum individual risk in the mean sense.

5. Application

In this section, we employ the proposed methodology to a real case related to air
quality assessment in China. The Guangdong Environmental Monitoring Center, together
with the Environmental Protection Department of the Hong Kong Special Administra-
tive Region, established the Pearl River Delta Regional air quality monitoring network,
which includes 16 automatic air quality monitoring stations.

All stations are equipped to evaluate the ambient concentrations of respirable sus-
pended particulates (RSPs) such as PM10, sulfur dioxide (SO2), and nitrogen dioxide (NO2).

In what follows, a thorough assessment of the air quality is displayed within the said
zone. We consider the monitoring stations (MSs) as the DMs, and for simplicity, we select
three MSs from D = {d1, d2, d3} = {Luhu Park, Wanqingsha, Tianhu}.
Table 1 shows the assessed values by [45–47]. The alternatives are the monthly air quality
for the November 2017, 2018, and 2019. Hence, suppose A = {A1, A2, A3} = {November
of 2017, November of 2018, November of 2019} shows the alternatives and U = {u1, u2, u3}
= {SO2, NO2, PM10} represents the attributes. The specific pollutants we chose for the
analysis, as well as the data period are based on the data availability.
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Table 1. Data collected from the Luhu Park monitoring station (MS).

SO2 NO2 PM10

LL UL LL UL LL UL

X1
A1 [0.013, 0.129] [0.028, 0.144] [0.021, 0.136]
A2 [0.013, 0.107] [0.038, 0.139] [0.047, 0.155]
A3 [0.003, 0.042] [0.018, 0.054] [0.014, 0.150]

X2
A1 [0.040, 0.161] [0.034, 0.093] [0.047, 0.199]
A2 [0.047, 0.127] [0.040, 0.081] [0.102, 0.206]
A3 [0.0140, 0.113] [0.016, 0.086] [0.030, 0.187]

X3
A1 [0.006, 0.188] [0.004, 0.053] [0.003, 0.174]
A2 [0.015, 0.046] [0.001, 0.026] [0.021, 0.157]
A3 [0.009, 0.034] [0.005, 0.019] [0.011, 0.103]

Evidently, all attributes are the cost type, and using Equations (8) and (9), Table 1
is normalized into Table 2. We utilize Implementing Details for Urban Environmental
Comprehensive Treatment and Quantitative Examination (GOSEPA, No. 36) to determine
the weights of attributes. As a result, the weights of SO2, NO2, and PM10 are 0.4, 0.2, and
0.4, respectively.

Table 2. Normalized data from the MSs.

SO2 NO2 PM10

LL UL LL UL LL UL

X1
A1 [0.02326, 0.10714] [0.12500, 0.85714] [0.10294, 0.66667]
A2 [0.02804, 0.07895] [0.12950, 0.38298] [0.09032, 0.29787]
A3 [0.07140, 0.16667] [0.33333, 1.28571] [0.09333, 1.00000]

X2
A1 [0.08696, 0.35000] [0.17204, 0.47059] [0.15075, 0.63830]
A2 [0.11024, 0.29787] [0.19753, 0.40000] [0.14563, 0.29412]
A3 [0.12389, 1.00000] [0.18605, 1.00000] [0.16043, 1.00000]

X3
A1 [0.03191, 1.00000] [0.01887, 0.25000] [0.05660, 1.00000]
A2 [0.13043, 0.40000] [0.03846, 1.00000] [0.11538, 0.14286]
A3 [0.17647, 0.66667] [0.05263, 0.20000] [0.15789, 0.27273]

Now, we use the weight vector w = (w1, w2, w3) = (0.4, 0.2, 0.4) to compute the
weighted normalized decision matrix Rk = ([rk

ij, rk
ij])m×n(k = 1, 2, 3). The results are

shown in Table 2.
Next, the PIS and NIS, A+ and A−, are computed and respectively represented by

Tables 3–5.
The next step is calculating the projection of each weighted normalized decision matrix

on the PIS. Tables 5 and 6 present the results.
Now, we utilize Steps 7 and 8 to compute the relative closeness and weights of MSs, and the

results are given in Table 7. The weight vector λ = (λ1, λ2, λ3) = (0.33072, 0.33608, 0.33320)
and Equation (24) are employed to combine the individual decision matrices V1, V2, and V3 into
a decision matrix V (see Table 8).

The total interval evaluation of each alternative is obtained by summing all compo-
nents in each row of Table 8, and consequently, we have ν1 = [0.08154, 0.60678], ν2 =
[0.10722, 0.32064], ν3 = [0.14264, 0.71400].
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Using Equation (2), each νi is compared with the other νj (j = 1, 2, 3) to drive the rank
interval numbers νi (i = 1, 2, 3). Therefore, by Equation (3), the matrix P is constructed:

P =




0.50000 0.67631 0.42325
0.32369 0.50000 0.22682
0.57675 0.77318 0.50000




Now, Equation (4) is employed, and as a result, p1 = 1.59956, p2 = 1.05051, p3 =
1.84993. Using the values of pi(i = 1, 2, 3), the νi(i = 1, 2, 3) are ranked in descending order;
that is, ν3 > ν2 > ν1. Finally, the alternatives Ai(i = 1, 2, 3) are ranked as: A3 > A1 > A2.
This means that A3 is the best alternative. In other words, November 2019 had the best air
quality. Our results are partly in line with Gao et al. [38]; however, our study provides a
further extension in a very significant manner by using the most recent data, as well as a
more advanced technique.

Table 3. Weighted normalized data obtained from the MSs.

SO2 NO2 PM10

LL UL LL UL LL UL

X1
A1 [0.00930, 0.04286] [0.02500, 0.17143] [0.04118, 0.26667]
A2 [0.01122, 0.03158] [0.02590, 0.07660] [0.03613, 0.11915]
A3 [0.02856, 0.06667] [0.06667, 0.25714] [0.03733, 0.40000]

X2
A1 [0.03478, 0.14000] [0.03441, 0.09412] [0.06030, 0.25532]
A2 [0.04410, 0.11915] [0.03951, 0.08000] [0.05825, 0.11765]
A3 [0.04956, 0.40000] [0.03721, 0.20000] [0.06417, 0.40000]

X3
A1 [0.01276, 0.40000] [0.00377, 0.05000] [0.02264, 0.40000]
A2 [0.05217, 0.16000] [0.00769, 0.20000] [0.04615, 0.05714]
A3 [0.07059, 0.26667] [0.01053, 0.04000] [0.06316, 0.10909]

Table 4. Positive ideal solution (PIS) A+.

SO2 NO2 PM10

LL UL LL UL LL UL

A1 [0.00930, 0.04286] [0.00377, 0.05000] [0.02264, 0.25532]
A2 [0.01122, 0.03158] [0.00769, 0.07660] [0.03613, 0.05714]
A3 [0.02856, 0.06667] [0.01053, 0.04000] [0.03733, 0.10909]

Table 5. Negative ideal solution (NIS) A−.

SO2 NO2 PM10

LL UL LL UL LL UL

A1 [0.03478, 0.40000] [0.03441, 0.17143] [0.06030, 0.40000]
A2 [0.05217, 0.16000] [0.03951, 0.20000] [0.05825, 0.11915]
A3 [0.07059, 0.40000] [0.06667, 0.25714] [0.06417, 0.40000]

Table 6. Projections.

Projections X1 X2 X3

PrjA+ (Vk) 0.17018 0.19581 0.20060
PrjA− (Vk) 1.43006 1.93523 1.81254
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Table 7. Relative closeness, weight, and ranking of the MSs.

MS RCk λk Ranking

X1 0.89365 0.33072 3
X2 0.90812 0.33608 1
X3 0.90035 0.33320 2

Table 8. Decision matrix V.

SO2 NO2 PM10

LL UL LL UL LL UL

A1 [0.01902, 0.19451] [0.02109, 0.10499] [0.04143, 0.30728]
A2 [0.03591, 0.10380] [0.02441, 0.11886] [0.04690, 0.09798]
A3 [0.04962, 0.24534] [0.03806, 0.16559] [0.05496, 0.30307]

6. Conclusions

Because of the massive economic activities in different industrial sectors, the air
pollution in China is still an important issue, being not only a concern of the government
for sustainable development, but also a concern of the Chinese citizens for their health.
The most recent research shows that because of the outbreak of the coronavirus at the
beginning of 2020 together with the extremely strict rules implemented by the Chinese
government in the process of the national lockdown, the pollutant concentrations in
Shanghai reduced during the lockdown period; however, it was still four-times higher than
the standard set out by the World Health Organization [48]. Therefore, the air pollution is
still a very serious issue affecting people’s daily lives. How to reduce the level of pollution
is the main question faced by the Chinese government and environmental regulatory
authority. Before implementing relevant plans to address this issue, the correct information
regarding the level of pollution should be provided, which requires a robust estimation
or assessment of the air pollution level. The current study attempted to evaluate the
level of air pollution by proposing an innovative multiple criteria decision making model,
namely the group multiple criteria decision making model, in which the decision makers’
weights or preferences regarding different air pollution criteria can be quantified. We
further applied our innovative model to a sample of data from the Pearl River Delta
Region by focusing on three different pollutants, NO2, SO2, and PM10, for November 2017,
2018, and 2019. The results from our model show that November 2019 had the best air
quality. We propose policy implications to the Chinese government in order to deal with
this pollution issue: (1) although the Chinese government and regulatory authority have
been closely monitoring and implementing relevant environmental laws to regulate air
pollution, the magnitude should be further enhanced by increasing the amounts of fines on
air pollution; at the current stage, the penalty is less than that in Europe (China Proposes
Tiny $4500 Fine for Carbon Market Cheaters—Bloomberg); (2) the Chinese government
should further enhance its research and development in clean energy; the use of clean
energy will significantly reduce traditional energy production and further reduce the
pollution level.
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