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Abstract: 3D Printed Concrete (3DPC) technology is currently evolving with high demand amongst
researches and the integration of modular building system (MBS) with this technology would provide
a sustainable solution to modern construction challenges. The use of lightweight concrete in such
innovative construction methods offers lightweight structures with better heat and sound insulation
compared to normal weight concrete. It is worth noting that fire and energy performance has become
central to building design. However, there are limited research studies on the combined thermal
energy and fire performance of 3DPC walls. Therefore, this study investigates fire performance
of 20 numbers of varying 3DPC wall configurations using validated finite element models under
standard fire conditions. The fire performance analysis demonstrated that 3DPC non-load bearing
cavity walls have substantial resistance under standard fire load and its performance can be further
improved with Rockwool insulation. There is significant improvement in terms of fire performance
when the thickness of the walls increases in a parallel row manner. Previous thermal energy inves-
tigation also showed a lower U-value for increased thickness of similar 3DPC walls. This research
concludes with a proposal of using 3DPC wall with Rockwool insulation for amplified combined
thermal energy and fire performance to be used in MBS.

Keywords: 3D printed concrete wall panels; fire performance; energy efficiency; finite element
modelling; insulation fire rating; and standard fire

1. Introduction

3D printing technology is one of the rapidly developing areas and it has increasingly
attracted academic researches and industries, as it helps with complex designs which are
challenging to create with conventional manufacturing methods [1,2]. As time progressed,
the potential of 3D printing has been clearly recognised in wide range of applications
such as food, medical supplies, aeronautics and even agriculture [2–4] At present, the
building codnstruction industry has also adopted this technique with the aim of turning
the complex building design into reality [5]. 3D Printed Concrete (3DPC) techniques that
are based on layered extrusion seem to be the most promising approach with respect
to both its economic feasibility and to its prospective use in construction practices [2,6].
Adopting 3D printing can be a great asset, regardless of the type of manufacturing sector,
as it offers innovative solutions, better time management, faster production, manpower
and cost reduction, waste reduction, multi-material printing, and smaller environmental
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footprint [6–9]. The technology of producing houses and other structures using this method
has dramatically improved since 2010 [2,10]. However, in terms of structural integrity and
durability of the structure, there is more to discover.

Concrete is the most popular construction material in the world due to its numerous
advantages [6,11] and it has also shown excellent fire performance [12–15]. Even though
concrete has many advantages, one of the vital drawbacks in concrete is its high self-
weight [16]. Therefore, many research studies have been conducted to develop lightweight
concrete. Lightweight concrete can be categorised as lightweight aggregate concrete
and lightweight cellular concrete [17]. The lightweight cellular concrete can be further
categorised into two forms that are Autoclaved Aerated Concrete (AAC) and Foamed
Concrete (FC) [18]. Foamed concrete is produced by mixing foaming agent to the concrete
mix, which makes the concrete cellular with compressed air [19,20]. The potential use of
foamed concrete has increased in the industry due to its low self-weight, thermal insulation,
acoustic absorption, earthquake resistant, long life span due to fire resistance, weatherproof,
workability, and material savings [20–26]. Hence, this study includes foamed concrete as
the material used to develop the numerical models of 3DPC walls.

Structural fire damage or fire losses can be identified as a common accidental disaster
throughout the world which causes thousands of deaths, injuries, and millions of property
damage each year [12,16,26]. Structural design code of practices has identified the fire
situation as an accidental loading condition to the structure. Therefore, it is essential
to design the structures to withstand a fire scenario for a prescribed period [26–28] Fire
can be identified as a time-dependent temperature variation. ISO 834 temperature time
relationships [29] given in Equation (1), where T is the fire temperature, T0 is the ambient
temperature and t is time in minutes.

T = 345 log10(8t + 1) + T0 (1)

At present, Weng et al. [30] and Cicione et al. [31] performed the preliminary exper-
imental studies to analyse the behaviour of 3DPC at elevated temperatures. Following
the results presented by Cicione et al. [31], preliminary numerical studies were conducted
by Suntharalingam et al. [32,33] focusing on investigating the fire performance of 3DPC
composite wall panels under standard fire condition and different fire scenarios. (i.e., hy-
drocarbon fire, rapid, and prolong).

Another core aims of construction industry is to reduce significant amount of energy
consumption, while achieving the desired structural and thermal performance [34–36].
3DPC technique can be addressed as an environmentally friendly solution which offers
sustainable construction. In addition, the adoption of modular building system (MBS) in
high rise structure is in demand nowadays and the 3DPC technique will definitely play a
major role in the future of MBS. Any complicated architecture, with complicated shapes
could be made possible in modular construction by incorporating the 3DPC elements.
Moreover, many researchers have discussed the need for SHS corner post section to be
covered to protect against fire. Hence, the 3DPC walls with better fire performance could
be incorporated with MBS to improve the fire behaviour of the whole structure.

Alkhalidi and Hatuqay [34], investigated and developed energy efficient and low-cost
residential 3DPC elements that can be accomplished through a green and sustainable
method. He et al. [37], developed 3D concrete printed modular building with integrated
vertical greenery system, called 3D printed Vertical Green Wall (3D-VtGW). The energy
saving potential of a small commercial building was established using 3D printed modular
living wall system. Moreover, Mohammad et al. [38] developed a high strength, lightweight
concrete mixture suitable for 3DPC which showed improved thermal insulation, while
reducing the energy consumption within the life cycle of the concrete structure.

However, researchers are focusing more on the structural performance of 3DPC struc-
tures. Moreover, many design guidelines and performance under elevated temperature
are available for normal weight concrete, whereas very few studies have evaluated the
fire performance and thermal energy of 3DPC structures. Therefore, there is an inevitable
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absence of literatures to investigate the performance of 3DPC structures at elevated temper-
atures experimentally and numerically. Hence, this study is more concerned about the fire
performance and thermal comfort of the 3DPC buildings in a MBS. This study numerically
investigates the fire performance of the innovative 3DPC wall configurations proposed
by Alkhalidi and Hatuqay [34]. To conclude, this article describes the fire performance of
3DPC wall panels subjected to standard fire, via a detailed parametric study of 20 numerical
models covering five different 3DPC wall configurations with cavity and Rockwool infilled
walls with two varying densities. The consequences of the study will potentially help to
the growth in practice of safe and sustainable 3D printing technology in the building and
construction industry.

2. Study on Energy Efficient 3D Printed Buildings

A study by Alkhalidi and Hatuqay [34] was aimed to develop sustainable low cost
residential buildings with efficient energy performance with improved thermal comfort. It
involves investigation of the energy performance of 3D printed houses globally in different
climatic zones. The thermal comfort of a building is evaluated by the thermal transmittance
value (U-value) of the element which will be decided according to the climate condition of
the location. Introducing air gaps or insulation layers between the building elements helps
to reach the certain U-value according to its climatic conditions. 3D concrete printing offers
this design flexibility to print structures with air cavities while satisfying both thermal and
structural requirements [34].

2.1. Research Methodology

The study approach was designed as to accomplish an energy efficient 3DPC building
by reducing the U-values of the painted walls in compliance with climatic zone regulations.
Five different 3DPC wall configurations with three different materials with excellent
thermal properties were used in this study. The densities of Mix 1, Mix 2, and Mix 3 are
1254.24, 986, and 1522 kg/m3, respectively. The proposed configurations were selected
based on the actual executed 3D printed walls in the current industry. They were printed
with different cavity configurations and geometries similar to hollow bricks with 40 mm
square nozzle. The wall configurations with 1 m length and 0.5 m height with different
cavities of 10 cm and 15 cm in width were analysed. Additionally, the low cost, easily
available dry sand and Expanded Polylactic acid (E-PLA) were used to fill the cavities to
achieve a lesser U-value. All three heat transfer processes such as conduction, convection,
and radiation were considered in the analysis. The different 3DPC wall configurations are
shown in Figure 1.
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2.2. Model Development

Three-dimensional heat transfer simulation considering steady-state and laminar
airflow was performed to calculate the U-value of the 3DPC walls. The wall configura-
tions were designed using ANSYS software and the models were validated against the
thermal analysis on numerous cavity arrangements of hollow concrete bricks performed by
Henrique dos Santos et al. [39]. Neumann–Dirichlet type boundary conditions were used
as two parallel surfaces were considered adiabatic at different temperatures, creating a
perpendicular heat flux to those surfaces possible. The Discrete Ordinate Radiation Model
(DORM) was applied to determine the radiative heat transfer inside the air cavities. The
mesh was created with 3 mm edge length cubic elements.

Heat flux through the designed walls is calculated using ANSYS software, and then
the U-value is evaluated using Equation (2).

U =
q

∆T
(2)

where q is the surface average weighted heat flux, and ∆T is the temperature difference
between the indoor and outdoor temperatures defined by the user. The design temperature
difference (∆T) of 20 K, 30 K, and 40 K were determined by maintain the constant ambient
temperature at 24 ◦C. According to the standards and regulations, two U-values of 0.2
and 0.5 W/m2.K were targeted in this study. These U-values were simulated at the
abovementioned temperature differences [34].

2.3. Outcomes of the Corresponding Study

The wall configurations with multiple rows showed the minimum thermal transmit-
tance value of 0.15 W/m2.K which revealed the optimal balance between cavities and 3D
printed material with the desired U-value and structural performance. Moreover, results
indicate that the addition of parallel cavity rows significantly decreases the U-value com-
pared to increasing the cavity size. Table 1 shows the reduction percentage of the U-values
for each configuration, compared to the single row 10 cm cavity wall configuration for Mix
3. The minimum U-values were achieved with the triple row 10 cm cavity height for all
three mixes and the U-values decreased with increasing density. However, the temperature
difference effect on the U-value becomes insignificant with increasing wall thickness that
is beyond the double row 15 cm cavity configuration. Hence, the triple row 10 cm cavity
configuration was not considered, while indicating a suitable configuration for different
climate zones.

Table 1. U-value reduction percentages for different configurations at ∆T 40 K (Mix 3—1522 kg/m3).

Wall Configuration U-Value (W/m2.K) Reduction % Compared to Single Row 10 cm

Single Row 10 cm 1.22 0

Single Row 15 cm 1.20 2

Double Row 10 cm 0.68 44

Double Row 15 cm 0.67 45

Triple Row 10 cm 0.47 62

Figure 2 illustrates the U-value variation for 3DPC walls with air cavity, sand-filled,
and E-PLA filled cavities printed using Mix 3 at ∆T 40 K. The variation remains similar
to all three materials Mix 1, Mix 2, and Mix 3 used in this study. It is obvious that cavity
filling has reduced the U-values and the E-PLA filling achieved the minimum U-value.
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Figure 2. Cavity fillings effect on U-values obtained at ∆T 40 K printed using Mix 3 [34].

In conclusion, this study has recommended the best material mix, wall configuration
and printing method to suit the different climatic zones of the world categorised according
to the Koppen–Geiger climate classification. The selections were made by considering the
minimum number of cavity rows with less material usage. This paper presents the targeted
U-values for each zone referring the national regulations of the world’s climatic zones.
Thus, to achieve the targeted U-value of 0.18 W/m2.K for walls in the London region, UK,
binder jet, E-PLA filled double row 15 cm configuration with Mix 3 was proposed, as it
achieved the U-value of 0.15 W/m2.K (Figure 2).

3. Development of Finite Element Model

This section explains the development of the three-dimensional Finite Element (FE)
model for analysing the heat transfer thermal behaviour of the 3DPC wall panels with
different cross-sectional arrangements. The ABAQUS [40] software is used in this study
which allows uncoupled and coupled thermal analysis to examine the thermal behaviour
of structures. The overall fire performance of a structure has to be analysed under three
primary criteria such as insulation, integrity, and structural load bearing capacity [16,26].
This is known as coupled analysis which investigates the combined mechanical-thermal
behaviour. As this study is focused only on non-load bearing walls, uncoupled heat transfer
analysis has been performed. The selected wall panels were exposed to normal fire under
ISO 834 standard fire scenario [41] and the insulation failure analysis was conducted by
measuring the unexpected surface temperature variation. Rockwool material is used as the
fire insulation material here in this study.

In order to perform the detailed heat transfer analyses of 3DPC non-load bearing
wall configurations with and without cavity insulation, precise temperature dependent
thermal properties such as thermal conductivity, specific heat, and relative density have to
be specified for concrete and the insulation material Rockwool. Alkhalidi and Hatuqay [34]
presented the ambient temperature thermal properties of three concrete mixtures used
in their study, which were derived from the equation by Craveiro et al. [42]. Since the
presented properties are similar to that of the foam concrete at ambient temperature,
thermal properties of foam concrete at elevated temperatures have been used in this study.
The thermal properties of lightweight foamed concrete (LFC) at high temperatures with
densities 650 kg/m3 and 1000 kg/m3 were obtained from the experimental and analytical
study by Othuman and Wang [19].
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Figure 3a–c shows the thermal properties of foamed concrete at elevated temperatures
and Figure 4 illustrates the thermal conductivity variation of Rockwool insulation material.
The density and specific heat values of Rockwool at elevated temperatures are 100 kg/m3

and 840 J/kg.◦C, respectively [43].
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4. Heat Transfer Model in ABAQUS

Thermal loading and boundary conditions were applied to the FE model in a similar
pattern to real fire scenario to represent the actual conditions. All three key heat transfer
modes conduction, convection and radiation were considered in the developed 3DPC wall
models. Thermal loading to the 3DPC vertical wall surface was applied as the boundary
conditions. While applying the ambient temperature of 20 ◦C as the predefined initial
temperature for the entire model, time–temperature variation at the fire exposed side
of 3DPC wall was applied to follow the standard fire condition. The heat transfer solid
3D eight-node linear brick element with one degree of freedom per node (DC3D8) was
used to ensure the conduction heat transfer occurs through the wall element in the same
material. The conduction heat transfer by the air inside the cavity is negligible due to its
low thermal conductivity. Moreover, convective film coefficient of 25 W/(m2.◦C) was used
for fire exposed and fire unexposed wall surfaces. The convective heat transfer through
the air cavity is also negligible as there is restrictive airflow inside the wall. Therefore,
the crucial heat transfer mode within the cavity is considered as radiation. The radiation
heat transfer was applied by means of emissivity radiation coefficient to the wall surfaces.
An emissivity coefficient of 0.7 was applied on fire exposed and fire unexposed sides of
the wall panels and on cavity. The cavity approximation method was also combined to
the surface radiation condition of the cavity surfaces. Figures 5 and 6 shows the heat
transferring methods of cavity 3DPC walls and the boundary conditions applied on the
developed model, respectively. Moreover, the mesh size for each wall configuration was
selected considering the convergence of the results. In order to incorporate the continuity
among the concrete and Rockwool insulation material for heat transfer, the tie constraint
option was used. ABAQUS FE model mesh refinements of cavity wall panels and cavity
insulated wall panels are shown in Figure 7a,b, respectively.
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5. Validation of Finite Element Model

Verification of any developed model against the available experimental results is vital
to ensure the accuracy of the developed models in terms of assumed modifications and the
material characterization. This FE heat transfer model was previously validated against
the experimental results obtainable by Cicione et al. [31] with modified thermal properties
at elevated temperature. The validation was performed for total six (6) 3-D models by
comparing the unexposed surface temperature results obtained from the FE analysis with
the fire test results from the experimental study. The FE model results were well approved
with the experimental results and the detailed validation results have been presented in the
studies by Suntharalingam et al. [32,33]. Since, both FE and experimental results showed
good agreement, the developed FEM has been extended to investigate the fire performance
of 3DPC wall configurations in this study.

6. Parametric Study on 3DPC Wall Panels With Different Configurations

The developed FE heat transfer model was extended to investigate the thermal be-
haviour of five different wall configurations studied by Alkhalidi and Hatuqay [34]. Those
wall panels were integrated with the Rockwool cavity insulation to improve the fire perfor-
mance and investigated. As per Eurocode standards (EN 1992-1-2, 2017) [44] unexposed
surface temperature increment should not exceed 140 ◦C in average and 200 ◦C at any
point to satisfy the fire resistance in insulation criterion. Insulation fire rating (IFR) of a
structural member is identified as the time taken to unexposed surface to achieve 140 ◦C
temperature increments. Hence, the model was used to determine the IFR of developed
wall panels.

The parametric study includes twenty (20) wall specimens of five different cross
sectional arrangements, two different material densities of 650 kg/m3 and 1000 kg/m3

and walls with and without cavity insulation. The selected configurations and material
densities are based on the actual implemented 3D printed walls with 10 cm and 15 cm
cavities. The different cross sectional arrangements of wall panels, analysed in this study
are shown in Figure 1. The details of parametric study are presented in Table 2.

Table 2. Parametric Study Outline.

Wall Configuration Density (kg/m3) Insulation Type Number of Models

Single Row 10 cm 650, 1000 Cavity, Rockwool
insulation 4

Single Row 15 cm 4
Double Row 10 cm 4
Double Row 15 cm 4
Triple Row 10 cm 4

Total 20

7. Results and Discussion

The standard fire curve, ISO 834 [41] was applied on firesides of the heat transfer
FE model and the time-dependent fire unexposed side temperature was measured from
ABAQUS CAE tools. The fire behaviour of different wall configurations and densities in
terms of insulation fire rating are discussed herein extensively.

Figure 8a,b illustrate the unexposed surface temperature variation for all five consid-
ered wall configurations with densities 650 kg/m3 and 1000 kg/m3, respectively. Increment
in insulation fire rating with the increase in density is clearly identified for all the wall
panels. Both the cavity and Rockwool infilled walls showed superior fire resistance such
that insulation fire rating is not exceeded the limiting insulation fire rating temperature of
160 ◦C (140 ◦C + 20 ◦C) for all the wall configurations within four hours. Moreover, it is
obvious that the temperature increment is very low for the wall configurations with double
row and triple row.
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Figure 8. (a) Unexposed Surface temperature variation for different wall configurations with density
650 kg/m3; (b) Unexposed Surface temperature variation for different wall configurations with
density 1000 kg/m3.

Figure 9a–e illustrate the comparison of unexposed surface temperature variation up
to 4 h for all the wall configurations under standard fire condition for varying material
densities. The temperature rise of all the different wall configurations in four hours is
presented in Table 3. The temperature distribution of the cavity wall panels, and Rockwool
insulated wall panels at 0 min, 30 min, 1 h, 2 h, and 4 h of exposure to the standard fire are
represented in the Tables 4–6.
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Table 3. Temperature rise in 4 hrs of different wall configurations.

Wall Configurations
Temperature (◦C)

650 kg/m3 1000 kg/m3

Single Row 10 cm
Void 53.68 47.16

Rockwool 35.59 31.67

Single Row 15 cm
Void 51.21 46.34

Rockwool 33.73 28.01

Double Row 10 cm
Void 21.09 20.36

Rockwool 20.39 20.14

Double Row 15 cm
Void 20.78 20.24

Rockwool 20.11 20.03

Triple Row 10 cm
Void 20.01 20.00

Rockwool 20.00 20.00
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Table 4. Temperature contours of single row 10 mm wall at different time intervals.

Single Row 10 cm Cavity Wall Single Row 10 cm Rockwool Insulated Wall
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Table 5. Temperature contours of double row 10 mm wall at different time intervals.

Double Row 10 cm Cavity Wall Double Row 10 cm Rockwool Insulated Wall
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Table 6. Temperature contours of triple row 10 mm wall at different time intervals.
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Considering the results, both the cavity and Rockwool infilled wall configurations
have displayed superior fire resistance in terms of insulation failure criteria within the
initial four hours. Moreover, increasing fire behaviour is obviously identified with the
increase in density for all wall configurations. However, this heat transfer analysis only
considers the insulation failure criteria and does not include the combined mechanical–
thermal behaviour. Hence, Rockwool insulated single row 10 cm wall configuration with
1000 kg/m3 density could be proposed to have better performance against fire with less
material requirement. However, Alkhalidi and Hatuqay [34] proposed E-PLA filled double
row 15 cm configuration wall configuration with 1522 kg/m3 density to have higher
energy performance. Since, the fire performance will be amplified with increasing wall
thickness and density, double row 15 cm configuration wall configuration with density
1522 kg/m3 could be proposed to have energy efficient, thermally comfortable 3D printed
built environment with enhanced fire performance.

Moreover, with the aim of developing cost effective sustainable buildings with en-
hanced structural performance and with increased construction speed the following MBS
with 3DPC walls with improved thermal energy and fire performance could be proposed.
Figure 10 shows one of the proposed 3DPC walls in MBS and Figure 11a,b illustrate
the recommendations on how to integrate 3DPC walls around SHS corner posts in steel
construction. The configuration shown in Figure 11a illustrates the arrangement of steel
corner posts with 3DPC walls. This could be used to protect the steel elements from fire
source inside the building which is also easy to install onsite. The in-situ installation of the
configuration given in Figure 11b would be a challenge since the corner post t integration
with printing process. However, it could be used to protect the steel elements from fire
inside the building, as well as external environmental and chemical factors.
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8. Conclusions

This paper has given an account of fire performance investigation of different 3DPC
wall configurations using heat transfer numerical models. Validated heat transfer mod-
els were employed to investigate the fire performance of non-load bearing 3DPC wall
configurations, which were already studied for thermal energy performance. A para-
metric heat transfer finite element analyses were performed with different densities and
Rockwool cavity infill. Summarised below are the conclusions that have arisen from this
research study.

• 3DPC non-load bearing cavity walls have substantial resistance under standard fire
load for a 4 h exposure time.

• The unexposed temperature of the double row cavity 3DPC wall configurations
remains without any increment even after 4 h of standard fire load. While single row
cavity 3DPC walls showed a temperature increment at unexposed side, however, this
is well below the insulation fire rating limiting temperature.

• Introduction of Rockwool as cavity infill showed a superior fire performance compared
to cavity 3DPC walls.

• Significance fire performance improvement was noticed when the thickness of the
3DPC walls increases in a parallel row manner. Similar behaviour was also observed
by Alkhalidi and Hatuqay [34] for thermal energy investigation which resulted in a
lower U-value for increased thickness of 3DPC walls.

• Combined thermal energy and fire performance of 3DPC walls can be enhanced
increasing the thickness of the wall using parallel row manner and introducing Rock-
wool insulation as cavity infill.

• Double row 15 cm configuration wall configuration is proposed to have amplified
combined thermal energy and fire performance with less material usage.

• Integration of 3DPC walls in MBS is proposed as a sustainable solution to modern
construction challenges.

This study is the first step towards enhancing the understanding of combined thermal
energy and fire performance of 3DPC walls. However, further studies on different mixes
and cavity filling materials could be performed for further optimization.
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