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Abstract: Agricultural fields have natural within-field soil variations that can be extensive, are usually
contiguous, and are not always traceable. As a result, in many cases, site-specific attention is required
to adjust inputs and optimize crop performance. Researchers, such as agronomists, agricultural
engineers, or economists and other scientists, have shown increased interest in performing yield
monitor data analysis to improve farmers’ decision-making concerning the better management of
the agronomic inputs in the fields, while following a much more sustainable approach. In this case,
spatial analysis of crop yield data with the form of spatial autocorrelation analysis can be used as a
practical sustainable approach to locate statistically significant low-production areas. The resulted
insights can be used as prescription maps on the tractors to reduce overall inputs and farming costs.
This aim of this work is to present the benefits of conducting spatial analysis of yield crop data as
a sustainable approach. Current work proves that the implementation of this process is costless,
easy to perform and provides a better understanding of the current agronomic needs for better
decision-making within a short time, adopting a sustainable approach.

Keywords: delineation of management zones; decision making; spatial analysis

1. Introduction

Agricultural fields have natural within-field variations due to ground, climate or other
related factors and their multiple interactions [1] and, as expected, crop yield functions as
a sensor of the local environment, reflecting the cumulative effect of all these variations [2].
The spatial variability of yield is affected by multiple factors, such as soil, geomorphology,
crop traits, and additional influencing dynamic factors, such as weather-related factors,
or environmental impacts from physical or human activities, and the total extent of human
intervention, including all agricultural practices used [3–7]. All these factors may affect
crop yield to a different extent, even if the type of crop remains the same [8,9].

As a result, although researchers agree that information regarding the influence of
these factors will support better management decisions to increase crop productivity and
lower farming costs [10], the influence of these factors may vary depending on the case,
and estimation of this influence is complex and difficult to achieve. Therefore, in most
cases, only soil-related factors are used to determine the agronomic inputs needed in time
and space [11,12]. It should also be stressed that the nutrients in the soils are spatially and
temporally dynamic, and their availability to the plant at any location and time depends
on many factors that may also vary from area to area [13]. Factors such as organic matter in
the soil and manure applications, temperature changes and rainfall patterns, previous crop,
and different leaching losses, are only some of the variables that affect the final yield at each
location. The complexity of the yield response makes model specification difficult [14].

To deal with field complexity, growers and scientists have focused on obtaining more
agricultural field data. Since the early 1990s, both have realized that using modern agricul-
ture technologies (mainly precision agriculture techniques and yield monitor technology)
enhances the ability to conduct on-farm trials and collect more precise yield data, with the
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hope that these can provide the opportunity to improve their whole-farm decision-making
process [15,16]. In terms of a more detailed mapping of crop yields and understanding of
within-field variations, yield monitors mounted on combine harvesters have significantly
improved, and have had widespread use for the last ten years. As a result, the management
of agricultural crops is gradually becoming data-driven, with large amounts of potential
information available from crops or soil sampling [13,17]. Data from high-end technology
sensors, remote-sensing data for crops and soils, and weather and climate measurements
enhance the available database for data-driven agricultural management [18]. Finally,
the aim of the collection and analysis of these data is their transformation into meaningful
information that will facilitate decision-making and improve the management of agri-
cultural fields [13,16,17], according to the several spatial and temporal variability factors
involved, which is broadly termed as precision agriculture [19].

However, although large amounts of yield data are becoming available for analysis,
several issues have been reported and yield data analysis has difficulties as a decisive
component of the decision-making process concerning the better management of fields [13].
Several studies [9,14,20] have shown that it is difficult to bind yields with soil or weather
conditions to determine management zones (MZs) due to the many dynamic factors
involved; therefore, precision agriculture technologies face issues in terms of clearly estab-
lishing a new profitability approach. To deal with uncertainty, field analysis has started to
be based on spatial analysis of yield data of more than one year, hoping to obtain a better
understanding of the within-field spatial variability and then use these insights to character-
ize within-field spatial variability and divide a field into management zones (MZs), or areas
with homogeneous properties known to impact crop yield [20]. According to precision
agriculture principles, all agronomic inputs, such as irrigation, fertilizers, or pesticides,
can be optimized in different management zones to maximize the profit margin [12,14,16].
This technique may be less precise than the point-to-point estimation, but it can lead to
minimized input and costs, and therefore be considered as a much more sustainable ap-
proach. However, there is still a debate on whether the application of precision agriculture
technologies always provides tangible evidence for their performance [21,22].

The whole-field recommendations derived from generalized recommendation systems
or from farmers’ experience (implemented in most growing environments) can provide a
reasonable average recommendation in most years but are, overall, imprecise for individual
fields [23]. For example, the Stanford-type mass balance approach for calculating site-
specific N recommendations depending on soil and crop N availability is potentially
appealing, because of its relative simplicity, which makes it easy to implement, but it is very
generalized over diverse growing conditions and can fail at predicting field-specific needs,
leading to the potentially unnecessary use of inputs while adopting a less sustainable
approach [24]. Contrary to this, gaining the advantage of spatial insights from the use
of model-database tools can lead to a much more sophisticated sustainable approach
compared with the generalized recommendation methods, helping farmers to focus only
on areas with low yield data and limit fertilizers, irrigation, or any other inputs only to areas
where they are needed [25]. The approach of saving resources is in line with the definition
of Sustainable Development [26]: “Sustainable development is development that meets the
needs of the present without compromising the ability of future generations to meet their
own needs.”. The main concept of this approach is that sustainable development should
comprise three different aspects: economic, social, and environmental [27]. Focusing only
on areas with low crop yield not only benefits from the reduced inputs but also leads to
lower outputs, such as lower emissions to the atmosphere (reduced use of tractors) or
reduced chemicals loss to the environment. As a result, there is a gap that spatial analysis
can fill by following a more sustainable approach, as the current work suggests: spatial
autocorrelation statistical indicators can be used as a tool to identify areas with low crop
yield, which farmers should focus on, to lower overall inputs, save resources and minimize
environmental impacts. In this case, the whole-field recommendations can be adjusted to
focus only on the low-production areas.
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Previous studies have successfully explored the spatial dependence of crop yield using
global and local statistics [28]. However, this study provides a cluster map comparison of
the performance of the local spatial statistics that leads to the conclusion that all the given
cluster maps, based on spatial statistics, can be used for the delineation of management
zones, and therefore for the construction of the prescription maps on tractors to reduce
overall inputs and farming costs. In addition, this work also provides the percentage of the
potential reduction in overall inputs which have not been estimated in previous studies,
comparing the performance of the use of different spatial statistics [28]. The comparison
shows that the performance of all local spatial statistics is similar, based on their cluster
maps’ visualization. Therefore, the current study suggests that a short spatial analysis
based on the autocorrelation of the available crop-yield data, regardless of the local spatial
statistics used, can help farmers to review and adjust their input management in the fields
to lower their farming costs. This strategy of using any local spatial statistics as a tool
can be a sustainable approach to improve the input management, replacing the common
practice of using an average of the crop yield per area of interest.

Two case studies concerning corn-field experiments, conducted in Las Rosas, Ar-
gentina, are analyzed to illustrate the applicability of using the autocorrelation of crop
yield data as a sustainable approach and as an effective tool to locate and focus on low-
production areas based on spatial analysis [29]. Section 2.1 introduces the two on-farm
databases used as case studies. Section 2.2 provides a short review of how spatial statistics
have been used to date in the delineation of low-crop-yield management zones. Section 2.3.
describes the mathematical background of the spatial autocorrelation statistics used to
analyze the crop yield data. Section 2.4 describes how the geostatistical analyses of the field
spatial variability of crop yield were conducted to locate cultivated areas with statistically
significant low yields values, surrounded by low yields. We conclude with a discussion in
Section 3, the limitations in Section 4, and conclusions in Section 5.

2. Materials and Methods
2.1. Site Description and Data Collection Used

The data used in this manuscript derive from strip trials conducted at a farm called
“Las Rosas” in the Rio Cuarto area, Cordoba Province, in central Argentina. The farm is
located at 63◦50′50′′ W and 33◦03′04′′ S. The sample data are referenced in the tutorials for
GeoDa spatial analysis software and freely available online [30]. These files (“Las Rosas,
1999” and “Rosas, 2001”) include spatial variation measurements in monitor corn yield
data (quintals/ha) associated with corresponding nitrogen fertilizer amounts and other
field characteristics for the “Las Rosas” experiment for two separate years: 1991 and 2001.
The “Las Rosas” experiment was conducted by incorporating six nitrogen rate treatments
in three replicated blocks comprising 18 strips across the field [29,30].

The percentile cluster map (Figure 1) provides a visual exploration of the corn yield
variability in the field; crop yield varies from 31.23 to 90.38 quintals/ha for Las Rosas 1999
dataset, and from 12.66 up to 117.90 quintals/ha for Las Rosas 2001 dataset, respectively.
However, this cluster map cannot be used for the delineation of management zones because
it cannot lead to contiguous, statistically significant areas with the same traits.

2.2. Delineation of Low-Crop-Yield Management Zones Using Spatial Statistics

Spatial statistics have been widely used to analyze spatial field properties and support
decision-making to improve agricultural management [17]. Several successful efforts,
using different techniques, have been made to date to produce spatial clusters that can be
used as different management zones [14,28,31–34]. Researchers showed that integrating
spatial crop-yield variability in the decision-making process for farming management
may increase yield production [13,31,32]. Studies also have shown that adding spatial
variability insights to clustering management methods improved spatial clustering for
practical uses [13,28,33,35].
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Figure 1. Percentile cluster map based on corn yield data (yield values in quintals per hectare) for: (a) “Las Rosas” farm
corn yield data (1999) and (b) “Las Rosas” farm corn yield data (2001).

The delineation of MZs can be based on the characterization of soil physical variables
and is achievable using regression kriging analysis and then principal component analysis
and fuzzy cluster classification [36]. A multivariate spatial clustering approach has also
been proposed [33] for the delineation of different MZs using spatial statistics. A regression
technique (local geographically weighted regression (GWR)) has also been tested to express
the spatial relationship between soil properties and in-season vegetation index, where the
GWR data were finally used for the delineation of MZs [37]. Other scientists [14,17] also
used a geographically weighted regression method to analyze spatially varying treatment
effects in on-farm experiments. Few studies also used novel machine-learning approaches
to analyze multivariable effects on crop yield [38], but they did not account for spatial
variability. Other studies [34] used factorial kriging analysis based on multiple soil variables
to produce spatial clusters that can represent different MZs. In sum, most of the studies
focused on demonstrating the spatial relationship of soil characteristics, but they usually
neglected other parameters that may affect the spatial variability of crop production and
yield (climate, environmental conditions, crop, etc.).

Concerning the spatial autocorrelation of crop yield data, this has been often used to
describe the degree of dependencies among neighboring observations in a field experiment,
aiming to obtain an adequate sampling interval for which observations remain spatially
correlated, and to design sampling protocols [12,28,39,40]. After reviewing the available
literature, the authors reached the conclusion that there is no emphasis on the use of spatial
autocorrelation as a sustainable approach to minimize inputs and farming costs. This
research suggests the use of spatial autocorrelation of crop-yield data as a novel sustainable
approach and tool for the delineation of potential low-yield management zones, aiming to
limit the inputs only to the areas where they are needed.

2.3. Global and Local Spatial Autocorrelation Statistics

Spatial autocorrelation is expressed using global Moran’s I and Geary’s C statistics,
whereas local spatial autocorrelation is described by a local indicator of spatial association,
local Gi and G∗i statistics.

The spatial autocorrelation Global Moran’s I is an inferential statistic, which means that
the results of the analysis are always interpreted within the context of its null hypothesis,
where the values of the analyzed parameter are randomly distributed in the study area [41].
The global Moran’s I can be calculated as follows [42], using Equation (1)
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I =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij(xi − x)(xj − x)

∑n
i=1(xi − x)2 (1)

where n equals the number of observations; wij is the weight between locations i and j; xi
and xj are the values at locations i and j; x is the average over all locations of the variable.

The local indicator of spatial association (LISA) can be described [43] using Equation (2)

Ii =
xi − x

∑i(xi − x)2 ∑
j

wij(xj − x) (2)

where x∗i and x2∗ represent the means from the neighboring area, with xi being excluded
and included, respectively; wij represents the weight between locations i and j; xi and xj are
the values at locations i and j; x is the average over all locations of the variable. As shown
above in Equations (1) and (2), a spatial weight matrix W (consisting of several wij pairs) is
needed for the calculation of the spatial autocorrelation. Each weight element wij, as an
element of this normalized neighborhood matrix, corresponds to a pair of observations
at locations i and j. Non-zero values reflect the potential spatial interaction between two
observations, while zero values indicate a lack of spatial interaction [44]. The most common
ways of calculating these weights are called Rook’s, where wij is set to 1 if a pair shares a
common edge and 0 otherwise, and Queen’s weights, where wij is set if the pair shares
either a common edge or a vertex and 0 otherwise [45]. By convention, wii is also defined
as zero. The weight matrix W can also be defined by actual distance, inverse distance
with powers of 1 through 5, and k-nearest points methods [45], and it can be based in the
Euclidean distance between any pair of observations, as given in Equation (3)

dij =
√(

xi − xj
)2

+
(
yi − yj

)2 (3)

where i and j are any two points in the given area, with respective coordinates (xi, yi) and
(xj, yj), respectively. Once dij is obtained from Equation (3), it can be used to calculate
weights as inverse distance weights

wij =
1

dm
ij

(4)

where m is the power. In case of k-nearest weight matrices, the distances between any pair
points were calculated and compared; k-nearest points were then selected and kept in the
matrices. Usually, the k-closest points from 4 through 10 are selected. Row-standardization
is also performed first for each matrix, to allow easier calculations of spatial autocorrelation
statistics. In practice, the spatial weight matrix W determines how much one observation
contributes to the overall global spatial autocorrelation, because Moran’s I is the summation
of the product between the weight and deviation from the mean or value of the next
observation [28].

The calculated variance for global Moran’s I can be obtained from Equation (5) [42]

varN(I) =
1

(n− 1)(n + 1)
(

∑n
i=1 ∑n

j=1 wij

)2

[
n2S1 − nS2 + 3

(
∑n

i=1 ∑n
j=1 wij

)2
]
− 1

(n− 1)2 (5)

where

S1 =
1
2

n

∑
i=1

n

∑
j=1

(
wij + wji

)2 (6)

S1 =
1
2

n

∑
i=1

n

∑
j=1

(wi. + w.i)
2 (7)
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The expected I is calculated by using Equation (8)

EN(I) = −(n− 1)−1 (8)

The significance of the global Moran’s I statistic is tested based on their z-scores
(simply standard deviations), using Equation (9)

z− score =
I − E(I)√

var(I)
(9)

Geary’s C statistics can be calculated by using Equation (10) [42]

C =
n− 1

2 ∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij
(

xi − xj
)2

∑n
i=1(xi − x)2 (10)

Local Geary Ci can be calculated by Equation (11) [42,43]

Ci =
n

∑n
i=1
(
xi − xj

)2

n

∑
j=1

wij
(
xi − xj

)2 (11)

Local Gi and G∗i statistics are described [28,42,43] in Equations (11) and (12), respectively

Gi =
∑j wijxj −∑j wijxi[

∑j x2
j /(n− 1)− x2

i

]0.5
{[

(n− 1)∑j w2
ij −

(
∑j wij

)2
]

/(n− 2)
}0.5 , j 6= i (12)

G∗i =
∑j wijxj −

(
∑j wij + wij

)
x∗i[

∑j x2
j /(n− x2∗)

]0.5
{[

(n ∑j w2
ij)−

(
∑j wij + wij

)2
]

/(n− 1)
}0.5 , all j (13)

where x∗i and x2∗ represent the means from the neighboring area, with xi being excluded
and included, respectively. Therefore, the main difference between local Gi and G∗i is that
Gi requires xi to be excluded from the summation, whereas G∗i requires xi to be included
in the summation.

In the case of normal distribution of data, the threshold of 1.96 can be applied to test
the significance level of z. If the z value is greater than smaller than −1.96, this implies
that the spatial autocorrelation is significant [28,46]. A p-value (observed significance level)
is also calculated along with the z-score to indicate whether the difference is statistically
significant and represents the probability that the observed spatial pattern was created
by some random process. A very small (<0.05) p-value means that the null hypothesis
can be rejected, meaning that the observed spatial pattern is not the result of a random
process. Cases with very high or very low z-scores, associated with very small p-values
(p-value < 0.05), indicate that it is unlikely that the observed spatial pattern reflects the
theoretical random pattern represented by the null hypothesis. A statistically significant
positive z-score means that similar high or similar low values cluster together, while a
negative z-score means that similar values are spatially dispersed, as we expect in the case
of an underlying random spatial process.

Concerning the effective sample size used in spatial modelling, it is well known that
as spatial autocorrelation latent increases in geo-referenced data, the amount of duplicated
information contained in these data increases too [47]. Therefore, if the n observations
are (positively) spatial autocorrelated, the amount of statistical information carried by
the n observations is less that it would be if the n observations were independent. It has
been confirmed that the “effective sample size” is less that the actual sample size n [48].
Therefore, in the case of n datapoints as independent observations, the effective sample
size is n, but if the observations are dependent then the effective sample size is less than n,
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because of the duplicated information. The reduction in this information in the context of
multiple testing of local indices of spatial autocorrelation has been thoroughly examined,
and it was found that the effective sample size depends on the spatial locations of the
observations on the specified range of the spatial process [49–51].

2.4. Geostatistical Analyses of Field Spatial Variability of Crop Yield

Spatial autocorrelation of data can be measured either at a local or a global level. The
local level represents the extent of autocorrelation within local neighborhoods, while the
global level provides a total value that represents the extent of spatial autocorrelation
across the entire study area [52]. Local patterns of spatial autocorrelation were found to be
an appropriate perspective for understanding local instabilities, and they were expressed
as local indicators of spatial association (LISA), local Getis’s Gi and G∗i , and Geary Ci
statistics [28,42,43,49].

The local indicator of spatial association (LISA) as defined a statistic that satisfies
two main requirements [43]: (1) LISA value gives an indication of the extent of significant
spatial clustering of similar values around an observed value; (2) the sum of all LISA
values for all observations is proportional to a global indicator of spatial association. The
corresponding scatter plot for Moran’s I values is used to provide a visual exploration of
global spatial autocorrelation (Figure 2).

Figure 2. Quadrants of Moran Scatterplot (modified from [44]).

The Moran’s I statistic is a standard measure to evaluate spatial autocorrelation and
can be used as a statistical test to verify the spatial dependance of the yield crop data [44].
The null hypothesis is defined in terms of the absence of spatial autocorrelation of the
examined data. In case of rejection, there is evidence that prevalent values in a specific geo-
graphical entity depend on variables in neighboring spaces. By using this statistic as a tool,
the Moran’s I can help the statistical spatial identification of poor production zones in every
agricultural production area [42,44,53]. To check whether the null hypothesis is rejected or
not (whether there is a yield-crop data spatial dependence or not), a LISA significance map
for Moran’s I is constructed based on the p-values calculated for each location.
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LISA values allow for the computation of similarity of values with their surrounding
neighbors. Therefore, five scenarios may emerge: (1) locations with high values with
similar neighbors; (2) locations with low values with similar neighbors; (3) locations with
high values with low–value neighbors; (4) locations with low values with high-value
neighbors; (5) locations with no significant local autocorrelation. The four quadrants (QI
to QIV) in the Moran scatter plot represent the clusters of the spatial autocorrelation [44]:
QI: Locations with high values with similar neighbors, or high–high (H-H), also known as
“hot spots”, representing positive autocorrelation; QIII: Locations with low values with
similar neighbors, or low–low (L–L), also known as “cold spots”, representing negative
autocorrelation; QII: Locations with high values with low value neighbors or high-low (H-L),
representing potential “spatial outliers and QIV: Locations with low values with high value
neighbors, or low–high (L–H), representing potential “spatial outliers (Figure 2).

Moran’s, I index value is usually listed at the top of the graph, showing the spatial
autocorrelation of the data being examined. The slope of the regression line in Moran’s
I scatterplot is an estimation of the global Moran’s I. the relative density of points in the
correlation quadrants indicates how the global measure of spatial association is determined
by an association between high and/or low values. The Moran’s I values range from −1 to
+1 [48]. A higher positive Moran’s I value near +1 indicates high spatial autocorrelation,
implying that values in neighboring positions tend to cluster together. A low negative
Moran’s I value gives an indication that high and low values are interspersed. A Moran’s
I value near zero means that there is no spatial autocorrelation or the data are randomly
distributed. On the other hand, Geary’s C ranges from 0 to 2; whereas a zero indicates
a strong positive spatial autocorrelation, a 1 shows no spatial autocorrelation, and a
2 represents a strong negative spatial autocorrelation [42,48]. The global G statistics indicate
a general tendency towards the clustering of low values (negative G), high values (positive
G) or none of both (non-significant). The local Gi (and G∗i ) statistics can be interpreted in
the same manner and the main difference between local Gi and G∗i is that Gi requires xi to
be excluded from the summation, whereas G∗i requires xi to be included in the summation.
We should also stress that a positive Gi (and G∗i ) indicates a spatial clustering of high values
only, but a positive LISA value is an indication of spatial clustering of either high or low
values, like global Moran’s I.

When evaluating crop yield agricultural data, Moran’s I index can give an indication of
the spatial autocorrelation of yield, and the Moran scatter plot provides a visual exploration
of the global spatial autocorrelation of yield in the field. The quadrant QIII (Figure 2)
represents low values surrounded by low values (negative autocorrelation), representing
low-production areas.

2.5. Cases Studies

Moran’s I index has been used to statistically measure and evaluate the spatial auto-
correlation of the available corn yield data for the years 1999 and 2001 for Las Rosas farm.
The result for each year is a spatial correlogram that plots the Moran’s I value for each
distance for which it is measured, where the distance at which observations are no longer
spatially autocorrelated is termed the spatial range, also determined by the spatial correlo-
gram. The spatial correlogram of the available crop data was easily constructed by using
GeoDa free spatial analysis software, but it can also be conducted by the sp.correlogram
function in the spdep [54]-contributed package in R. The outcome has positive values and no
negative or zero values, as expected in most site-specific data for variables at field-scales.

The result of for Univariate Moran’s I scatter plot shows a positive relationship,
suggesting the existence of spatial autocorrelation in yield crop data. As expected, the
slope of the regression line corresponds to statistic of Moran, meaning that the deeper
the slope, the higher the degree of spatial data autocorrelation. This is also confirmed in
Figure 3, where Moran’s I index was calculated for both periods (“Las Rosas” 1999, 2001).
The indicator values for both years (0.701 for year 1999 and 0.957 for year 2001) prove
that there is high autocorrelation between yield spatial data (Figure 3a,b) in both cases.
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As a result, we expect to obtain distinct continuous areas with high crop-yield values,
surrounded by high and low crop-yield values, surrounded by low values, respectively.

Figure 3. Univariate Moran’s I scatter plot for: (a) “Las Rosas” farm corn yield data (1999) and (b)
“Las Rosas” farm corn yield data (2001).

One way to check if the overall Moran’s I index is statistically significant is through
a simulation process in which the index is calculated with random observation samples.
For both scatter diagrams, we performed a randomization with 99,999 permutations.
The results show a pseudo p-value of 0.000010 (I: 0.7009; mean =−0.0006; sd = 0.0124;
z-value = 56.5814) for “Las Rosas” farm data for the year 1999, and a pseudo p-value of
0.000010 (I: 0.9575; mean = −0.0006; sd = 0.0126; z-value = 76.3245) for the year 2001.
In both cases, the pseudo p-value is less than 0.01 and the Moran’s I index, and statistically
significant at a confidence level greater than 99.9%.

The corresponding LISA cluster maps were constructed for each year (1999 and 2001)
to visualize the spatial dependence of crop yield data (Figures 4a and 5a). LISA cluster
map for Moran’s I index offers a better visual exploration of global spatial autocorrelation
of the crop yield data, where two main areas can be distinguished: (a) area with high
yield values surrounded by high yield values (which corresponds to Moran’s scatter plot
quadrant H–H), and (b) an area with low yield values surrounded by low yield values
(which corresponds to Moran’s scatter plot quadrant L–L). In both LISA cluster maps
(Figures 4a and 5a), two clusters (–L and H–H clusters) can be identified, and they can be
used by farmers as two different management zones to adjust inputs in the field. These
(L–L) areas also represent areas with low yield values surrounded by low yield values (QIII).
Current work suggests that input management strategy can be adjusted to focus mainly
on the (L–L) areas, with the benefit of potentially reducing the overall inputs. In the case
of the “Las Rosas” farm experiment, as expected from the high autocorrelation value of
Moran’s I index, significant local clusters of yield were observed within the field in the
LISA cluster map for (L–L) areas. If overall inputs are limited to only these (L–L) areas,
then the expected potential reduction in inputs for the “Las Rosas” farm can reach up to
74.3% (Figure 4a), and 43.2% for the year 2001 (Figure 5a).

Concerning local Getis Gi cluster maps (Figures 4b and 5b), discrete spatial patterns of
clusters also occur, allowing the identification of (High) and (Low) clusters, like (H–H), and
(L–L) clusters in LISA cluster maps, with similar areas. Therefore, we conclude that the
results are almost the same and the potential reduction in inputs for the “Las Rosas” farm
could be similar: up to 73.1% for the year 1999 (Figure 4b), and up to 59.2% for the year
2001 (Figure 5b).
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Figure 4. Cluster maps for “Las Rosas” farm corn yield data (1999) for: (a) local indicator of spatial association (LISA) and
(b) Local Getis G, and (c) Local Geary C, where (1) the original cluster maps and (2) modified and simplified version of
the corresponding cluster map focusing on areas with low crop-yield values. A potential reduction in inputs has been
calculated in each case.

Figure 5. Cluster maps for “Las Rosas” farm corn yield data (2001) for: (a) LISA and (b) Local Getis G, and (c) Local Geary
C, where (1) the original cluster maps and (2) modified and simplified version of the corresponding cluster map focusing on
areas with low crop-yield values. A potential reduction in inputs has been calculated in each case.
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Local Geary C cluster map can also be used for the identification of statistically
significant low-production areas. It was found that the local Geary C cluster map has
a similar performance, with a potential reduction in inputs of up to 75% for the “Las
Rosas” farm for the year 1999 (Figure 4b), and up to 65.2% for the year 2001, (Figure 5b),
respectively.

The current work suggests that an input management strategy can be based on these
cluster maps (Figures 4 and 5), focusing mainly on these low-yield areas, with the benefit
of potentially reducing the overall inputs. In the case of the “Las Rosas” farm experiment
and the two years 1999 and 2001, if overall inputs were limited to cover the needs of these
low-yield areas only, then the expected potential reduction in inputs could be significantly
high compared to a uniform fertilizer application.

The corresponding significance maps for “Las Rosas” farm corn-yield datasets for the
years 1999 and 2001 for (a) LISA, (b) Local Getis’s G, and (c) Local Geary C are given in
Figures 6 and 7 (generated using the GeoDa software). In both cases, the local clusters that
presented the Moran local index (LISA) were discretized in different shades, with p-values
equal to or less than 0.05 (Figure 5(a1,b1)). However, those local clusters that did not have
a significant Moran local autocorrelation index (LISA) were colorless.

Figure 6. Significance maps for “Las Rosas” farm corn-yield data (1999) for: (a) LISA, (b) Local Getis G, and (c) Local Geary
C, where (1) the original cluster maps and (2) modified and simplified version, grouping statistically (p values < 0.05) and
non-statistically significant areas.

The results for the local Getis’s Gi significance map are identical to LISA, while the
Local Geary’s Ci significance map shows a higher percentage of statistically significant
areas compared to the other two significance maps. In all cases, discrete spatial patterns of
clusters occur, allowing the identification of significant clusters (Figures 6 and 7).
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Figure 7. Significance maps for “Las Rosas” farm corn-yield data (2001) for: (a) LISA, (b) Local Getis G, and (c) Local Geary
C, where (1) the original cluster maps and (2) modified and simplified version, grouping statistically (p values < 0.05) and
non-statistically significant areas

The performance of the three examined spatial statistics was similar. Therefore, we con-
clude that the use of the LISA cluster/significance map for Moran’s I is adequate to identify
statistically significant low-production management zones to reduce the overall inputs.

3. Discussion

Sustainability has set the framework to diminish the environmental footprint of
farming, while ensuring the food security and economic viability of agriculture, resulting
in the development of precision agriculture and the use of spatial statistics to sustainably
optimize the management of cultivated fields by addressing the spatial variability of several
field parameters [14,15,19,28,31].

Although spatial autocorrelation was defined years ago, most of the studies to date
with spatial autocorrelation for spatial dependance at the global or local scale focused
on spatial econometrics [44,53]. Newer studies have explored the application of these
statistics to the understanding of spatial dependence of crop yield in site-specific crop
management, to evaluate the application of global and local autocorrelations by exploring
the spatial variability of cotton lint yield and yield pattern changes under different weather
scenarios and comparing the effects of weight selection on spatial autocorrelation [28].
However, there is no report on comparison of these local spatial statistics regarding their
performance in terms of the percentage of the potential reduction in overall inputs based
on their cluster maps. Therefore, in the current study, we constructed cluster maps for the
three most-used spatial local statistics (LISA, Local Geary’s Ci, and local Getis’s Gi) for
two different years using a different type of crop (corn instead of cotton) from that used
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in the previous studies [28]. The results show that the performance of these three local
statistics concerning the expected benefits of reduced inputs was almost similar, and any of
the above can be used for the delineation of management zones.

Current study shows that a short and costless (given that crop yield monitor data
are available) spatial analysis using any local spatial statistic on the available crop yield
data can help the analyst, whether the farmer or a third party, to obtain an indication of
the autocorrelation of crop yield values and have a better understanding of the within-
field distributions. The various local spatial statistics (LISA, Local Geary’s Ci, and local
Getis’s Gi) are equally effective methods to identify local spatial patterns and, therefore,
statistically significant areas such as low- or high-production areas.

As suggested in the current study, this evidence can be provided by using a spatial
analysis index, such as the univariate Moran’s I followed by the univariate Moran’s I scatter
plot and can be visualized by constructing the LISA cluster map to present statistically
significant areas with low crop yield. This cluster map that presents the autocorrelation
of yield values in the sampled locations in the field is not just a map; it can be used as a
recommendation to determine areas with a similar production performance and, in this
case, to identify areas the inputs in the field should be focused on. As a result, this cluster
map can help growers to quickly identify field patches or statistically significant areas with
low yield values (L–L) and obtain the detailed information needed for the construction
of potential prescription maps based on the delineation of different management zones.
Alternatives to LISA include the local Geary’s Ci or local Getis Gi cluster map, which can
also lead to the identification of statistically significant low-production areas and, therefore,
can help the adjustment of inputs, the same as the LISA cluster map. In our case studies,
if we could focus only on statistically significant low-production zones, these cluster maps
could lead to a potential reduction in agronomic inputs ranging from 43.2% to 74.3% based
on LISA, 65.2% to 75% for local Geary’s Ci, and 69.8% to 73.1% based on the local Getis’s
Gi cluster map.

The case studies presented in this manuscript show that the spatial analysis of the
available crop yield data (with no other complex regression tests) can easily result in a
cluster autocorrelation map that the farm manager can feasibly implement in a timely
manner. The delineation of low-yield management zones can be based on statistically
significant local clusters and can be used to review and adjust the overall inputs. There-
fore, the result of this spatial analysis should be treated as a sustainable approach that
can provide growers with a production/input recommendation of how to improve crop
performance using minimized inputs and farming costs.

The expected benefits from conducting a spatial analysis of the available crop yield
data can be summarized to the following:

• Quick focus on areas with poor crop-yield performance;
• Less tillage needed for the areas with high crop performance (clusters: H–H, High);
• Reduced seed for the areas with high crop performance (clusters: H–H, High);
• Less energy is needed due to reduced fuels since fewer hours are needed for machinery

use (clusters: H–H, High);
• Reduced inputs (adjusted fertilizer amounts and irrigation) for the areas with high

crop performance (clusters: H–H, High);
• Economic benefits for the farmer due to the reduced input amounts;
• Environmental benefits (from reduced input amounts, less chemical leaching to the

environment, reduced emissions due to reduced machinery use);
• Better planning for the input needs and better future crop management.

Previous studies have successfully explored the usefulness of global and local spatial
analysis in helping to delineate practical management zones, but how the insights of the
autocorrelation of crop yield data could be transformed into the delineation of management
zones was vague, and there was no estimation of the potential reduction in inputs [13,28].
Compared to these previous studies, the current work supports the novel idea of transform-
ing the original cluster maps of local spatial statistics into modified prescription maps that
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will be used to change the input management and, therefore, lower inputs and farming
costs. Compared to previous works, the current study shows that a potential reduction in
overall inputs can be estimated regardless of which local statistic is used.

In addition, stored cluster maps constructed at different times can be used for further
statistical and economic analysis, regression with other parameters or to perform compar-
isons between years and periods. Therefore, using spatial analysis on available crop yield
data based on the cluster map of a local statistic can provide insights to perform a yield
history evaluation of the available historical crop yield data. This technique can also be
used as an assessment tool of the efficiency of the strategy and the agronomy practices used,
and therefore “trigger” input adjustments and help to improve the overall management of
the field.

4. Limitations

It should be stressed that focusing only on low-yield areas may not always be safe;
spatial autocorrelation gives a strong statistical indication of the low-production areas,
or else for the areas that should be the focus of attention. However, depending on the
high-crop yield values, even for high-production areas, a customized input management
may be needed to cover overall field needs. Moreover, focusing only on low-production
areas and adjusting inputs does not imply that if these needs are covered, the production
would present higher yield values the next period, because low crop yields may be due to
reasons (crop protection, agricultural practices, and environmental conditions prevailing
in the area) other than a lack of nutrients in the soil.

Spatial autocorrelation of data can be measured at the global level to provide a total
value that represents the extent of spatial autocorrelation across the entire study area or at a
local level to show the extent of autocorrelation within local neighborhoods. Local patterns
of spatial autocorrelation were expressed as local indicator of spatial association (LISA),
local Getis Gi and G∗i , and Geary Ci statistics. In the presented case studies, these spatial
statistics provide almost the same information, which can be used for the delineation
of management zones. However, results may differ depending on the parameters used
(different parameters defining the weight matrix for a given dataset).

Therefore, the proposed sustainable approach aims to diminish the environmental
footprint of farming by replacing the whole-field input recommendations with more precise
recommendations derived from the autocorrelation of crop-yield data, focusing only on
how to limit the agricultural inputs (mainly water and fertilizers) to areas where they are
needed based on the yield spatial variability. It should also be stressed that the application
of the proposed methodology does not depend on the size of the crop area and can be
applied at a local, regional, or global area.

5. Conclusions

The current work should be considered as an extension of previous studies that
attempted to explore the application of local spatial statistics to understanding the spatial
dependence of crop yield in site-specific crop management. In this study, three of the
most-used local statistics were tested for their performance (potential reduction in overall
agronomic inputs) using a different crop to previous studies [13,45] and cluster maps as a
tool to delineate different management zones (crop yield data gathered in two different
years). It was found that the use of spatial autocorrelation of crop yield data, regardless of
the local spatial statistic used, can provide solutions to farmers to minimize overall inputs
by providing a safe and clear statistical method that can identify low-production areas
based on the autocorrelation of the spatial variability in crop output at the regional level,
ultimately leading to a sustainable increase in farm productivity. Crop yield data, collected
by yield mapping systems on tractors with the aid of GPS technology, self-calibrating yield
monitors and sensors can be used for this kind of spatial analysis. This work shows that
conducting a basic spatial analysis on available yield monitor data is a relatively easy
process, regardless of the spatial statistic used, as well as feasible and costless, and, in a
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short time, it provides a better understanding of the within-field variations, aiming to
improve decision-making concerning input management while supporting sustainability.

The advantages of performing a base spatial analysis on available crop-yield data can
be summarized as follows:

• Autocorrelation of yield data to reveal areas with low yield values;
• Spatial distribution and mapping of the crop-yield data;
• Yield history evaluation by performing yield comparisons between years;
• Identification of areas with very low yield values that require additional attention;
• Insights for the delineation of the management zones for the field, aiming to improve

inputs and reduce costs.

Conducting a spatial analysis can lead to a cluster map that can easily be used for
the delineation of different management zones and then for the construction of possible
prescription maps on the tractors, or they can simply be used to review and adjust the input
strategy adopted by farmers. Our suggestion is that if yield monitor data are available, then
a short spatial analysis can easily be conducted to reveal areas with low crop performance,
where attention is required. This process can help farmers to make better decisions on the
input management of the fields to reduce farming costs, instead of using an average yield
estimation for calculating the needed inputs. Especially in the case of large, cultivated
areas, current spatial analysis is imperative as it can help to significantly improve the
partial budgeting and lower farming costs.

The novelty of the presented approach can be summarized as follows:

• Promotes sustainability by providing a clear and easy geostatistical way to reduce
overall inputs and focus only on cultivated areas with low yield;

• Adapts spatial autocorrelation of crop yield data to on-farm experimentation;
• Allows assessment of spatially varying treatment effects;
• Outlines a statistically principled approach which enables the delineation of manage-

ment zones based on spatially varying crop yield data;
• Demonstrates statistical analyses on two example datasets using free spatial analysis

software (such as GeoDa spatial analysis software [30]);
• Compares the performance of the three most used spatial statistics in the potential

reduction in overall agronomic inputs;
• Supports the idea of transforming the cluster maps of local statistics into prescription

maps for the delineation of management zones;
• Provides an estimation of the potential reduction in inputs based on the cluster maps

of local spatial statistics.

This study suggests the use of autocorrelation of crop yield data as a sustainable
approach that can easily reveal statistically significant low-yield areas where farmers
should focus on providing the nutrients, or any other inputs needed, regardless of the local
spatial statistic being used. Instead of using an average of crop yield to calculate the input
amounts needed, the proposed spatial autocorrelation approach supports sustainability
and offers more accuracy, leading to minimized inputs and lower farming costs. The current
work provides a safe way to quantify the potential reduction in overall inputs based on the
cluster maps of local statistics.

Quantifying the crop yield spatial variability in the process of determining low-yield
MZs can lead to a better understanding of the field needs and to a better management of
inputs and costs. Incorporating the crop yield spatial autocorrelation can also contribute to
the further development of multivariable spatial analysis to improve agricultural practices.
Keeping records of the spatial analysis of the field yield variability will also provide insights
for data-mining, decision-guiding and more precise agricultural modeling.
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