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Abstract: Air pollution originating from anthropogenic emission, which is an important factor for
environmental policy to regulate the sustainable development of enterprises and the environment.
However, the missing or mislabeled discharge data make it impossible to apply this strategy in
practice. In order to solve this challenge, we firstly discover that the energy consumption in a factory
and the air pollutants are linearly related. Given this observation, we propose a support vector
regression based Single-location recovery model to recover the air pollutant emission by using the
energy consumption data in a factory. To further improve the precision of air pollutant emission
estimation, we proposed a Gaussian process regression based multiple-location recovery model to
estimate and recover the missing or mislabeled air pollutant emission from surrounding available
air quality readings, collected by the government’s air quality monitoring station. Moreover, we
optimally combine the two approaches to achieve the accurate air air pollutant emission estimation.
To our best of knowledge, this is the first paper for monitoring the air pollutant emission taking both
a factory’s energy consumption and government’s air quality readings into account. The research
model in this article uses actual data(10,406,880 entries of data including weather, PM 2.5, date, etc.)
from parts of Shandong Province, China. The dataset contains 33 factories (5 types) and we use
the co-located air quality monitoring station as ground truth. The results show that, our proposed
single-location recovery, multi-location recovery, and combined method could acquire the mean
absolute error of 8.45, 9.69, and 7.25, respectively. The method has consistent accurate prediction
behavior among 5 different factory types, shows a promising potential to be applied in broader
locations and application areas, and outperforms the existing spatial interpolation based methods
by 43.8%.

Keywords: air quality estimation; PM 2.5 monitoring; support vector regression; gaussian process
regression

1. Introduction

Global pollution has become a severe issue for the human being over decades. The
aggravation of the global pollution is mainly caused by the excessive pollutant emission.
Especially in the developing countries, which prioritizes economic growth over the envi-
ronment, many low-tech factories are built close to cities, inevitably contaminating the air.
The World Health Organization (WHO) [1,2] reveals that more than four million people
die because of the cancer caused by PM2.5 and pollution gas penetrating into lung, heart
and blood per year, especially those living in the highly polluted industrial cities.

Different countries have issued many policies to control the emission of exhaust gas,
and have also adopted institutions to monitor the emission of the corresponding pollutant.
Government installs the continuous emissions monitoring system at the outlets of the
exhaust gas to collect real-time and fine-grained data for monitoring the status of pollution
emitted by the factories. As Figure 1 depicts, the monitor system consisting of 33 sensors
and information system is installed in the 33 factories.
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Figure 1. An illustration of the factory with the continuous emissions monitoring system installed to
monitor the status of emission of pollutants.

In this paper, we focus on estimating PM 2.5 (a major and harmul air pollutant)
emitted from a factory. This is not trival because the PM 2.5 sensors installed in the
factory are easily modified by the factory owners. To overcome this practical issue, we
smartly estimate the PM 2.5 emission from the indirect information including the energy
consumption in a factory and PM 2.5 readings collected by the government’s PM 2.5
monitoring stations. To our best of knowledge, this is the first paper, considering both a
factory’s energy consumption and government’s air quality readings, proposed to monitor
a factory’s air pollutant emission given the unrealiable. Our detailed contributions are
as follows:

• Our paper firstly discovers the linear relationship between the air pollutant (PM 2.5)
and the energy consumption in a factory (Section 3 Preliminary Study), which is
monitored by the power plant and government and cannot be modified by factory
owners. Despite the difficulty to collect the true emission of pollutants, the indirect
factors (energy consumption) are usually easy to obtain. The intuition is that we
could recover the missing or mislabeled air quality values from those indirect features,
which is referred to as Single-location recovery. Supporting vector regression (SVR)
model is used to establish the relationship between the emission of pollutants and the
indirect factors of energy consumption and material balance. Specifically, we use the
data to train the SVM model and then apply this model to estimate the emission of
pollutants of a factory given the indirect factors of this factory.

• To further improve the precision of air pollutant emission estimation, we combine the
spatial interpolation based multiple-location recovery model and the single-location
recovery model to obtain the precise air pollutant emission estimation. Specifically,
we apply the gaussian process regression (GPR) model to generate an accurate air
quality map at each timestamp and recover the missing or mislabeled air quality
values at unknown locations. To combine the recovered air quality values from the
above mentioned two models, a weighted scheme is applied.

• We evaluate the proposed models using real-world data in Shandong Province, China,
which contains 33 factories categorized into 5 types and each has a co-located air
quality monitoring station. We also compare our model with the existing spatial
interpolation based models and evaluate our model under different seasons. To the
best of our knowledge, this paper is the first data-driven pollution emission estimation
model for Chinese factories.
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The paper will first give the review of related works, then follows a Preliminary Study
to show the opportunity of estimating air quality values based on indirect factors and the
motivation to use spatial interpolation for air quality recovery task. To solve the above-
mentioned problems and challenges, our SVR based, GPR based and combined models are
described in the method section. Finally, we will give the experiment evaluation results on
the real-world dataset and give the suggestions.

2. Literature Review

In order to control the pollutant discharge of factories, governments of various coun-
tries have formulated different pollutant discharge ranges and rigid systems for severe
penalties for excessive discharge according to their national conditions. However, re-
searchers believe that compared with simple punishments, the key to resolving contra-
dictions is to formulate flexible policies that can guide the coordinated development of
the environment and the economy [3–5]. Empirical research shows that environmental
taxes, as representatives of flexible policies that promote energy conservation, emission
reduction, and green technology development, play an important role in preventing pollu-
tion [6] and improving environmental quality [7]. Onofrei [8] analyzed the data of 20 Eu-
ropean countries from 1994 to 2012 and found that environmental taxes can effectively
reduce greenhouse gas emissions. Agnolucci [9] did research on Germany and Paris and
showed that environmental tax reform can substantially reduce energy consumption and
carbon emissions.

Researchers have provided many references for the government to adjust environ-
mental policies in a timely manner by analyzing the impact of pollutant discharge on the
environment [10]. In order to quantify the air environmental policy, Chalabi et al. [11]
established a corresponding system framework. Boyce et al. [12] believed that by reducing
the emission of common pollutants such as fossil fuel combustion, co-benefits of air quality
can be produced. At the same time, studies have shown that traffic control policies can
reduce air pollution in the short term [13]. Gao et al. [14] proposed that compared with
rigid commanded emission reduction policies, flexible-oriented policies can better improve
the environment. Yang et al. [15] taking Beijing residents as an example, traced the PM 2.5
footprint and driving factors.

It is worth noting that no matter what kind of environmental policy is, it needs to
be based on real pollution data to play its corresponding effect. To this end, many re-
searchers have done a lot of research from the perspective of pollutant emission monitoring
technologies and methods [16–20]. Satellite monitoring can not only reflect the current
surface conditions from time to time, but also monitor pollution problems in the ocean.
Eronat [21] pointed out that in order to detect pollution in time, the use of satellites is
necessary to monitor the bay. Aliyu & Botai [22] collected urban features through satellites
and effectively assessed the content of certain gas components in the urban atmosphere.
Khaki & Awange [23] invented a portable air quality testing device and used Nigeria as an
experimental sample, the results show that the device is stable and reliable. The air quality
sensor can detect the air quality of the surrounding environment. Li et al. [24] found
that mining PM sensor data can not only retain the characteristics of pollutants, but also
greatly enhance the spatial distribution of pollutants. Through research, Dewinter et al. [25]
introduced the change of PM 2.5 concentration within 20 m on both sides of the road.

The factories, however, might modify the monitoring system, including attaching fans
at the air quality sensors, to fake the data of emissions for maximizing the benefits. Ac-
cording to China Statistical Yearbook 2019, the emission of exhaust gas is about 29 million
tons in China. Meanwhile, according to the People’s Daily, the Chinese State media, 10% of
the more than 10,000 companies investigated by the Ministry of Environmental Protection
had faked emissions data in 2015. If the true emissions of pollutants are conservatively
accounted as 5% of the reported data, at least 1.45 million tons of exhaust gas is illegally
emitted by the factories in China, causing economic loss up to 2 billion US dollars. Un-
fortunately, despite the severe punishments are issued, it is very hard for the government
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to prevent this totally since the cost to employ personnel to monitor the factories is not
affordable. Thus, it is urgent to find an effective approach to monitor the true emissions of
pollutants in a factory.

Despite the lacking of research on monitoring the air pollutant emission given the
unreliable air pollutant sensor data, there are many spatial interpolation based models
were proposed to monitor the air quality. Cheng et al. [26,27] evaluate different kinds of
spatial interpolation methods and concludes that Gaussian Process (GP) Regression are
most accurate PM 2.5 interpolation method. Gao et al. [28] using atmospheric chemistry
models to quantitatively analyze the effects of electricity generation in China and India on
PM 2.5 concentrations. However, their approach merely rely on the local sensor readings,
which may not be reliable and accurate. Our proposed method is different from state-of-
art PM 2.5 spatial interpolation works: (i) We first predict the PM 2.5 values from local
indirect energy consumption facots to improve the accuracy of PM 2.5 values; (ii) we
then combine the single-location recovery with the multilocation recovery readings with a
trade-off parameter.

In summary, the research on environmental pollution control mainly focuses on
the impact of macro-policy and macro-emission control [29–31]. In order to ensure the
effectiveness of the policy, the authenticity of emissions data is very critical. Although
the monitoring equipment can directly reflect the state of pollutant discharge [32–34], it
is impossible to distinguish the illegal discharge behavior that bypasses the monitoring
point [35–39]. The lack or distortion of micro-level data not only leads to the failure
of environmental policies, but also produces the effect of bad money driving out good
money, allowing factories that illegally discharge pollutants to occupy the market share of
legitimate factories [40–44]. If this continues, it will not only cause a lot of environmental
pollution, but also disrupt the market order.

3. Preliminary Study

Our study area is located in Shandong Province, China and contains 33 factories as
shown in Figure 2. To improve the generalization of analysis results, we select 5 different
kinds of factories, which are chemical engineering, paper mill, sewage plant, thermal power
plant and tire plant. For each factory, one co-located air quality monitoring system is also
installed to measure and record the real-time air quality readings, such as PM 2.5. Now
assume that the air quality readings from one factory are missing or wrong and we would
like to recover the true air quality measurements from other indirect factors, such as energy
consumption values, etc. or from the measurements from surrounding air quality stations.
The questions then become that whether it is possible to do the accurate estimation from
those indirect factors and what’s the candidate approaches to achieve this goal.

Intuitively, we can recover the air quality readings at a target location from the data of
either local or surrounding remote locations:

• Single-location recovery. Given the local factory production data, such as Total energy
consumption, Water, Desalted water, Electricity, Steam, Plant-wide fuel, Natural gas,
Refinery dry gas, etc., we can find a function to estimate the air pollution levels from
those indirect data. Namely, Predicting the missing air quality readings at a target
location from those indirect factory production features, which are strongly correlated
to the local air pollution emission. We denote this approach as Single-location recovery.

• Multiple-location recovery. We can also borrow the idea from the air quality spatial
interpolation research area. Assuming that the air quality readings at a target location
are missing, but accurate air quality readings from surrounding locations are available,
we can apply the spatial interpolation method to predict the air quality readings from
all other available and accurate data. Based on this intuition, we name this method as
Multiple-location recovery.
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Figure 2. Factories locations in our study area.

To show the opportunity of recovering the PM 2.5 emission by Single-location recovery.
We collect the air quality readings and energy consumptions values over three year,

and plot the relationship between them from two different factory types in Figure 3. From
the results, we can see that:

• The overall relationship between PM 2.5 and energy consumption is positive-related,
namely, more energy consumption leads to more produced air pollution.

• Using single-location indirect features, such as energy consumtion, is not enough to
recover the air quality readings accurately and reliably.

If we fit a linear regression model to the data, the R2 between the estimated values
and ground truth is above 0.85, which shows that it is possible to recover the air quality
readings from those indirect features.
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Figure 3. The relationship between normalized PM2.5 and the energy consumption from two factories.

Another possibility of recovering local air quality readings is to predict them from
surrounding air quality stations. In order to ensure the authenticity of the selected data,
we specially select the government owned air quality monitoring stations as main source
of data. Since the factory owners cannot obtain the permission to modify the data collected
from government owned air quality monitoring stations, the data integrity is guaranteed.
Figure 4 shows the intuition of such Multiple-location recovery. For example, we try to
recover the missing ( location C) or wrong readings ( location A or B ) at target locations, we
could do the spatial interpolation using surrounding accurate air quality readings. How-
ever, if we would like to recover the readings in location D, it’s hard to generate accurate
spatial predictions due to the missing surrounding air quality stations, in such scenario, the
Single-location recovery may be more accurate than Multiple-location recovery, which
motivates that the final optimal approach should be a balanced method between the above
two mentioned recovery methods.

Figure 4. Illustration of the spatial pattern between current location and surround locations where
monitoring stations are marked in the circle and four represented locations from A to D are selected.
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4. Methods

Figure 5 shows the overall framework of our proposed approach. Firstly, to do the
Single-location recovery, support vector regression (SVR) is used to learn the relationship
between the air quality readings and other indirect features from the factory, its prediction
values are referred as ySR. Then, given the surrounding air quality readings, Gaussian
Process Regression (GPR) is applied to do the spatial interpolation and predict the air
quality readings yMR in our target location, which is Multiple-location recovery. Finally,
a weighted mechanism is applied to balance the importance between Single-location
recovery and Multiple-location recovery. yw is then used as the final recovery results of
the air quality readings.

Local
Indirect Features

SVR GPR

Surrounding Air 
Quality Readings

		𝑦!" 		𝑦#"

		𝑦$

Single-location Recovery (SR) Multiple-location Recovery (MR)

Figure 5. The overall framework.

In this section, we will first describe our proposed methods for Single-location recovery
and multiple-location recovery, then follows the overall combined approach.

4.1. Support Vector Regression for Single-Location Recovery

Given local indirect features (X) of the factory, we could apply Support Vector Regres-
sion to estimate the air quality readings (y) from those indirect features.

Support Vector Machine can also be used as a regression method, maintaining all the
main features that characterize the algorithm (maximal margin). Although similar logic
principle, but unlike the Support Vector Machines (SVM) for two classification problems,
Support Vector Regression (SVR) classifies the sample results into one category. For this
research, it is very difficult to convert the prediction result into a real number under a
variety of data information conditions. Therefore, the tolerance setting in the regression
process should be similar to that in SVM. At the same time, this formula design has also
greatly increased the complexity. However, due to both the same logic principle, part of
the error is negligible. Specially, we try to:

min
1
2
‖w‖2 (1)

where w is the weights of SVR, with the following constraints:

yi − wxi − b ≤ ε
wxi + b− yi ≤ ε

(2)
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here ε is the threadhold. Then, through kernel function operations, the data is divided into
high-dimensional feature spaces to achieve linear separation.

y =
N

∑
i=1

(αi − α∗i ) · K(xi, x) + b (3)

In our method, we choose a polynomial kernel due to its simplicity and ability to
capture the underlying relationship. More details will be shown in the experiment section.

k
(
xi, xj

)
=
(
xi · xj

)d (4)

4.2. Gaussian Process Regression for Multiple-Location Recovery

To further improve the accuracy of the recovered values, apart from the single-location
recovery method described in the previous section, we also propose to derive the underly-
ing patterns from surrounding sensor readings. The intuition is that the air quality readings
normally have a smooth distribution in an outdoor environment and the air quality value in
a target location can be inferred from its surrounding station’s values. Also, this approach
is helpful to solve the outlier issues and provide more stable and reliable results. In related
works, Gaussian Process (GP) is widely used for the air quality spatial interpolation, which
is capable of inferring air quality readings in each grid cell of a monitoring region. In the
following section, we will first give a preliminary of the Gaussian Process and then follows
the description of how it is used in our problem.

Gaussian Process with random characteristics, which also led to a subset of all random
variables must comply with multivariate Gaussian distribution [26,45]. According to
the definition, if x(1), x(2), . . . , x(m) ∈ Rn and h(x(1)), h(x(2)), . . . , h(x(m)) fit the following
distribution, we say that {h(x) : x ∈ Rn} is drawn from a Gaussian Process with mean
function m(·) and covariance function k(·, ·).

h(x(1))
...

h(x(m))

 ∼ N

m(x(1))

...
m(x(m))

,

 k(x(1), x(1)) · · · k(x(1), x(m))
...

. . .
...

k(x(m), x(1)) · · · k(x(m), x(m))


 (5)

The simplification can be expressed as:

h(·) = GP(m(·), k(·, ·)) (6)

In our problem, for the kernel function k(·, ·), we find that the squared exponential
function as shown below is appropriate for the air quality spatial interpolation problem, so
we apply this as our kernel function for Gaussian Process.

kSE(x, x
′
) = exp(−

n

∑
i=1

‖xi − x
′
i‖2

2ω2
i

) (7)

where x, x
′ ∈ Rn is the meta-information variables of each location. For example, the GPS

locations of each location and the Point-of-interest types of each location, etc. Specifically,
x
′

is the meta-information variables in our target location and x is the meta-information
variables in surrounding nearby locations. According to the formula, the kernel function
is used to measure the similarity between the target location and all other surrounding
locations.Therefore, S = {(x(i), y(i))}N

i=1, regression through Gaussian process can be
expressed as

y(i) = h(x(i)) + ε(i), i = 1, . . . , N (8)

where the error term ε(i) is that the disturbance variable obeys an independent N (0, δ2
i )

distribution.
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Given the available meta-information variables and air quality readings in all sur-
rounding locations S = {(x(i), y(i))}N

i=1. We can derive the relationship between those
variables. Now suppose we have the same meta-information variables in our target loca-
tion, namely T = {(x(i)∗ , y(i)∗ )}N∗

i=1 follows the same Gaussian Process distribution, we could
infer y∗ by computing the posterior predictive distribution as [46]

[
y
y∗

]∣∣∣∣X, X∗ =
[

h
h∗

]
+

[
ε

ε∗

]
∼ N

(
0,
[

Ky K∗
KT
∗ K∗∗

])
(9)

where Ky = K(X, X)+ diag(δ2
i ) is N×N, K∗ = K(X, X∗) is N×N∗, and K∗∗ = K(X∗, X∗)+

diag(δ2
i ) is N∗ × N∗. Calculated as follows:

K(X, X)ij = kSE(x(i), x(j)), K(X, X∗)ij = kSE(x(i), x(j)
∗ )

The posterior distribution is shown as (y∗|y, X, X∗) ∼ N (µ∗, Σ∗)

µ∗ = KT
∗K−1

y y (10)

Σ∗ = K∗∗ − KT
∗K−1

y K∗ (11)

In our problem, each location has the following meta-information variables: the
GPS coordinates, humidity, temperature, POI (points of interest). The Gaussian Process
Regression model will apply the kernel function to learn the similarity between surrounding
locations and our target one, then predict the air quality readings in the target location by
using Equation (10), also Equation (11) gives the uncertainty of each prediction.

Generally speaking, the air quality difference between the grids within the monitoring
range is not very large [27]. In our scenario, we only use the prediction data µ∗ with Σ∗
bigger than some threshold (e.g., 95%). then, the accurate predictions with high certainty
are used as the values of Multiple-location recovery.

4.3. Combined Model

Now suppose we get the values ySR from Single-location recovery and yMR from
Multiple-location recovery, then for each timestamp i, the optimal recovery reading should
be a weighted combination of those two values:

yi = α× yi
SR + (1− α)× yi

MR (12)

where α is a tradeoff valus between 0 and 1, which indicates the importance of those
two recovery algorithm. Closer to 1 means that we should pay more attention on the
Single-location recovery results, while closer to 0 means that Multiple-location recovery
has more accurate and robust results and should be considered.

5. Results
5.1. Dataset and Setup

We collect the air quality readings data and factories’ indirect features data over
3 years from Jan 2016 to Jan 2020 in the research area as shown in Figure 2. Among all
the 33 factories, we select 5 of them as test factories and suppose there are missing or
mislabeled air quality readings, our goal is to recover the accurate air quality readings
based on local indirect features and surrounding air quality readings.

For SVR algorithm, all the input features are described in Table 1, apart from the
factory indirect features FID, we also include the time series features, such as hour of day,
day of week, etc. and the weather factors FM, such as temperature, humidity, etc. Because
those DateTime features and weather factors are both important indicators for air pollution
emission [47–50].
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Table 1. Features for SVR.

Categories Features No.

FT hour of day, day of week, month and is Holiday 4

FM temperature, humidity, pressure, wind speed and wind power 5

FID

Factory Indirect Features:
Total energy consumption,

Water, Desalted water, Electric, Steam,
Plant-wide fuel, Natural gas, Refinery dry gas, etc.

20

The hyper-parameters for our model are selected as follows. For SVR model, we use
a polynomial kernel due to its ability to learn complex relationship and set dimension
to 2. For Gaussian Process Regression (GPR), we set the covariance parameter to 12. We
use Mean Absolute Error (MAE) to evaluate our algorithm. To determine the tradeoff
parameter α used in Equation (12), we apply the Leave-One-Out Cross-Validation method
to evaluate the overall recovery performance by using different α. After the evaluation, we
set α = 0.75 due to its ability to acquire overall highest recovery accuracy for the validation
dataset. All our experiments are conducted in a PC with Intel(R) Core(TM) i7-7600U CPU
and all the code is implemented in python.

5.2. Single-Location Recovery

Figure 6 shows the SVR prediction results, the predicted values fit quite well with
the ground truth air quality monitoring measurements, which means that the SVR model
could successfully recover the air quality readings from other indirect features.

10-08-01 10-10-02 10-12-04 11-02-04 11-04-08 11-06-09
Date

0

50

100

150

200

PM
2.

5 
(

g/
m

3 )

Ground Truth
Predicted

Figure 6. The SVR prediction of PM 2.5 from August 2010 to July 2011.

In order to evaluate the effectiveness and importance of all the features used in SVR
model, we sequentially add factory indirect features, DateTime features and meteorological
features, and compare the prediction results using confusion matrices as shown in Figure 7.
The results show that the prediction accuracy is 0.82 by using only the factory indirect fea-
tures. After adding DateTime features and weather features to the SVR model sequentially,
the prediction accuracy improves to 0.85 and 0.89, respectively.
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Figure 7. Confusion matrices of prediction accuracy of ySR is illustrated here. Specifically, (a) shows the result of using
only indirect features FID, (b) also takes the datetime features FT into account, and (c) considers indirect features FID, the
datetime features FT , and the meteorological features FM.

The above results show that: (i) The SVR model is promising to recover the missing or
mislabeled air quality readings from other indirect factors; (ii) Apart from factory indirect
factors, such as energy consumption, etc. Datetime features and weather features are also
important indicators for accurate predictions.

5.3. Multiple-Location Recover

As we have shown in the previous section, Single-location recovery is capable to
predict the air quality readings accurately from indirect factors. However, in some cases,
those indirect features may be missing for some factories, which makes it impossible to
recover the air quality readings accurately and reliably anymore.

To solve this challenge, we use a widely used spatial interpolation method called GPR
to generate air quality maps at each timestamp using all the available air quality readings
and recover values at unknown locations. Figure 8 shows the examples of generated air
quality maps in different pollution levels. Specifically, Figure 8a demonstrates that the
most of the PM 2.5 density is below 100 µg/m3 for the mild pollution. And, the Figure 8d
depicts that the PM 2.5 density is between 300 to 400 µg/m3 for the severe pollution level.
We can see that the spatial prediction is smoothing and promising to recover accurate air
quality readings for those unknown locations.

Figure 9 shows the predicted time series results by using different methods: SVR (if
all indirect features are available) or GPR. From the comparison with the ground truth
air quality readings, we can conclude that: (i) SVR is more accurate compared with GPR
method if all indirect features are available and can be used as inputs to the model; (ii) In
extreme cases, such as missing indirect features, GPR is also acceptable to be used as an
indicator for the air quality concentrations in our target locations.
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(a) (b)

(c) (d)

Figure 8. Gaussian Process Regression of PM 2.5 (µg/m3) under different pollution levels. Specifically, (a–d) show the
regression results under the PM 2.5 ≤ 100 µg/m3, 100–200 µg/m3, 200–300 µg/m3, and 300–400 µg/m3 respectively while
(a) represents the mild pollution and (d) represents the severe pollution.
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Figure 9. The GP Predictionof PM 2.5 from August 2010 to July 2011.
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5.4. Impact of Season

Our experiment is performed to estimate the air pollutant emission over a year. The
results shown in Figures 6 and 9 reflect the seasonal change of the estimated results and
the ground truth. That is PM 2.5 increases from autumn and the highest value in the winter
because of two reasons: (i), most of the factories receive more orders prior to the Lunar
new year eve and therefore their energy consumption and the corresponding air pollutant
emission increase from automn to winter. (ii), the factories burn more coal to heat the
factory in the winter, thereby emitting more air polutants. For spring and summer, the
factories usually receive less number of orders and therefore emit less ait pollutant.

5.5. Overall Recovery

Table 2 shows the overall evaluation results using a single component or the weighted
combination of Single-location recovery and Multiple-location recovery. From the re-
sults, we can see that, for each single component method, SVR or GPR both have accurate
predictions and unpromising prediction results, however, after combining them together
with a weighted factor, the overall Mean Absolute Error (MAE) is below 9, which is small
and can be used in other related research areas [51]. We also compare our method with
state-of-art PM2.5 spatial interpolation method AirCloud [27], which also use GPR as the
spatial interpolation method, but with a default setting. The results show that our method,
which fine-tunes the parameters instead of using the default ones, outperforms AirCloud
by 43.8%, 40.5%,10.4%, and 31.3%, showing its ability to improve the data accuracy and
reliability in single-location.

Also, we compared the prediction results from 5 different factory types. The results
show that our proposed model is robust enough to generate reasonable recovery air quality
readings in different scenarios and promising to be used in real practice.

Table 2. Overall results MAE (µg/m3).

Chemical Engineering Paper Mill Sewage Plant Thermal Power Plant Tire Plant

SVR 8.12 9.43 10.14 9.22 10.22
GPR 12.15 14.33 9.23 10.21 9.21

AirCloud 12.83 14.52 9.31 10.62 9.32
Combined 7.21 8.64 8.34 7.29 8.09

6. Discussion and Suggestion

With the rapid development of Internet technology, e-government has long become an
important means for Chinese government departments to perform their functions. From
information collection to data archiving, various departments have established electronic
databases with various types and complete information. For air pollution monitoring,
although these databases have improved work efficiency, due to the independence of
departmental supervision, a large number of related data (such as energy consumption data,
material data, etc.) have not been thoroughly explored. These data are an important basis
for screening factory exhaust emissions. Under such circumstances, relevant government
departments (such as the Development and Reform Commission, the Bureau of Industry
and Information Technology, and the Environment Bureau, etc.) should establish a full-time
department for mining the relationship between various data and pollutant emissions on
the basis of the existing big data center. The specific plan is as follows:

• Prepare a multi-departmental collaborative implementation plan for related informa-
tion such as supporting equipment, information processing, information technology,
human resources, and implementation procedures.

• Establish a multi-source database covering basic enterprise information, industrial
chain information, and enterprise emergency environmental accident cases, based on
which the factories are classified and managed to improve the quality and efficiency
of exhaust emission supervision.
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• Adjust pollutant discharge management institutions according to the nature of the
industry, implement refined and standardized management of pollution discharge
surveys, inspections and assessments, and discharge volume verification in key indus-
tries, generate discharge data supervision reports on schedule, and conduct dynamic
management and evaluation of supervision content.

• Establish a data sharing platform among multiple government departments such
as the Environment Bureau, the Taxation Bureau, and the Bureau of Industry and
Information Technology to break the phenomenon of “information islands” and “data
conflicts”, and realize real-time sharing of data related to surrounding monitoring
point sources and corporate pollution.

Up to now, the environmental department has only installed pollutant emission
monitoring equipment in large-scale enterprises, and has not involved small and micro
enterprises. The monitoring network that is not tight enough cannot achieve comprehensive
monitoring of pollutant emission point sources. Therefore, how to increase the layout of
pollutant monitoring equipment and form an effective data transmission network is an
engineering problem that needs to be solved urgently. At the same time, engineers have to
think about how to capture, clean and calculate data in a timely and accurate manner in
the face of massive cloud data after forming a pollutant monitoring network.

As the paper [52] suggests, the PM 2.5 concentration is highly related with the local
economy. Specifically, the price of the energy source varies with the different types. For
instance, the factories using the renewable energy, including wind and tide, often get
subsidies from local governments while factories using fossil energy have to pay more
according to the local governments’ policies [53]. Nevertheless, such penalty policies
cannot contribute to reducing the PM 2.5 emission. As [53] describes, coal consumption,
which is the main cause of PM 2.5, grew by 214% from 2000 to 2012, regardless of the
strict price control imposed by the government. This observation shows the difficulty of
reducing the consumption of fossil energy by controlling the price, further indicating the
challenges of controlling PM 2.5 emission. Therefore, we would like to leave the research
of how industries adapt their consumption according to energy price and thus affect PM
2.5 concentrations to the future work.

7. Conclusions

This paper introduces a novel approach to monitor the air pollutant emission (PM 2.5)
taking both a factory’s energy consumption and government’s air quality readings into
account. Firstly, we use a primary study to show the possibility and challenges of using the
above-mentioned features to accurately estimate the air quality readings. Then, to solve
the challenges, we proposed Single-location recovery and Multiple-location recovery
algorithm. Support Vector Regression (SVR) is applied to recover the missing or mislabeled
air quality values from indirect factors in Single-location recovery model, and Gaussian
Process Regression (GPR) is used to do the spatial interpolation and predict the air quality
readings in the target location in Multiple-location recovery. Finally, a combined model
is proposed to combine both models and do a meaningful tradeoff between them.

The experiments on SVR performance show that SVR is powerful enough to pro-
duce accurate prediction results given all indirect factory features, Datetime features,
and weather features. We also evaluate the feature importance on the overall prediction
accuracy by sequentially adding them to the model. Then, we evaluate the recovery per-
formance by using GPR model under the missing indirect factory features scenario, the
results show that GPR model is also promising to generate accurate air quality maps and
give reasonable recovered air quality readings. Finally, the overall weighted scheme is
evaluated on 5 different kinds of factory types, the results show that our proposed approach
is accurate and robust to be applied to different scenarios and used in practice.
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