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Abstract: This paper proposes a two-step pseudo-maximum likelihood estimator of a spatial autore-
gressive exponential model for counts and other nonnegative variables; it is particularly useful for
dealing with zeros. It considers a model specification allowing us to easily determine the direct and
indirect partial effects of explanatory variables (spatial spillovers and externalities). A simulation
study shows that this method generally behaves better in terms of bias and root mean square error
than existing procedures. An empirical example estimating a knowledge production function for
the NUTS II European regions is analyzed. Results show that there is spatial dependence between
regions on the creation of innovation, where regions less able to transform R&D expenses into
innovation benefit from knowledge spatial spillovers through indirect effects. It is also concluded
that the socioeconomic environment is important and that, unlike public R&D institutions, private
companies are efficient at knowledge production.

Keywords: spatial autoregressive exponential regression; Poisson pseudo-maximum likelihood esti-
mator; two-step limited information maximum likelihood; spatial spillovers; knowledge production

1. Introduction

Many empirical applications with spatial data concern the modeling of counts and
other nonnegative response variables. Examples are the modeling of trade flows, migration
flows, patenting citation and patent creation, number of crashes, firm location and firm
birth, number of new patients contracting a given disease, etc. Conventional practices
opt to logarithmically transform the dependent variable in order to apply the well-known
spatial linear models. This is the approach followed in [1] to model the interregional trade
of goods at the NUTS3 level in Spain, in [2] to explain labor migration flows in China, and
in [3] to investigate the effect of intraregional labor mobility in the production of knowledge
in Europe, to give just a few examples. However, Silva and Tenreyro [4], in the context of
cross-sectional data, note that modeling logarithmically transformed variables with a linear
model may lead to bias in estimation when heteroscedasticity is present, or to distortions
in parameter estimates caused by the need to add a constant to zero observations. The
authors propose using the Poisson pseudo-maximum likelihood (PPML) estimator of the
model for the untransformed variables as an alternative to ordinary least squares (OLS) of
the loglinear model.

Spatial autoregressive models are popular to address spatial dependence. Elhorst [5]
discusses the relevance of such models in recent applied spatial econometrics. One reason
is that they quantify indirect spatial spillovers, as is pointed in [6,7]. While linear spatial
autoregressive models are widely used in the literature, nonlinear spatial autoregressive
models, namely models for counts or other nonnegative variables, are not so popular
because of their complexity in estimation and in the derivation of marginal effects and
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spatial externalities (see, for example, Ref. [8], containing a review of the state of the art in
spatial econometrics).

A spatial autoregressive Poisson model for counts was first introduced by Besag [9].
His specification includes the spatial lagged count variable in the exponential function that
gives the Poisson conditional mean. However, this approach has a severe limitation in
that it accommodates only negative spatial dependence to prevent the count process from
being explosive. Attempts to overcome this limitation were made in [10], introducing a
Winsorized Poisson, and [11], using a spatial filter that uses judiciously selected eigenvec-
tors as regressors. However, these procedures may be computationally demanding and/or
lack interpretability, namely because marginal effects and spatial externalities are hard or
impossible to calculate given that the model is not invertible and, consequently, there is no
reduced form for the dependent variable as a function of the so-called Leontief inverse or
spatial multiplier (I — pW) ! (with p the spatial autocorrelation coefficient and W a spatial
weighting matrix).

A promising approach is introduced by [12] to model counts that are Poisson dis-
tributed, considering that their conditional mean is a function of the logarithm of the
spatially weighted conditional means of the neighbors (instead of the spatial lagged count
variable as in [9]), in order to have invertibility, and call this model the SAR Poisson. This
specification is easy to estimate, allowing for a simple calculation of marginal effects and
spatial spillovers. However, because it involves the calculation of the logarithm of the
count outcomes in estimation, it has to deal with observations that are zero.

Other approaches are based on Bayesian hierarchical modeling and Markov random
fields, considering conditional autoregressive schemes for spatial errors like in [13,14].
These models are typically estimated by Bayesian Markov Chain Monte Carlo (MCMC),
which is computationally very burdensome and does not allow for the calculation of
spatial externalities. See [15] for an application of a Poisson Bayesian hierarchical model to
patent citation flows, estimated with MCMC methods. A comprehensive review of spatial
econometric models for count data is given in [16].

This paper proposes a PPML estimation procedure for spatial autoregressive expo-
nential regression (SAR-E) that circumvents the problem of dealing with observations that
are zero. The model specification is based on the idea of [12]. In a simulation study, the
estimation procedure introduced in this work shows better properties in finite samples
than the existing procedures, especially when the spatial autocorrelation coefficient is not
close to one. The determination of partial effects is emphasized and the indirect effects are
deduced, which enhances the understanding of regional linkages.

This work suggests applying this approach to model counts (not necessarily Poisson
distributed) or, in general, other nonnegative variables, extending the applicability of [4] to
spatial data.

To illustrate the usefulness of the approach introduced, an empirical study that esti-
mates a knowledge production function (KPF) and knowledge spillovers across European
regions is carried out, modeling the number of new patents per million inhabitants. Despite
the existence of many applications that estimate KPFs, to our knowledge, only [17] uses a
nonlinear SAR approach, namely a Bayesian spatial Tobit regression estimated by MCMC.
The one presented here is the first that estimates a spatial autoregressive exponential model
for counts, which circumvents the problem of regions with zero patents and simultaneously
determines knowledge externalities across regions.

2. The SAR-E Regression
2.1. Model Specification and Partial Effects

This work proposes to model an outcome that is a count or other nonnegative variable,
showing spatial dependence, by the following spatial autoregressive exponential specifica-
tion of the conditional mean (SAR-E regression), which is based in the spatial lag model of
counts of [12]:

E(y|X) = n = exp(pWlog(n) + XB), 1
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where y is the vector with observations of the dependent variable for n spatial locations, p
is the vector with a conditional mean of y, X is a matrix with observations of k explanatory
variables for n spatial regions, W is a spatial weighting matrix, and 3 and p are unknown
coefficients to be estimated. Observe that, according to Equation (1), the conditional
mean of one location i, u;, is determined as a function of the characteristics of location i
through the observed values for the explanatory variables and of a weighted average of
the conditional mean of neighboring locations.

Equation (1) serves three purposes. Firstly, it expresses the conditional expectation of
a nonnegative and, in particular, a count variable. Observe that count variables are often
assumed to have a Poisson distribution, whose expected conditional mean is an exponential
function of a set of explanatory variables. Secondly, it incorporates the spatial dependence
of the data by means of an autoregressive term, extending the well-known SAR or Spatial
Lag linear model to the nonlinear context. Finally, it is invertible, which allows us to easily
calculate the partial effects of variables and, in particular, analyze global spatial interactions
between regions with the identification of spatial spillovers and externalities.

The reduced form of Equation (1) is:

E(y[X) = 1 = exp|(1—pW) 'XB|. @

The partial effects of the explanatory variables are deduced from Equation (2) leading to,

ap axlk ank
. . -1
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where puPTAG js a diagonal matrix of order n with elements y;. Observe that Equation (3) is

a n X n matrix of partial effects, where the elements in the main diagonal are direct effects
of the kth explanatory while the off-diagonal elements are indirect effects.

Considering that A = (I — pW) ~! then the direct partial effects in region i are equal to
ou;

axi,; = Brajipii=1,...,n, 4)

and give the expected outcome of a given location due to a one-unit variation of the kth
explanatory in the same location.

When the spatial weighting matrix is row-normalized, indirect effects can be divided
into spill-in and spill-out spatial spillovers. The spill-in spillover measures the cumulative
sum of spatial spillovers that location i receives from all neighboring locations—that is, the
sum of expected impacts in the outcome of location i due to a one-unit variation of the kth
explanatory in each neighboring location j—and can be calculated as follows:

n
spill —inj = B Y auii=1,...,n, 5)
j=1
j#i

which is the cumulative sum of all off-diagonal elements in row i of Equation (3).

The spill-out spillover effect is the sum of all spatial spillovers that location i transfers
to neighboring locations—that is, the sum of the expected impact in the outcome of each
location j neighbor from i when the kth explanatory in location i varies by one unit and is

equal to
n

spill — out; = By Z ajpji=1...,n, 6)
j=1
j#1
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or, equivalently, the sum of all off-diagonal elements in column i of Equation (3).

Each region has a direct, a spill-in and a spill-out partial effects. The values analyzed
in empirical applications are usually the average of each of these effects over all regions,
constituting, respectively, the average direct partial effect, the average spill-in spatial
spillover (Aspill-in), and the average spill-out spatial spillover (Aspill-out), that is,

n n
Aspill —in = %Zspill —in;  Aspill —out = %Zspill — out;
i=1 i=1

2.2. Estimation

When the dependent variable is a count with a Poisson distribution, the full informa-
tion maximum likelihood (FIML) estimator of the reduced form in Equation (2) is derived
in [12]. For variables that are not Poisson distributed, which includes some types of counts
and other general nonnegative variables, those results can be used in a Poisson pseudo-
maximum likelihood (PPML) context, assuming that the conditional mean is correctly
specified according to Equation (1). Since the seminal work of [18], PPML has become
popular for model estimation because it extends the technique of maximum likelihood to
situations where the conditional distribution of the outcome does not need to be specified,
but its conditional expectation has to be an exponential function of a linear index. The
idea is to use the Poisson probability function to build the likelihood function, even if the
outcome is not Poisson distributed, requiring that its expectation coincides with the expec-
tation of a Poisson-distributed variable. As a misspecified distribution was used to define
the likelihood function, the covariance matrix of the estimator and, in particular, standard
errors, need to be estimated with a robust estimator. Silva and Tenreyro [4] disseminated
PPML to estimate the gravity model, which is a particular case of exponential regression.

The PPML approach proposed here results in estimating the unknown coefficients
by FIML and the respective standard errors with a robust estimator to safeguard them
from variance misspecification, like in situations where there is overdispersion. However,
the authors of [12] report severe difficulties in obtaining numerical solutions for FIML
estimates. Therefore, they recommend instead a limited information maximum likelihood
(LIML) two-step estimator. The first step delivers an estimate for the unknown variable
W log(un) obtained with an OLS regression of Wlog(y) in the set of regressors X, WX and
W2X. In the second step, a Poisson regression is performed with regressors W loAg(y) and
X. An expression for the second stage adjusted covariance matrix is given in [12].

This paper proposes a two-step procedure that extends and refines the method de-
scribed above in two ways. First, it suggests extending the estimation for a pseudo-
maximum likelihood framework in order to encompass the modeling of a vast set of
outcomes. This approach requires additional care in the estimation of the covariance matrix
in the second step. Second, it proposes a different estimation procedure for the first step
that circumvents the problem of observations that are zeros. Therefore, the following
two-step PPML procedure to estimate the SAR-E model in Equation (1) is recommended:

1. Runa PPML regression of y on X, WX and WX and calculate the predicted values §.
2. Runa PPML regression of y on Wlog(y) and X.

Observe that the second step of [12] uses WloAg(y), the fitted values for the vari-
able Wlog(y), while the second step of the proposed method uses Wlog(y), which is a
transformation of the fitted values of variables y, .

Standard errors in the second step should take into consideration the pseudo-maximum
likelihood framework where the Poisson variance may be misspecified, and should account
for the sampling variation in the regressor Wlog(y). To overcome these issues, the use of
bootstrap standard errors is recommended in the second step. This procedure is easy to
implement because it requires only software with a command for Poisson regression and
bootstrap standard errors, like STATA [19]. (For non-negative outcomes other than counts,
we advise using the command “glm” in STATA with the option “family(Poisson)” instead
of “Poisson”.)
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3. Simulation Study

In the simulation study, the two-step estimator introduced in Section 2 with a first step
based on maximum likelihood (SAR-PPML 1stStep-ML) is compared with the two-step
estimator of [12], with the first step being an OLS regression (SAR-PPML 1stStep-OLS)
and aspatial PPML. For SAR-PPML 1stStep-OLS, when calculations need the logarithm
of the outcome, an ad hoc constant equal to 1 was added to observations that were zeros.
Simulations were performed with R [20].

3.1. Simulation Design

The simulation design closely follows that in [12], which is most closely related to
other spatial econometric experimental designs, such as those in [21-23].

The random dependent variable is generated as y; ~ Poisson(y;) with p; = exp(A;XB)
where A, is the ith row of (I — pW)_l. The design matrix includes two covariates, X; and
X5, where the first was randomly generated from a normal distribution, with mean and
variance equal to 1 and 2, respectively. Since econometric studies usually incorporate a
mix of continuous and dummy variables, following [4], X, is a dummy variable randomly
generated from the Bernoulli distribution with a mean equal to 0.5.

The study considers three alternative spatial weight matrices. They were calculated
using the same two-step procedure found in other spatial econometrics simulation studies
(see, e.g., [24]). First, n space units are randomly drawn within in the unit square. Secondly,
a matrix WO is constructed given a criterion, and normalized by rows, so that the sum of all
elements in each row is 1. In the present study, two different criteria were used, resulting
in three alternative spatial weighting matrices. W1 and W3 intend to replicate matrices
generated with a contiguity criterion, with neighbors chosen based on the nearest neighbor
distance, fixing for W1 that each unit has seven neighbors (the seven units that are closest),
while for W3 the number of neighbors is four, which is close to the average number of
neighbors observed in the empirical study included in the next section. On the other hand,
W2 is created based on an inverse distance criterion, using the Euclidean distance between
each unit. The matrix W2 is said to be denser than the matrix W1, since W2 contains more
nonzero entries, and matrix W1 is denser than matrix W3.

Monte Carlo simulations were conducted for each design of W and for each of the
three estimators described above. The sample size, i1, varied over the set [100; 250; 500; 750;
1000], and the spatial autoregressive parameter, p, varied over the set [0; 0.2; 0.4; 0.6; 0.8].
The parameters associated with variables X; and X3, 1 and B3, respectively, were held
fixed at 0.5. The intercept was set to zero.

For each experiment, 1000 replications were used. This is the usual number of repli-
cations used in Monte Carlo studies with spatial data (see [12,21-25], among others). The
bias was calculated as the average in the 1000 replications of the difference between the
estimated value of the coefficient in each simulated sample and the respective true value.
The RMSE was also calculated for each estimated coefficient as the square root of the sum
between the square of the bias and the empirical variance in the 1000 replications.

3.2. Monte Carlo Results

It should be noted that the results obtained referring to W1 are quite similar to those
obtained with W3. This suggests that estimators should not be sensitive to the density of
the spatial weighting matrix when using a contiguity criterion. For this reason, the analysis
of the remaining results will focus only on experiments related to the use of W1 and W2
matrices. The results for W3 can be found in Tables A5 and A6 of Appendix A.

Tables Al and A3 in Appendix A show the results for the bias of the estimated
coefficients for each estimation method, considering the spatial weighting matrix based,
respectively, on the contiguity criterion, W1, and the inverse distance criterion, W2. Both
SAR-PPML estimators show similar and quite satisfactory results, with the SAR-PPML
1stStep-ML presenting a lower absolute value for bias for lower and median levels of
spatial dependence, while the SAR-PPML 1stStep-OLS appears to behave better for values
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of p closer to 1. It is worth noting that both estimators have lower bias, as an absolute value,
to estimate the coefficient of the continuous variable than that of the dummy variable.
Note, also, that when p increases, both estimators present a smaller absolute value of bias
when using matrix W2 compared to matrix W1. Nevertheless, this difference is negligible,
especially for a large n. Finally, the aspatial PPML estimator shows progressively worse
results as p increases, as expected, being slightly better than the SAR methods when there
is no spatial dependence (p = 0).

Concerning the bias of the spatial autoregressive coefficient, p, globally, the SAR-PPML
1stStep-ML shows better performance than the remaining estimators, especially when # is
large. However, for p = 0.8 it shows a higher bias, in absolute value, particularly for the
W2 matrix. Although slightly worse than the first, the SAR-PPML 1stStep-OLS presents
satisfactory results, namely for high levels of spatial dependence. On the other hand,
in general, the use of a special weighting matrix based on the inverse distance between
locations produces higher bias when estimating the spatial autoregressive parameter.

Tables A2 and A4 in Appendix A show the results referring to RMSE. From a general
point of view and regarding 1, the SAR-PPML 1stStep-ML presents the best results,
particularly for W1. However, the SAR-PPML 1stStep-OLS produces a more desirable
set of results for higher values of p. In both estimators, it is noted that, as the spatial
dependence and the sample size increase, the RMSE decreases. This result is only slightly
altered when p = 0.8. As expected, the aspatial ML estimator only shows satisfactory
results when p = 0. As for 37, the conclusions are quite similar to 1, with the disclaimer
that the RMSEs for this coefficient are much higher, especially when the sample size is
small. Estimations involving the W1 matrix have slightly better results. Lastly, the aspatial
estimator is, again, quite far from the results of the other estimators.

Both SAR-PPML estimators present quite similar results regarding the RMSE values
for the estimation of the coefficient of spatial dependence, p, with the SAR-PPML 1stStep-
ML showing better results as the sample size increases. It is also important to note that
the SAR-PPML 1stStep-ML exhibits a higher RMSE for matrix W2 for high levels of spatial
dependence when compared to SAR-PPML 1stStep-OLS. However, in general, the use of
W1 seems to trigger better results.

In summary, these results are in line with those obtained in other simulation studies
such as [4,12,22,24,25], suggesting the following conclusions. First, the estimator SAR-
PPML 1stStep-ML presents the best performance, except for high spatial dependence,
when p = 0.8. Keep in mind, however, that most empirical applications give low and
median values for the spatial dependence parameter. Since this estimator does not rely on
logarithmic transformation of the dependent variable and uses PPML regression instead
of a loglinear estimation in the first step, this result seems to be in agreement with that
found by [4]. Another interesting result is that there is a higher distortion for the estimated
coefficient of the dummy variable compared to the estimated coefficient of the continuous
variable, suggesting that the distribution of the explanatory variables can condition the
performance of the estimators, a conclusion that is also made by [12]. Other similar
conclusions between studies are the fact that the RMSE decreases as the spatial dependence
and sample size increase, and that the spatial weighting matrix criteria influence the results.
Several studies have already addressed this issue, such as [24], where the authors found
that the RMSE of coefficient estimators appears to be generally higher for the spatial
weighting matrix based on inverse distance, suggesting that the variance of the estimated
coefficients may, somehow, be related to the density of the spatial weights matrix chosen.
Another expected conclusion was the poor performance of the Aspatial PPML estimator
in the presence of spatial dependence, which presented an accentuated upward bias for
the coefficients of X; and Xj;. This result is in agreement with [26], who found biased and
inconsistent estimators when spatial dependence was not taken into consideration. In
addition, it is interesting to note that the distortion of results is more significant for values
of p near 1, which is in line with the results of [22].
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To assess the performance of both estimators under misspecification, a new design
was considered where X; shows spatial dependence instead of being i.i.d. Therefore, X;
was simulated according to the following spatial autoregressive process:

X1 = (I1—05W;) 'ewith &~ N(0,I).

The other variables were generated as before, with the coefficients retaining the same
values. Estimation was implemented as if X; was i.i.d. (ignoring that it is spatially autocor-
related). The results obtained for 1000 replications, considering the spatial weighting matrix
W1, are included in Table A7 for bias and in Table A8 for RMSE, while Tables A9 and A10
show, respectively, the bias and RMSE when the spatial weighted matrix is W2. Results
show that ignoring spatial autocorrelation in the explanatory variable leads to noticeably
higher bias and RMSE in the estimation of all parameters, especially in the estimation of the
spatial autocorrelation coefficient. Both estimators show similar performance in estimating
the coefficient of X1, whether the spatial matrix is based on the nearest neighbor criterion
(W1) or the inverse distance (W2). The new estimator introduced, SAR-PPML 1stStep-ML,
shows better performance than SAR-PPML 1stStep-OLS for the coefficient of X, when the
spatial matrix is W1. The improvement in performance of SAR-PPML 1stStep-ML over
the SAR-PPML 1stStep-OLS is especially visible in the estimation of p for both spatial
weighting matrices.

4. Empirical Application

This section illustrates the usefulness of the SAR-E regression introduced in Section 2
by an empirical example that estimates a knowledge production function to explain the
creation of innovation in European regions. For the sake of comparison, the estimator
of [12] is also calculated.

Following the arguments of [27], the number of patents in a given region per million
inhabitants (Pat) is used as a proxy for knowledge creation. See also [28] for a discussion
on measuring innovation. The equation to be estimated is

n

E(Patilx;) = pi =exp|p ), wilog(u;)+xB |, @)

j=1

j#i
where x; is a vector with explanatory variables that will be introduced in Section 4.1, § is a
vector of unknown coefficients to be estimated, p is the unknown spatial autocorrelation
coefficient, and w;; are the elements of a spatial weighting matrix. In this empirical appli-
cation, the spatial weighting matrix was calculated based on a queen contiguity criterion

and is row normalized. All estimations were conducted using R [20]. The exploratory data
analysis was performed according to QGIS [29] and GeoDa [30].

4.1. Data and Variables

The data were collected from Eurostat regional statistics. They contain data on 234
NUTS II regions from 24 European countries, of which 22 belong to the European Union,
with the addition of the United Kingdom and Norway. NUTS is a nomenclature of ter-
ritorial units for statistics developed and regulated by the European Union, defining a
hierarchical system of regions with three different levels. At the top of the hierarchy are
the NUTS 0 regions, referring to countries. The next level is NUTS 1, representing major
socioeconomic regions within countries, followed by NUTS 2 regions, which are subdivi-
sions of NUTS 1, and NUTS 3 regions, which are subdivisions of NUTS 2. All data refer
to 2012. Regions with no neighbors were excluded (like Portuguese and French islands).
Finally, NUTS II London (UK) and Centre (France), were discarded for incongruity of data.
The list of countries in the database is in Appendix B.
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The description of variables used in this study, together with the expected outcome of
the estimated associated coefficient, can be found in Table 1.

Table 1. Variable definitions and expected sign.

Variables Abbrev. Unit Expected Outcome
The number of Patents registered Pat Unit per million inhabitants -
(dependent variable)
Intramural Expenditure on R&D by private business R&D_B Euros per inhabitant +
Intramural Expenditure on R&D by the government R&D_G Euros per inhabitant Ambiguous
Intramural Expenditure on R&D by universities R&D_U Euros per inhabitant Ambiguous
Total R&D personnel and researchers in private
. . Pers_B - +
business (no. of full-time workers)
Total R&D personnel and researchers in the .
. Pers_G - Ambiguous
government (no. of full-time workers)
Total R&D personnel and researchers in universities .
. Pers_U - Ambiguous
(no. of full-time workers)
% Population aged 25-64 with Bachelor’s degree Educ Percentage +
Population Pop Number of inhabitants -
GDP per capita GDP Thousand euros per capita +
Tuberculosis mortality Mort Rate per 100,000 inhabitants —

Since [31] introduced the knowledge production function, the use of variables re-
lated to R&D has become normal when modeling the creation of innovation. Follow-
ing [27,28,32-34] different impacts on the creation of knowledge from expenditure and
human resources in R&D were considered according to its source (from the private and
business sector, from government, or from universities). It is expected that more R&D
expenditure, as well as more full-time R&D employees, will trigger an increase in knowl-
edge creation. Therefore, the expected outcome of the estimated coefficients related to
these variables should be positive. However, the literature suggests that this happens only
for the R&D resources of the private sector. For both the public sector and universities,
the effect of those variables often appears to be negative or statistically negligible (see,
e.g., [27,33,35]). This behavior may be explained in the case of universities by the fact that
their main contribution to knowledge creation arises in the form of scientific articles and
not patents, while for the public sector it may be due to a certain inefficiency of public
institutions in the production of knowledge (see [33,34]).

Three variables aiming to capture the effect of the “innovative environment” are
considered. The first is the percentage of graduates in the population between 25 and
65 years old, proxying the level of education of the population in the region. The second is
GDP per capita, which proxies the technological sophistication and the size of the economy.
Finally, the third is the tuberculosis mortality rate, considered as a proxy for the level
of poverty of the inhabitants, as several studies relate tuberculosis with poverty (see, for
example, [33]). It is expected that a better socioeconomic environment will boost innovation
(as in [33]). In addition, the number of inhabitants was defined as the control variable.
Table 2 includes the descriptive statistics of the variables used in this study. Additionally,
we note that 6% of the regions in the sample registered no patents.

The correlation matrix of these variables is shown in Table A11 of Appendix B. Pairwise
correlations between explanatory variables do not exceed the common threshold of 0.8, as
recommended in [36], which leads us to not anticipate collinearity problems in estimation.
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Table 2. Descriptive statistics.

Variables N Mean Std Dev Min Max
Pat 234 89.171 106.045 0.000 590
R&D_B 234 318.248 382.444 0.000 2441.700
R&D_G 234 59.819 87.684 0.000 480.600
R&D_U 234 135.917 152.388 0.000 891.700
Pers_B 234 5744.342 9291.554 0.000 97,982.000
Pers_G 234 1467.979 2628.740 0.000 17,934.000
Pers_U 234 3294.923 3558.347 0.000 34,836.000
Educ 234 27.334 8.700 11.200 50.100
Pop 234 1,982,780.5 1,563,839.6 126,620.0 11,898,502.0
GDP 234 26.922 13.874 3.561 84.047
Mort 234 1.009 1.375 0.100 8.800

4.2. Exploratory Spatial Analysis

Analyzing the spatial distribution map of the variable Pat per quartile in Figure A1l
in Appendix B, we see the existence of a cluster effect, with a concentration of patenting
taking place in Central Europe, Southern England, and Scandinavia, with the number of
new patents in Southern and Eastern Europe being modest. On the other hand, Moran’s I
test for spatial autocorrelation, applied to patents, shows a value for the test statistic equal
to 0.6045, with a p-value equal to 0.000, denoting evidence of positive spatial dependence.
This conclusion is supported by the Moran diagram (Figure A2 in Appendix B). Analyzing
the latter, it is worth noting that most of the observations are in the 1st and 3rd quadrant,
and therefore, the majority of regions with a higher (smaller) number of new patents have
neighboring regions where this number is also higher (smaller). Analyzing the LISA3
indicators in Figure A3 of Appendix B, we see two high patent clusters in Central Europe
and Scandinavia, together with low patent clusters in the Iberian Peninsula and Eastern
Europe. It is also possible to identify two other clusters where patenting tends to be low,
northern Britain and southern Italy. Figure A4 of Appendix B shows the LISA significance
map, inferring that the results are more significant concerning the Central European, Iberian
Peninsula, and Eastern Europe clusters.

4.3. Estimation Results

Equation (7) is estimated with the introduced SAR-PPML 1stStep-ML estimator. For
comparative purposes, the results obtained with the alternative estimator from [12], the
SAR-PPML 1stStep-OLS, are presented as well.

In SAR-PPML 1stStep-OLS an ad hoc constant (c = 1) was added when patents were 0.

Table 3 includes the estimates for coefficients of the knowledge production function,
together with their bootstrap standard errors. Bear in mind that, because both estimators
use an explanatory variable that is the result of a fit obtained in the first step, the usual
standard errors are not valid. The introduced PPML 1stStep-ML behaves better in terms of
goodness of fit, with the value for the loglikelihood being noticeably higher.

For both estimations, the coefficient related to the spatially lagged variable is pos-
itive and significant (p-value < 0.01), thus inferring that there is a clear positive spatial
dependence between regions regarding innovation creation, which matches the results
of [34,37].

As for the remaining explanatory variables, the variable R&D_B appears to be signifi-
cant at 1% in all estimates. In contrast, R&D_U is not significant, which can be explained
by the fact that university contributions are mostly in the form of scientific articles and
not patents, as mentioned before. On the other hand, R&D_G is significant at 10% in
SAR-PPML 1stSep-ML; however, it presents a negative sign. These results converge with
those of [32-34], which also disclose evidence of inefficiency in the use of R&D resources of
the public sector. In addition, these authors also conclude that R&D expenditures in the
private sector are more important to trigger knowledge creation than those from the public
sector or universities.



Sustainability 2021, 13, 2843 10 of 22
Table 3. SAR PPML coefficient estimates of the knowledge production function.

SAR-PPML 1stStep-ML SAR-PPML 1stStep-OLS

Variable Coefficients Bootstrap SE Coefficients Bootstrap SE
0 6.81 x 1071 **+ 0.06838 6.19 x 1071 **= 0.07821
R&D_B 891 x 104 *** 0.00034 9.18 x 104 0.00035
R&D_G —215x 1073+ 0.00130 —201x 103 0.00157
R&D_U —3.21 x 1074 0.00079 —5.85 x 1074 0.00083
Pers_B ~133x 105 0.00003 —159 x 105 0.00003
Pers_G 2.75 x 107° 0.00006 343 x 107° 0.00006
Pers_U 5.07 x 107° 0.00005 1.86 x 1073 0.00005
Educ 258 x 1074 0.01165 755 x 107° 0.01279

Pop —3.21 x 107 9.62 x 1078 6.10 x 1078 1.14 x 1077
GDP 3.81 x 1072 #* 0.01003 442 x 1072 # 0.01127
Mort —1.95 x 1071 0.09624 —6.72 x 1072 0.09071

Log Likelihood —6557.154 —7704.048
N 234 234

Notes: Standard errors were computed using the bootstrap method. Significance levels: * 10%, ** 5%, *** 1%.

The variables related to the “Innovative Environment,” Educ and Pop, are not statis-
tically significant, while GDP is statistically significant at 1% in both estimations, with a
positive sign. Finally, the mortality rate appears significant at 5% only in the SAR-PPML
1stStep-ML, showing a negative sign. These results are in line with expectations, as greater
technological sophistication is generally associated with lower levels of poverty and higher
quality of life, which fosters the growth of innovation in a region. These results corroborate
studies such as [28,33], the authors of which conclude that an “innovative environment” is
important for increasing knowledge creation.

Given the nonlinearity of the model, it is through the average partial effects (APE)
that it is possible to quantify the impact of the variation of the explanatory variables on the
dependent variable, ceteris paribus. Given the autoregressive structure of the model, it is
possible to measure the indirect partial effects, that is, spatial externalities, together with
the direct ones. These are included in Table 4.

Table 4. Average direct partial effects and spatial spillovers.

SAR-PPML 1stStep-ML SAR-PPML 1stStep-OLS
Variable Direct ASpill-in  ASpill-out Direct ASpill-in  ASpill-out
R&D_B 0.0934 0.1743 0.1683 0.0878 0.1126 0.1093
R&D_G —0.2250 —0.4200 —0.4054 —0.1921 —0.2464 —0.2391
R&D_U —0.0336 —0.0628 —0.0606 —0.0560 —0.0718 —0.0697
Pers_B —0.0014 —0.0026 —0.0025 —0.0015 —0.0020 —0.0019
Pers_G 0.0029 0.0054 0.0052 0.0033 0.0042 0.0041
Pers_U 0.0053 0.0099 0.0096 0.0018 0.0023 0.0022
Educ 0.0270 0.0504 0.0487 0.7221 0.9258 0.8984
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GDP 3.9933 7.4536 7.1953 4.2288 5.4222 5.2617
Mort —20.4060 —38.0886 —36.7686 —6.4270 —8.2409 —7.9969

Concerning the average direct effects, and the SAR-PPML 1stStep-ML, an increase
of 1 percentage point in the tuberculosis mortality rate in the region results, on average,
in a drop of 20.4 patents per million inhabitants in the same region. On the other hand,
an increase in GDP per capita of just 100 euros in the region may trigger an increase, on
average, of 0.4 patents per million inhabitants in the same region.

Regarding the variables of expenditure on R&D, these can present the most interesting
results for economic decision makers. An increase of 10 euros per capita in a region in
public R&D entities means, on average, a decrease of 2.25 patents in that region per million
inhabitants. Keep in mind that the respective coefficient estimate is statistically significant
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only at 10%. Now, given the inefficiency inferred there, a policy maker may transfer the
financial resources of these institutions to private R&D companies, since these, for each
increase of 10 euros per capita in R&D expenses, trigger an increase of approximately one
patent per million inhabitants in the same region. The spatial distribution map of the SAR-
Poisson 1stStep-ML direct partial effect (DPE) per quartile related to the variable R&D_B is
represented in Figure A5 in Appendix B. It is clear that the regions with the most efficient
companies for transforming R&D expenses into patents are located in Central Europe,
southern Great Britain, and Scandinavia. Therefore, regions in Eastern and Southern
Europe should initiate reforms in the private R&D creation system, seeking an increase
in efficiency. These reforms require the recruitment of more qualified personnel and
investment in more sophisticated technology.

As for the indirect effects, the variables related to the “innovative environment”
show higher indirect effects in absolute value than direct, showing that not only the
socioeconomic situation of the region is central to the creation of knowledge, but also the
interregional environment.

Concerning the R&D expenditure variables, investment in government R&D institu-
tions also does not benefit neighboring regions in the knowledge creation process, since
both the spill-out effect and spill-in effect are negative. On the other hand, investment in
private R&D in one region will have a positive impact in neighboring regions: a variation
of 10 euros per inhabitant in private R&D expenditure in all neighboring regions of i results
in an increase of 1.74 new patents in region i. Conversely, an increase of 10 euros per
inhabitant in expenditure on private R&D in region i results in an increase, on average, of
1.68 in all neighboring regions. These facts highlight the presence of knowledge spillovers
between regions. Figures A6 and A7 in Appendix B represent the spatial distribution
map of spill-in and spill-out effects per quartile obtained with the SAR-PPML 1stStep-ML,
respectively, of the variable R&D_B. It can be concluded that, in addition to the Central
European cluster, which shows a strong relationship in the creation of knowledge, regions
in Southern and Eastern Europe, as well as some regions in Southern England, have a
remarkable capacity for absorbing innovation. Regarding the spill-out effects, the Central
European and Scandinavian clusters are the biggest “exporters” of knowledge spillovers.
Interestingly, some regions that present a lower DPE with the investment in private R&D, as
is the case in Eastern Europe and the North of the United Kingdom, present higher values
of spill-out and spill-in. Therefore, one may conclude that, despite having a lower capacity
for innovation, these regions have a strong interconnection, which leads to high levels of
knowledge spillover. This can be explained by a possible commitment of companies to
strong interregional cooperation links, so that investment in one company is positively
reflected in the others. These links can be a strategy to overcome the difficulty of competing
solo against regions with high numbers of patents. Therefore, political and economic
decision-makers in regions with lower patent capabilities should create incentives for the
creation of knowledge-sharing networks, thus enabling increased competitiveness.

5. Conclusions

Many applications in spatial econometrics concern the modeling of count outcomes
or other nonnegative variables. This work proposes modeling such variables by a spatial
autoregressive exponential (SAR-E) regression instead of using SAR loglinear models, in
line with the reasoning of [4] in the context of cross-sectional data. A two-step PPML
procedure for the SAR-E model is suggested that circumvents the problem of dealing with
zeros. A simulation study verifies that the introduced estimator shows better performance
than the previous estimation procedures, independently of the sample size, especially
when the autoregressive coefficient is not close to 1, which is the case for many applications
with economic data.

The usefulness of the proposed approach is illustrated in an empirical application to
analyze the main determinants of knowledge creation and to quantify the spatial knowl-
edge spillovers across different European NUTS II regions. There, evidence of the spatial
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dependence on the creation of innovation in Europe is found. In addition, it is inferred
that social and economic factors determine the creation of knowledge, as is the case with
quality-of-life standards and technological sophistication. It also appears that public R&D
institutions are inefficient, unlike private institutions, with the latter being the major pro-
moters of innovation creation in the analyzed regions. It is also inferred that an increase in
R&D expenditure by private institutions positively influences the creation of innovation in
neighboring regions. Given these results, it is possible to conclude that regions with low
levels of knowledge creation try to overcome this limitation by strengthening relationships
with neighboring regions, thereby increasing the absorptive capacity for innovation and
creating strong clusters of knowledge sharing.

In the empirical study, there were some noteworthy differences in the results obtained
with the method introduced in this paper to estimate the SAR-E, two-step PPML, and the
existing method of [12] concerning both the statistical significance and magnitude of some
coefficient estimates, namely the autoregressive parameter. Differences in the latter explain
the visible differences in the indirect effects of variables, the spill-in and spill-out spillovers,
obtained with the two methods, where spillovers obtained with the proposed method are
higher in absolute value. These differences are not unexpected because the data for the
response variable show a clear percentage of zeros. Given the results of the simulation
study and the fact that the method introduced here is better able to handle zeros in the
dependent variable, it is expected that it will deliver better estimates.
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Appendix A

Table A1l. Bias: SAR-Poisson, SAR-LogLinear, and Aspatial ML Poisson with W1 for 1000 replicates.

B1-SAR-Poisson 1stStep-ML—W1 B1-SAR-Poisson 1stStep-OLS—W1 31-Aspatial Poisson ML—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0028 —0.0011 —0.0007 0.0000 0.0000 —0.0011 —0.0010 —0.0006 —0.0003 —0.0003 0.0003 —0.0004 —0.0005 0.0000 0.0000
0.2 —0.0013 0.0000 —0.0007 0.0001 —0.0004 —0.0047 —0.0041 —0.0044 0.0040 —0.0036 0.0311 0.0312 0.0312 0.0310 0.0308
04 —0.0006 0.0000 —0.0006 0.0002 0.0002 —0.0032  —0.0047  —0.0046  —0.0044  —0.0046 0.0891 0.0868 0.0872 0.0872 0.0870
0.6 0.0003 0.0007 0.0015 0.0012 0.0015 —0.0013  —0.0019  —0.0020  —0.0022  —0.0020 0.2021 0.1979 0.1988 0.1969 0.1971
0.8 0.0049 0.0046 0.0040 0.0032 0.0043 0.0021 0.0014 0.0017 0.0005 0.0004 0.4957 0.4846 0.4886 04771 0.4861

32-SAR-Poisson 1stStep-ML—W1 32-SAR-Poisson 1stStep-OLS—W1 32-Aspatial Poisson ML—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0062 —0.0028 0.0026 0.0004 0.0003 —0.0105  —0.0021 —0.0010  —0.0015  —0.0015  —0.0064  —0.0004  —0.0003 —0.0004 —0.0007
02 —0.0016 0.0012 0.0014 —0.0004 0.0003 —0.0132  —0.0118  —0.0156  —0.0138  —0.0130 0.1018 0.1035 0.1028 0.1027 0.1036
04 0.0024 0.0009 0.0031 —0.0036 0.0043 —0.0143  —0.0182  —0.0188  —0.0191 —0.0179 0.2737 0.2768 0.2760 0.2789 0.2799
0.6 0.0017 0.0023 0.0040 —0.0001 0.0027 —0.0052  —0.0051 —0.0097  —0.0094  —0.0098 0.6201 0.6327 0.6391 0.6363 0.6383
0.8 —0.0015 —0.0022 —0.0058 0.0077 —0.0078 0.0072 0.0066 0.0065 0.0017 0.0017 1.7530 1.7635 1.7964 1.8182 1.8423

Rho-SAR-Poisson 1stStep-ML—W1 Rho-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0042 0.0015 0.0005 —0.0012 —0.0008 0.0037 0.0018 —0.0003 0.0018 0.0014
0.2 0.0012 —0.0025 0.0006 —0.0003 0.0003 0.0079 0.0105 0.0149 0.0131 0.0119
04 —0.0036 —0.0014  —0.0012  —0.0023  —0.0027 0.0169 0.0234 0.0246 0.0247 0.0249
0.6 —0.0002 —0.0004 —0.0018  —0.0016  —0.0010 0.0160 0.0181 0.0204 0.0208 0.0209

0.8 0.0047 0.0039 0.0048 0.0050 0.0050 0.0018 0.0034 0.0042 0.0061 0.0082
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Table A2. RMSE: SAR-Poisson, SAR-LogLinear, and Aspatial ML Poisson with W1 for 1000 replicates.

31-SAR-Poisson 1stStep-ML—W1

B1-SAR-Poisson 1stStep-OLS—W1

B1-Aspatial Poisson ML—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0242 0.0154 0.0102 0.0083 0.0069 0.0270 0.0163 0.0117 0.0090 0.0077 0.0171 0.0174 0.0122 0.0099  0.0084
0.2 0.0251  0.0152  0.0107 0.0087 0.0071 0.0271 0.0165 0.0119 0.0092 0.0083 0.0424 0.0353 0.0330 0.0321 0.0316
0.4 0.0223  0.0137 0.0102 0.0077 0.0070 0.0228 0.0141 0.0106  0.0089 0.0080 0.0946 0.0893 0.0885 0.0880  0.0877
0.6 0.0176  0.0106 0.0080 0.0065 0.0061 0.0181 0.0113 0.0079 0.0065 0.0056 0.2122 0.2027 0.2017 0.1989 0.1987
0.8 0.0161 0.0134 0.0124 0.0113 0.0106 0.0174 0.0155 0.0123 0.0120 0.0118 0.5380 0.5063 0.5029 0.4887 0.4954

32-SAR-Poisson 1stStep-ML—W1 32-SAR-Poisson 1stStep-OLS—W1 32-Aspatial Poisson ML—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1034 0.0649 0.0454 0.0357 0.0314 0.1085 0.0648 0.0495 0.0382 0.0330 0.0716 0.0752 0.0564 0.0449 0.0382
0.2 0.0912 0.0567 0.0401 0.0333 0.0287 0.0999 0.0631 0.0437 0.0357 0.0316 0.1588 0.1263 0.1132 0.1089  0.1089
0.4 0.0811 0.0486 0.0353 0.0300 0.0261 0.0849 0.0531 0.0411 0.0354 0.0309 0.2967 0.2854 0.2800 0.2819  0.2821
0.6 0.0606 0.0395 0.0305 0.0277 0.0238 0.0643 0.0403 0.0292 0.0242 0.0215 0.6483 0.6454 0.6465 0.6423 0.6432
0.8 0.0602 0.0548 0.0558 0.0502 0.0476 0.0589 0.0487 0.0427 0.0404 0.0428 19053 1.8426 1.8515 1.8604 1.8784

Rho-SAR-Poisson 1stStep-ML—W1 Rho-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1112 0.0676 0.0474 0.0383 0.0320 0.1191 0.0734 0.0532 0.0398 0.0357
0.2 0.0792  0.0483 0.0330 0.0276  0.0239 0.0873 0.0542 0.0395 0.0318 0.0279
0.4 0.0512 0.0289 0.0214 0.0173 0.0149 0.0560 0.0390 0.0332 0.0307 0.0294
0.6 0.0237 0.0148 0.0122 0.0110 0.0097 0.0311 0.0244 0.0237 0.0230 0.0224
0.8 0.0142 0.0118 0.0106 0.0097 0.0094 0.0152 0.0146 0.0131 0.0137 0.0162

Table A3. Bias: SAR-Poisson, SAR-LogLinear, and Aspatial ML Poisson with W2 for 1000 replicates.
B1-SAR-Poisson 1stStep-ML—W2 B1-SAR-Poisson 1stStep-OLS—W2 B1-Aspatial Poisson ML—W2
Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000

00  —00006 —0.0010 00001 ~ —0.0001  0.0003  —0.0001  —0.0010 00001  —0.0002 00002  —0.0008 —0.0004  0.0001 00000  0.0001
02 —00017 -0.0002 —00001 —0.0005 00004 —00019  —00007  —0.0004  —00006 —0.0005 00200 00291 00285 00285 00286
04 00003 00002  —0.0006 00003  —0.0002 —0.0007 00002  —0.0008 00001  —0.0003 00769 00761 00754 00750  0.0740
0.6 00012 —0.0005 —0.0003 00001  —0.0003 00008  —00004  —0.0002 00002  —0.0001 01711 01662 01609 01609  0.1592
08 00025  —0.0015 —0.0016 —0.0017 —0.0015  0.0003 0.0002 0.0000 00000 00001 04010 03873 03743 03630 03577

$2-SAR-Poisson 1stStep-ML—W2 B2-SAR-Poisson 1stStep-OLS—W2 B2- Aspatial Poisson ML—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000

00  —00012 00010  —0.0027 00005  —0.0004 —00005  0.0010 —00029  —0.0009 00005 —0.0785 —00014  —0.0011 00004  —0.0005

02 —00038 —00021  —0.0011  —0.0003 00001  —0.0058  —0.0035  —00019  —0.0003 —0.0003 —00520 00991 00998 01022  0.1009

04 00031 00020  —0.0003 —0.0003 00008  —0.0006  —0.0002  —0.0012  —0.0003 00002  —0.0219 02671 02663 02682 02670

0.6 00045 00018 00013  —0.0007 00005  —0.0007  0.0010 0.0015 00009 00008 00143 05905 06000  0.6034 06027

08 00397 00172 00109  —0.0069 00081  0.0015 0.0006 —0.0001 00000  0.0004 00364 16308 16558 16638  1.6922

Rho-SAR-Poisson 1stStep-ML—W2 Rho-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000

00  —00152  -0.0020 00001  —0.0010 00017  —0.0082  0.0007 0.0018 0.0010  —0.0006

02 —00033 00006 00007 00009 00015  —00122  —00108  —00115  —00121  —0.0119

04  —00038 00009 00024 00002 00007  —0.0064  —0.0030 00000  —0.0026  —0.0016

0.6 00124 00072 00040 00021 00026 00126 0.0144 0.0152 00152 00154

08 00501 00341 00236 00166 00143  0.0047 0.0044 0.0045 00045 00043
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Table A4. RMSE: SAR-Poisson, SAR-LogLinear, and Aspatial ML Poisson with W2 for 1000 replicates.
31-SAR-Poisson 1stStep-ML—W2 31-SAR-Poisson 1stStep-OLS—W?2 B1-Aspatial Poisson ML—W?2

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0387  0.0232  0.0165 0.0142  0.0114  0.0402  0.0236 ~ 0.0167  0.0143 0.0114 0.0276 ~ 0.0178  0.0120  0.0095  0.0082
0.2 0.0363 0.0207  0.0151 0.0121 0.0110 0.0360  0.0207  0.0151 0.0121 0.0110 0.0386  0.0327  0.0300  0.0296  0.0294
0.4 0.0304  0.0187  0.0136  0.0103  0.0088 0.0300  0.0186  0.0136  0.0103 0.0088 0.0820  0.0781 0.0763 0.0757  0.0745
0.6 0.0241 0.0134  0.0093  0.0076 ~ 0.0066  0.0233  0.0134  0.0093  0.0076 0.0065 0.1784  0.1694  0.1625 0.1621 0.1603
0.8 0.0305 0.0156 ~ 0.0123  0.0102  0.0092  0.0100  0.0056  0.0038  0.0031 0.0026 04256 04019 03816  0.3692  0.3626

32-SAR-Poisson 1stStep-ML—W2 32-SAR-Poisson 1stStep-OLS—W2 2-Aspatial Poisson ML—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1487  0.0914  0.0669  0.0541 0.0488 0.1520  0.0924  0.0674  0.0543 0.0489 0.1224  0.0797  0.0551 0.0436  0.0394
0.2 0.1368 0.0843  0.0624  0.0495  0.0421 0.1376  0.0845  0.0625  0.0496 0.0422 0.1512  0.1238  0.1109 0.1095  0.1075
04 0.1182 0.0758  0.0515  0.0412  0.0362 0.1186  0.0761 0.0515  0.0411 0.0361 02866 02732 02714  0.2691 0.2709
0.6 0.0902 0.0527  0.0387  0.0302  0.0274  0.0894  0.0529  0.0385  0.0300 0.0273 0.6054  0.6064  0.6061 0.6050  0.6043
0.8 0.1310 0.0613  0.0402  0.0270  0.0277  0.0376  0.0216  0.0156  0.0126 0.0105 1.6870 1.6898 1.6781 1.7039 1.7125

Rho-SAR-Poisson 1stStep-ML—W2 Rho-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.2196 0.1283  0.0934  0.0803  0.0687  —0.0082 0.0007  0.0018  0.0010  —0.0006
0.2 0.1419 0.0860  0.0636  0.0484  0.0420  —0.0122 —0.0108 —0.0115 —0.0121 —0.0119
0.4 0.0814  0.0513  0.0360  0.0287  0.0245  —0.0064 —0.0030 0.0000  —0.0026 —0.0016
0.6 0.0571 0.0377  0.0264 0.0187  0.0157 0.0126  0.0144  0.0152  0.0152 0.0154
0.8 0.0840 0.0493  0.0290  0.0276  0.0245 0.0047  0.0044  0.0045  0.0045 0.0043

Table A5. Bias: SAR-Poisson. SAR-LogLinear, and Aspatial ML Poisson with W3 for 1000 replicates.
31-SAR-Poisson 1stStep-ML—W3 31-SAR-Poisson 1stStep-OLS—W3 B1-Aspatial Poisson ML—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0013 —0.0009 —0.0006 0.0000 0.0000 —0.0015 —0.0004 —0.0002 —0.0007 0.0002 —0.0008 —0.0004 —0.0004 0.0000 0.0001
0.2 —0.0002 —0.0003 0.0001 —0.0003 0.0002 —0.0068 —0.0057 —0.0049 —0.0051 —0.0049 0.0334 0.0320 0.0328 0.0327 0.0327
0.4 0.0018 0.0031 0.0030 0.0033 0.0031 —0.0074 —0.0067 —0.0061 —0.0066 —0.0059 0.0945 0.0955 0.0961 0.0950 0.0954
0.6 0.0053 0.0055 0.0049 0.0045 0.0076 —0.0043 —0.0036 —0.0040 —0.0047 —0.0041 0.2162 0.2243 0.2249 0.2249 0.2227
0.8 0.0333 0.0256 0.0271 0.0269 0.0258 0.0024 0.0008 0.0008 —0.0021 —0.0002 0.5565 0.5744 0.5710 0.5781 0.5701

32-SAR-Poisson 1stStep-ML—W3 32-SAR-Poisson 1stStep-OLS—W3 32-Aspatial Poisson ML—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0016 —0.0020 0.0028 —0.0006 0.0001 —0.0069 —0.0032 —0.0038 —0.0011 —0.0013 —0.0014 —0.0011 0.0034 —0.0005 0.0000
0.2 0.0020 0.0014 0.0053 0.0043 0.0041 -0.0173 —0.0166 —0.0191 —0.0190 —0.0184 0.1017 0.1032 0.1052 0.1047 0.1046
0.4 0.0175 0.0206 0.0198 0.0221 0.0212 —0.0227 —0.0236 —0.0241 —0.0259 —0.0267 0.2822 0.2859 0.2864 0.2869 0.2874
0.6 0.0382 0.0308 0.0296 0.0263 0.0248 —0.0144 —0.0147 —0.0169 —0.0191 —0.0196 0.6469 0.6572 0.6612 0.6640 0.6653
0.8 0.0978 0.0919 0.0982 0.0490 0.0311 0.0067 0.0086 —0.0031 —0.0136 —0.0153 1.8195 19117 1.9474 1.9597 1.9623

Rho-SAR-Poisson 1stStep-ML—W3 Rho-SAR-Poisson 1stStep-OLS—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0006 0.0000 0.0002 —0.0013 —0.0002 0.0043 0.0006 0.0018 0.0015 —0.0005
0.2 —0.0008 0.0015 —0.0006 0.0007 0.0002 0.0193 0.0199 0.0215 0.0227 0.0219
0.4 —0.0050 —0.0086 —0.0081 —0.0088 —0.0090 0.0303 0.0329 0.0336 0.0358 0.0346
0.6 0.0002 —0.0041 —0.0048 —0.0059 —0.0114 0.0236 0.0247 0.0275 0.0296 0.0288
0.8 0.0118 0.0060 0.0003 —0.0034 —0.0015 0.0114 0.0112 0.0158 0.0239 0.0231
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Table A6. RMSE: SAR-Poisson. SAR-LogLinear and Aspatial ML Poisson with W3 for 1000 replicates.
31-SAR-Poisson 1stStep-ML—W3 31-SAR-Poisson 1stStep-OLS—W3 B1-Aspatial Poisson ML—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0315 0.0198 0.0134 0.0109 0.0090 0.0358 0.0212 0.0148 0.0119 0.0100 0.0276 0.0178 0.0119 0.0095 0.0082
0.2 0.0326  0.0198 0.0133 0.0117 0.0099 0.0356 0.0212 0.0147 0.0118 0.0109 0.0427 0.0367 0.0345 0.0339 0.0336
0.4 0.0316 0.0197 0.0139 0.0118 0.0107 0.0324 0.0199 0.0144 0.0119 0.0106 0.1015 0.0983 0.0976 0.0959 0.0962
0.6 0.0271 0.0174 0.0125 0.0103 0.0134 0.0266 0.0160 0.0119 0.0104 0.0087 0.2288 0.2300 0.2284 0.2275 0.2246
0.8 0.0655 0.0502 0.0472 0.0455 0.0439 0.0494 0.0361 0.0327 0.0344 0.0324 0.6065 0.6061 0.5963 0.5972  0.5870

32-SAR-Poisson 1stStep-ML—W3 32-SAR-Poisson 1stStep-OLS—W3 32-Aspatial Poisson ML—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1356 0.0855 0.0592 0.0474 0.0413 0.1408 0.0865 0.0648 0.0509 0.0433 0.1224 0.0797 0.0540 0.0436  0.0394
0.2 0.1226  0.0759 0.0525 0.0437 0.0398 0.1295 0.0801 0.0573 0.0458 0.0423 0.1544 0.1242 0.1146 0.1126  0.1109
0.4 0.1143 0.0788 0.0645 0.0619 0.0558 0.1152 0.0718 0.0521 0.0456 0.0425 0.3083 0.2969 0.2915 0.2902 0.2899
0.6 0.1184 0.0851 0.0721 0.0582 0.0311 0.0898 0.0571 0.0394 0.0360 0.0341 0.6891 0.6764 0.6717 0.6715 0.6705
0.8 0.2134 0.1867 0.1864 0.1999 0.1949 0.1701 0.1297 0.1155 0.1217 0.1164 2.0317 2.0655 2.1007 2.0681 2.0419

Rho-SAR-Poisson 1stStep-ML—W3 Rho-SAR-Poisson 1stStep-OLS—W3

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1272  0.0784 0.0547 0.0436 0.0368 0.1414 0.0885 0.0621 0.0478 0.0441
0.2 0.0983 0.0554 0.0380 0.0320 0.0274 0.1116 0.0647 0.0482 0.0400 0.0368
0.4 0.0641 0.0377 0.0294 0.0268 0.0244 0.0717 0.0501 0.0419 0.0404 0.0382
0.6 0.0440 0.0308 0.0254 0.0203 0.0248 0.0422 0.0324 0.0308 0.0322 0.0307
0.8 0.0774 0.0542 0.0431 0.0417 0.0416 0.0429 0.036563 0.0342 0.0400 0.0387

Notes: (1) Bias is estimated as the average of 1000 simulation replicates of the difference between the parameter estimate and its true value.
(2) RMSE is estimated as the square root of the sum between the square of the bias and the empirical variance of the estimated coefficient
calculated after 1000 replicates. (3) SAR-Poisson 1stStep-ML is estimated using a two-step process. In the first step, the unobservable
conditional mean, y, is estimated using a PPML regression, and in the second step, the coefficients 31, 32, and p are also estimated using a
PPML regression. (4) SAR-Poisson 1stStep-OLS is estimated using a two-step process. In the first step, the unobservable variable Wlog() is
estimated using an OLS regression of Wlog(y), adding an ad hoc constant (c = 1) when y = 0 and, in the second step, the coefficients 31, 32,
and p are estimated using a PPML regression. (5) W1 and W3 are contiguity matrices created using the nearest neighbor criterion, where it
is computationally defined that each unit will have seven units as neighbors for W1 and four units as neighbors for W2, which are the
closest. W2 is created based on an inverse distance criterion, using the Euclidean distance between each unit.

Table A7. Bias: SAR-Poisson. SAR-LogLinear with W1 for 1000 replicates; X; with spatial dependence.

31-SAR-Poisson 1stStep-ML—W1

31-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0123 —0.0068 —0.0035 —0.0022 —0.0031 —0.0077 —0.0056 —0.0062 —0.0018 —0.0028
0.2 —0.0024 —0.0021 0.0001 0.0003 0.0008 0.0044 0.0032 0.0056 0.0066 0.0068
0.4 —0.0024 —0.0016 —0.0009 —0.0004 0.0004 0.0077 0.0086 0.0102 0.0104 0.0113
0.6 —0.0029 —0.0009 —0.0033 —0.0019 —0.0008 0.0086 0.0121 0.0107 0.0126 0.0136
0.8 —0.0093 —0.0164 —0.0191 —0.0220 —0.0226 0.0097 0.0089 0.0100 0.0107 0.0097

32-SAR-Poisson 1stStep-ML—W1 32-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0205 —0.0086 —0.0054 —0.0020 —0.0030 —0.0187 —0.0094 —0.0031 —0.0021 —0.0038
0.2 —0.0123 —0.0024 —0.0039 —0.0028 —0.0011 —0.0364 —0.0302 —0.0326 —0.0303 —0.0289
0.4 —0.0073 0.0012 —0.0009 0.0018 0.0017 —0.0583 —0.0553 —0.0573 —0.0554 —0.0564
0.6 0.0036 0.0033 —0.0014 0.0022 0.0021 —0.0694 —0.0757 —0.0789 —0.0795 —0.0788
0.8 0.0013 0.0045 0.0016 —0.0018 0.0001 —0.0532 —0.0631 —0.0686 —0.0789 —0.0778

Rho-SAR-Poisson 1stStep-ML—W1 Rho-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0264 0.0079 0.0035 0.0021 0.0045 0.0206 0.0124 0.0071 0.0029 0.0063
0.2 —0.0012 —0.0032 0.0034 0.0028 0.0001 —0.0056 0.0035 0.0094 0.0066 0.0051
0.4 0.0073 0.0052 0.0075 0.0062 0.0050 0.0204 0.0365 0.0419 0.0428 0.0435
0.6 0.0173 0.0088 0.0106 0.0081 0.0060 0.0586 0.0807 0.0868 0.0893 0.0895
0.8 0.0400 0.0306 0.0323 0.0329 0.0314 0.0555 0.0766 0.0837 0.0926 0.0920
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Table A8. RMSE: SAR-Poisson. SAR-LogLinear with W1 for 1000 replicates; X; with spatial dependence.

31-SAR-Poisson 1stStep-ML—W1

31-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1142 0.0703 0.0477 0.0399 0.0359 0.1140 0.0702 0.0472 0.0395 0.0353
0.2 0.1068 0.0700 0.0477 0.0404 0.0348 0.1043 0.0663 0.0462 0.0391 0.0340
0.4 0.1103 0.0666 0.0462 0.0394 0.0325 0.1051 0.0636 0.0996 0.0824 0.0324
0.6 0.0950 0.0604 0.0408 0.0326 0.0302 0.0910 0.0586 0.0396 0.0333 0.0320
0.8 0.0763 0.0487 0.0408 0.0385 0.0373 0.0707 0.0462 0.0332 0.0291 0.0263

32-SAR-Poisson 1stStep-ML—W1 32-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1740 0.1077 0.0767 0.0637 0.0536 0.2156 0.1323 0.0948 0.0771 0.0659
0.2 0.1635 0.1042 0.0727 0.0617 0.0520 0.2057 0.1274 0.0920 0.0794 0.0681
0.4 0.1638 0.1003 0.0720 0.0573 0.0498 0.2003 0.1274 0.0449 0.0385 0.0769
0.6 0.1548 0.0956 0.0695 0.0586 0.0476 0.1822 0.1257 0.1042 0.0958 0.0892
0.8 0.1548 0.1073 0.1017 0.0969 0.0900 0.1582 0.1117 0.0959 0.0962 0.0900

Rho-SAR-Poisson 1stStep-ML—W1 Rho-SAR-Poisson 1stStep-OLS—W1

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.3733 0.2327 0.1647 0.1259 0.1109 0.4042 0.2554 0.1768 0.1393 0.1236
0.2 0.2934 0.1744 0.1175 0.1017 0.0818 0.3358 0.1986 0.1342 0.1173 0.0986
0.4 0.2205 0.1202 0.0830 0.0675 0.0575 0.2615 0.1477 0.1102 0.0904 0.0795
0.6 0.1368 0.0733 0.0510 0.0423 0.0357 0.1610 0.1142 0.0999 0.0968 0.0948
0.8 0.0873 0.0517 0.0451 0.0443 0.0417 0.1109 0.0927 0.0926 0.0998 0.0974

Table A9. Bias: SAR-Poisson. SAR-LogLinear with W2 for 1000 replicates; X; with spatial dependence.
31-SAR-Poisson 1stStep-ML—W2 31-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0123  —0.0024 —-0.0026  —0.0002  —0.0015 —0.0064 —0.0010  —0.0022 0.0016 —0.0013
0.2 —0.0040  —0.0032 0.0005 —0.0001 0.0007 —0.0016  —0.0023  —0.0043 0.0002 0.0008
0.4 —0.0042 0.0027 —0.0006  —0.0008 0.0006 —0.0033 0.0034 —0.0002  —0.0006 0.0008
0.6 —0.0016 0.0016 0.0002 0.0009 0.0005 —0.0014 0.0020 0.0003 0.0009 0.0005
0.8 0.0001 0.0049 0.0029 0.0013 0.0005 —0.0007 0.0012 0.0013 —0.0005  —0.0007

32-SAR-Poisson 1stStep-ML—W2 32-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 —0.0205 —0.0105 —0.0039  —0.0002 —0.0039  —0.0101 —0.0040  —0.0026 0.0002 —0.0034
0.2 —0.0122  —0.0033  —0.0042 0.0030 —0.0031  —0.0088  —0.0045 0.0009 0.0025 —0.0038
04 —0.0128  —0.0010  —0.0044 0.0011 —0.0026  —0.0116  —0.0055 —0.0058  —0.0005 —0.0036
0.6 —0.0010  —0.0026  —0.0007  —0.0009 0.0013 —0.0064 —0.0063 —0.0018  —0.0018 0.0004
0.8 —0.0030 —0.0034 —0.0002 —0.0011 —0.0009 —0.0024 —0.0001 0.0024 0.0014 0.0006

Rho-SAR-Poisson 1stStep-ML—W?2 Rho-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.0264 —0.0183  —0.0201 —0.0258 —0.0070  —0.0024  —0.0045 0.0007 —0.0084 0.0027
0.2 0.0155 —0.0226  —0.0082 —0.0167 —0.0048 —0.0681  —0.0597 —0.0580 —0.0656  —0.0571
0.4 0.0100 —0.0100 0.0002 —0.0058 0.0005 —0.0904 —0.0728 —0.0654 —0.0701  —0.0653
0.6 0.0071 0.0018 0.0012 0.0023 —0.0018  —0.0497 —0.0225 —0.0170 —0.0142  —0.0152
0.8 0.0150 0.0136 0.0056 0.0066 0.0044 0.0135 0.0472 0.0570 0.0597 0.0620
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Table A10. RMSE: SAR-Poisson. SAR-LogLinear with W2 for 1000 replicates; X; with spatial dependence.

31-SAR-Poisson 1stStep-ML—W2 31-SAR-Poisson 1stStep-OLS—W2

Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1142 0.0709 0.0503 0.0418 0.0353 0.1117 0.0717 0.0504 0.0421 0.0354
0.2 0.1113 0.0656 0.0472 0.0395 0.0337 0.1116 0.0657 0.0473 0.0397 0.0337
0.4 0.1072 0.0668 0.0445 0.0393 0.0330 0.1063 0.0666 0.0444 0.0390 0.0330
0.6 0.0970 0.0594 0.0407 0.0345 0.0309 0.0964 0.0591 0.0406 0.0343 0.0308
0.8 0.0774 0.0457 0.0308 0.0242 0.0214 0.0770 0.0441 0.0306 0.0241 0.0213
32-SAR-Poisson 1stStep-ML—W2 32-SAR-Poisson 1stStep-OLS—W2
Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.1740 0.1337 0.0986 0.0834 0.0710 0.2279 0.1466 0.1007 0.0854 0.0723
0.2 0.2144 0.1343 0.0949 0.0797 0.0690 0.2264 0.1397 0.0962 0.0811 0.0698
0.4 0.2003 0.1293 0.0908 0.0753 0.0660 0.2143 0.1322 0.0915 0.0758 0.0661
0.6 0.1901 0.1190 0.0861 0.0670 0.0612 0.1950 0.1185 0.0854 0.0671 0.0612
0.8 0.1522 0.0970 0.0624 0.0518 0.0443 0.1542 0.0901 0.0621 0.0518 0.0442
Rho-SAR-Poisson 1stStep-ML—W2 Rho-SAR-Poisson 1stStep-OLS—W2
Rho/n 100 250 500 750 1000 100 250 500 750 1000
0.0 0.3733 0.4956 0.3579 0.3020 0.2538 0.4872 0.3062 0.2027 0.1741 0.1505
0.2 0.3981 0.3621 0.2393 0.2000 0.1718 0.4180 0.2643 0.1808 0.1573 0.1370
04 0.4164 0.2356 0.1561 0.1264 0.1106 0.3929 0.2239 0.1568 0.1347 0.1222
0.6 0.3435 0.1368 0.0897 0.0667 0.0619 0.2933 0.1541 0.1102 0.0852 0.0786
0.8 0.1594 0.0571 0.0338 0.0294 0.0250 0.2220 0.0781 0.0662 0.0643 0.0650
Appendix B. Countries in the Sample
The 234 NUTS Il regions in the dataset used in the empirical application come from
the following countries: Bulgaria, the Czech Republic, Denmark, Germany, Estonia, Ireland,
Spain, France, Croatia, Italy, Latvia, Lithuania, Hungary, the Netherlands, Austria, Poland,
Portugal, Romania, Slovakia, Finland, Sweden, the United Kingdom, and Norway. Belgium,
Switzerland, and Greece were discarded given the considerable lack of data in several Nuts
II from these countries.
Table A11. Correlation matrix of the variables.
Pat R&D_B R&D_G R&D_U Pers_ B Pers_.G Pers_ U Educ Pop GDP Mort
Pat 1.000
R&D_B 0.717 1.000
R&D_G 0.301 0.438 1.000
R&D_U 0.390 0.533 0.510 1.000
Pers_B 0.474 0.601 0.332 0.211 1.000
Pers_G 0.153 0.215 0.591 0.117 0.622 1.000
Pers_U 0.164 0.286 0.329 0.261 0.746 0.674 1.000
Educ 0.263 0.450 0.408 0.440 0.296 0.253 0.355 1.000
Pop 0.056 0.082 0.119 —0.088 0.663 0.651 0.775 0.010 1.000
GDP 0.573 0.639 0.519 0.642 0.368 0.148 0.226 0.559 —0.043 1.000
Mort —0.285 —0.248 —0.176 —0.266 —0.141 —0.017 —0.099 —0.275 0.082 —0.466 1.000
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Figure A1. Spatial distribution map of the variable Pat per quartile in 2012.
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Figure A2. Moran’s I diagram for the variable Pat.
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Figure A3. Local indicators of spatial association for the variable Pat.
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Figure A4. Local indicators of spatial association significance map for the variable Pat.
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Figure A6. Spatial quartile distribution map of spill-in knowledge spatial spillovers of R&D_B.
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Figure A7. Spatial quartile distribution map of spill-out knowledge spatial spillovers of R&D_B.
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