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Abstract: “Ecological buildings” and “energy-efficient buildings” are concepts which we encounter
on a daily basis and which define modern trends. The purpose of their design is to create an optimal
thermal microclimate by means of heat flows that form within it or enter it. A balanced combination
of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality
of the internal environment of buildings. This research addresses the problem of heat distribution
in construction materials based on wood and their thermal–technical properties in relation to the
sustainability requirements for the thermal–technical properties of constructions and buildings. The
research examines the structural parts of the external walls of modern log constructions. The objective
of this work is to analyse the thermal–technical properties of the structural parts of modern log
wood constructions in laboratory conditions and verify them against calculated values and values
declared by manufacturers. This publication is also a contribution to the current needs in terms of
the sustainability and internal environment quality of constructions in general. The publication is
also a contribution to the current needs in the field of heating technology in terms of sustainability
and the quality of internal environments.

Keywords: wood constructions; log structure; structural parts of wood constructions; thermal–
technical properties; heat transfer coefficient; thermal resistance; laboratory conditions; sustain-
able building

1. Introduction

If wood as a construction material is assessed in terms of environmental impact and
properties such as mechanical properties, aesthetic properties and thermal–technical prop-
erties [1,2], the outcome is that it is far superior to other materials. Wood has exceptional
properties, such as the ability to maintain very good indoor climatic conditions in both
summer and winter and the ability to release moisture into a dry environment and absorb
it from a moist environment [3,4].

Currently, there are dozens of primary wood construction systems. Some are a blend
of history and the latest industrial and physical expertise, making it difficult to produce a
clear classification of wood constructions and determine which technology is the best [5].
Wood constructions are most commonly divided into three categories, i.e., sandwich
wood constructions, solid wood constructions and Scandinavian-type wood constructions.
Another classification divides wood constructions into panel wood constructions, log
constructions, skeleton wood constructions, module wood constructions and layered wood
constructions [6]. As this research paper presents an analysis of modern log constructions,
also called Scandinavian-type wood constructions, the following section provides a brief
description of their characteristics.

Scandinavian-type wood constructions or modern log constructions originated in the
Nordic countries, where they represent a centuries-long tradition [7,8] (Hemström et al.,
2011; Wimmers, 2017). Thanks to their popularity, they are currently spreading to other Eu-
ropean countries. Sandwich Scandinavian-type wood constructions are almost exclusively
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saddle-roofed, with an arrangement that achieves a high housing standard on a relatively
small built-up area and with interiors exhibiting high-quality workmanship [9,10]. These
houses can be characterised as functional and understated [11]. Wooden vertical or hori-
zontal boards with tongues and grooves, which are ventilated, are used for these houses
almost universally [12]. Plasterboard elements are often fitted to the internal walls and
ceilings, and so-called fix-o-pan boards, similar to chipboard, with tongues and grooves,
covered in paintable and washable foil, are also used. These boards allow quick and easy
installation and their use also offers benefits for the user.

Environmental impact is a highly topical and extensively discussed issue nowa-
days [13,14], which is also immediately relevant to the construction industry. Every con-
struction activity has, to some extent, a negative impact on the environment. As a result,
natural materials such as wood are gaining in importance [15]. Continuous development
of wood materials and the introduction of advanced technologies produce a wide range
of wooden structural elements [16], which are increasingly common in construction. In
the production of wood constructions and their wooden structural parts, it is important to
design the appropriate construction composition [17,18]. It is also important to verify that
the structural parts of wood constructions have the appropriate design by using software
for calculating their thermal–technical parameters and the thermal–technical parameters of
the fragments of the external coating, such as floors, walls, ceilings, etc. This software is
developed according to the standards of the countries where it is used.

Calculations of the thermal–technical properties of structural parts can be performed
once the properties of the given materials to be used in the construction have been deter-
mined. Another important step is to understand the conditions in which the construction
and all of its structural parts and materials will be produced [19]. The type of environment
to which the construction is exposed has a significant impact on its lifetime, performance
and thermal–technical properties [20,21]. The thermal–technical properties of materials
are not constant, as they depend on the external conditions. Parameters such as material
density, moisture, temperature and many others significantly affect thermal–technical
properties and change them [22,23]. These parameters are often overlooked in calculations
of thermal–technical properties.

Based on these considerations, this work presents an analysis of the thermal–technical pa-
rameters of the structural parts of log wood constructions. The analysis was performed in lab-
oratory conditions and by using software on the created models for subsequent comparison.

2. Materials and Methods

This research examined selected parts of the external walls of modern log constructions.
These structures were examined in laboratory conditions using actual samples and by
means of calculation models for the sake of comparison. A diffusely closed structure and a
diffusely open structure were proposed as the design variants for the research. The load-
bearing frame of the external wall structures consisted of prefab wooden beam elements.
The first variant selected for the research was a log sandwich structure with mineral thermal
insulation and a wooden facade, and the second variant was a log structure with cork
insulation. The structures had comparable thickness.

2.1. Characterisation of the First Variant

The first variant was a log external wall structure with mineral thermal insulation.
This log external wall was built from square logs with a thickness of 92 mm and mounted
on a pre-prepared wooden installation frame placed in a climate chamber (Figures 1 and 2).
The square logs were fitted together using the tongue and groove method. Vertical holes
were also drilled in the square logs, where wooden rods were inserted to reinforce the
joints between them. After the joining and reinforcement of the square logs, the wall
was lined with vapour-permeable foil, secured to the wood with staples. The next step
was to complete a vertical wooden mesh. The vertical mesh was filled with mineral
wool insulation and covered with vapour-impermeable foil. The foil was secured with
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vertical square logs, which also served as a support structure for completing the wooden
facade, leaving an air gap between the wall and the wooden facade of the log structure.
During the process, sensors for measuring the temperature in various parts of the wall
structure were also fitted. These sensors also measured the heat flows and the moisture
in the exterior and the interior. The material composition of this variant was designed
to be vapour-impermeable. The purpose of the closed systems (vapour-impermeable)
of the structure was to prevent the transfer of moisture from the interior to the exterior
using a vapour-impermeable layer. This layer is typically made from vapour-impermeable
foil, with additional elements such as special glue or tape for covering the joints and for
attaching the foil to the surrounding structures. The technology of diffusely closed layers
requires high quality and precision in completing the external structures and all the details.
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2.2. Characterisation of the Second Variant

The second variant was a log external wall structure with cork thermal insulation. The
second structure to be built was a log external wall structure with cork thermal insulation
(Figures 3 and 4). The building procedure differed from the building procedure for the
log external wall structure with mineral thermal insulation. Square logs with a thickness
of 68 mm were used, but this time on both sides, joined with wooden columns. This
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wooden structure needed to be prepared before it could be fitted to the wooden installation
frame in the climate chamber. After the preparation and joining of the log parts of the
wall structure, the individual parts could be fitted to the wooden frame. The square logs
were also fitted together using the tongue and groove method, with wooden rods inserted
into drilled holes, in a way similar to the log external wall structure with mineral thermal
insulation. As the pre-prepared parts were being fitted together, granulated cork was
poured into the air gap to serve as thermal insulation. During the process of building the
log external wall structure, sensors for measuring the temperature, heat flows and moisture
were placed in the exterior and the interior. The material composition of this variant was
designed to be vapour-permeable. A diffusely open (vapour-permeable) coating for wood
constructions is designed so that it allows the free transfer of gases and water vapour
using the mechanism of molecular transfer from the interior to the exterior. In multi-layer
external coating systems for wood constructions, the individual layers must be correctly
placed in the structure. The composition of these systems must contain a layer on the
interior side with such diffusion resistance that will restrict water vapour diffusion to the
minimum acceptable level and prevent the convection of warm moist air into the structure.
Further layers in the direction towards the exterior must be arranged so that the diffusion
resistance factor decreases in that direction.
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Two methods were used to obtain results and the final values of the heat transfer and
thermal resistance coefficients. The first method of analysis was a calculation using data
from laboratory measurements and formulas for calculating the heat transfer and thermal
resistance coefficients; in addition, in those cases where the thickness of the individual lay-
ers of the structures was known, also the thermal conductivity coefficients of the individual
layers of the structure, their resistance during heat transfer on the inside and resistance
during heat transfer on the outside were calculated. The examination of the design variants
used a method of measuring the density of a heat flow passing through the structure (sam-
ple) and of measuring surface temperatures in stabilised thermal conditions, i.e., under
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virtually stable conditions. The data obtained from the experimental measurements in
laboratory conditions were interpreted according to the STN 73 0540 standard [24]. The
measurement of heat flow for the subsequent determination of selected thermal–technical
parameters was also inspired by the methodologies of Evangelisti et al. [25], Bienvenido-
Huertas et al. [26], Kumar and Suman [27] and Meng et al. [28]. The following material–
technical equipment was used when applying the above method of determining the U
value from the measured heat flow density: the ALMEMO 5690-2 (Ahlborn) measuring
centre, surface temperature sensors, a plate for measuring heat flows and temperature
and ambient humidity sensors. The examined design variants were placed in a climate
chamber, where stable ambient conditions were simulated. The simulated temperatures
were exterior and interior temperatures ranging from −13 to 20 ◦C [24]. The examined
samples were placed in the climate chamber THERMOTRON.
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The second method used software for the calculation of thermal technical character-
istics of structural parts of buildings. This software analyses construction details. It is
designed according to the STN-73 0540 standard [24]. If various details of a construction
are modelled, the software can determine the exact indoor and outdoor temperatures,
the heat transfer coefficient of non-homogeneous structures, linear heat transfer factors,
the moisture values in cross-sections of structures and the water vapour condensation
areas in structures. Comparable limit ambient conditions for both variants were used for
calculating thermal–technical properties. The limit conditions for calculating U for thermal
transmittance were chosen as follows: Rsi = 0.13 (m2·K)/W a Rse = 0.04 (m2·K)/W, internal
and external temperature i = 20.00 ◦C a e = −12.00 ◦C, relative internal and external air
humidity i = 50.00 % a e = 84 %. The choice of boundary conditions was in accordance
with the valid standards for our country so that these values conflicted with the simulated
laboratory boundary conditions. From this point of view, comparable boundary conditions
were maintained so that the conclusions were as gentle as possible.

3. Results

Using instruments, measured values were obtained from the wood construction
structural parts, i.e., the log external wall structure with mineral thermal insulation and
the log external wall structure with cork thermal insulation. Results from each of the
construction structural parts were obtained using the method of algebraic calculation
performed by the software for calculating the basic thermal–technical properties of the
fragments of construction coating. It was the results of the laboratory measurements and
the differences between those results and the results produced by the software and the
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created models that received the most attention. As the analysed structures could not be
described as homogeneous due to their special composition, it was not possible to analyse
them precisely using the software, so emphasis was placed on laboratory measurements,
which could more accurately reflect the actual properties of the analysed structure types.

3.1. Analysis of the Results of Laboratory Measurements

Measured values were obtained from the wood construction structural parts, i.e.,
the log external wall structure with mineral thermal insulation and the log external wall
structure with cork thermal insulation, using the sensors fitted to the different parts of
the structures. There were several sensors for measuring temperature, heat flows and
moisture. The first sensor measured the relative air moisture of the external environment,
the second sensor measured the temperature of the external environment, the third sensor
measured the relative air moisture of the internal environment, the fourth sensor measured
the temperature of the internal environment and the fifth sensor measured the heat flow
through the structure. Before starting the measurements, it was necessary to set limit
conditions such as environment temperature and air moisture in order to run simulations.
External environment temperature was set to −13◦C and relative air moisture to 84%, and
internal environment temperature was set to +20◦C and relative air moisture to 50%. These
limit conditions were used for both structure types. When the limit conditions were set, the
measurement cycle was launched. The measurements lasted for a period of 24 hours for
each variant. The values from the individual sensors were recorded by a digital recorder at
1-minute intervals.

For the first calculation method, i.e., the method based on the measured values from
the laboratory measurements of the wood construction structural parts, it was necessary
to abstract valid values (values after the examined samples stabilised) from the measured
values. In other words, data were abstracted from the measurements after the stabilisation
of the heat flows through the structures. Temperature and heat flow values were recorded
during the measurement of the values of the log external wall structures at 1-minute
intervals. Figure 5 shows the heat flows and temperatures in the measured locations of
the structure.
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The final values of the heat flow and thermal resistance coefficients were calculated
and summarised by analysing the data from the laboratory measurements. The following
parameters were found for variant 1: U = 0.17 W/m2·K, R = 5.88 m2·K/W. The following
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parameters were found for variant 2: U = 0.13 W/m2·K, R = 7.69 m2·K/W. The comparison
in laboratory conditions showed that the structure with cork insulation, i.e., variant 2,
exhibited better thermal–technical properties than variant 1.

3.2. Analysis of the Results from Calculation Models

Software for calculating the thermal–technical properties of the fragments of construc-
tion coatings (wall, ceiling, floor and others), with one-dimensional heat and moisture
conduction, i.e., without the effect of a thermal bridge, was used to obtain the theoretical
calculation values of the heat transfer and thermal resistance coefficients. In the calcula-
tion models, the modelled structures were designed as identical copies of the structures
examined in laboratory conditions.

3.3. Log External Wall Structure with Mineral Thermal Insulation

The thickness of the individual layers of the log external wall structure with mineral
thermal insulation can also be seen in Table 1. In addition to the thickness of the structure,
the table also shows values such as volumetric weight (kg/m3), thermal conductivity
coefficient (W/(m·K)), heat capacity (J/(kg·K)) and diffusion resistance factor.

Table 1. Composition—log external wall structure with mineral thermal insulation.

Layer Name Volumetric Weight
ρ (kg·m3)

Layer Thickness
d (mm)

Thermal Conductivity Coefficient
λd (W/(m.K.))

Diffusion Resistance Factor
µ (-)

Coniferous wood 400 19 0.13 157

Air cavity - 25 0.147 1

Vapour barrier 140 0.2 0.21 160109

Thermal insulation 26 200 0.034 1

Vapour-permeable foil 1000 0.4 0.21 57

Coniferous wood 400 92 0.13 157

3.4. Log External Wall Structure with Cork Thermal Insulation

The thickness of the individual layers of the log external wall structure with cork
thermal insulation can also be seen in Table 2. In addition to the thickness of the structure,
the table also shows values such as volumetric weight (kg/m3), thermal conductivity
coefficient (W/(m·K)), heat capacity (J/(kg·K)) and diffusion resistance factor.

Table 2. Composition—log external wall structure with cork thermal insulation.

Layer Name Volumetric Weight
ρ (kg·m3)

Layer Thickness
d (mm)

Thermal Conductivity Coefficient
λd (W/(m.K.))

Diffusion Resistance Factor
µ (-)

Coniferous wood 400 19 0.13 157

Cork thermal insulation 45 220 0.04 3

Coniferous wood 400 92 0.13 157

The theoretical analysis of the simulated models using the software produced the
parameters of the structures as follows: variant 1 U = 0.15 W/m2·K, R = 6.50 m2·K/W and
variant 2 U = 0.16 W/m2·K, R = 6.04 m2·K/W.

Certain differences between the assessed variants can be seen in the calculation models.
The difference exhibited by the simulation models was not as significant as the difference
exhibited by the laboratory measurements. In the simulation models, variant 1 also exhib-
ited slightly better parameters than variant 2. It follows from this that the log external wall
structure with cork thermal insulation had better thermal–technical properties than the log
external wall structure with mineral thermal insulation. However, the difference between
the compared variants was negligible.
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Following the comparison of the laboratory and calculation analyses, it can be stated
that the analysed structures exhibited different thermal–technical parameters in the labora-
tory simulations from the parameters exhibited in the calculation simulations.

As for limitations, this research may be limited by the measurements being conducted
in laboratory conditions, where deviations are more likely to occur. For instance, the
sensors used to measure thermal flows, surface temperatures and moisture work with a
certain minimum deviation, which needs to be taken into account.

Another reason that deviations may occur in these types of measurements is that
the examined structures are not homogeneous. As wood is not a homogeneous material,
it is necessary to adapt the placement of the measurement points accordingly for the
measurements to be valid. Before installing the measurement points, the structure must be
assessed with the aim of reducing the effects on these points. In this research, the laboratory
simulations were performed on a sufficiently large sample, which, for instance, eliminated
side energy loss in the structure. Theoretical calculation models also have their limitations,
as they rely on the ideal values of materials, which differ in certain ways from the actual
in-situ conditions.

The key aspect of this study is the comparison of laboratory and computational and
declared values, respectively. In this sense, the benefit of the research is mainly in terms
of providing insight into how the declared parameters differ from those measured in
laboratory conditions. The findings show that these values differ at certain moments and
therefore it is necessary to take this into account in the future design of wood-based build-
ings. This work expands the knowledge in the study of the thermal–technical properties
of wood-based buildings. At present, there are many construction systems for the imple-
mentation of wood-based constructions. In addition, the individual construction systems
are not the same if they are manufactured and implemented by different companies. Each
manufacturer adapts the technology according to their needs and the needs of their end-
consumers. Therefore, it is necessary to examine the various options that are currently
being implemented. This work also contributes in this sense to the knowledge in the field
of wooden buildings as such.

The popularity of wood-based constructions is increasing. The popularity of this
construction system stems from its advantages, particularly the ratio of weight to static load-
bearing capacity. Mainly for this reason, wood-based construction systems are becoming
the main alternative to the traditionally used construction system based on concrete, steel
and masonry. Other advantages are the possibility to implement constructions by the so-
called dry construction method and the fact that wood-based constructions have favourable
environmental parameters compared to the traditional construction method [29]. Wooden
buildings and wood-based construction systems behave differently at some point than
traditional solutions in terms of energy diffusion in construction systems. This condition
is mainly caused by the fact that wood-based constructions do not have homogeneous
constructions and are often realised from so-called sandwich components. Therefore, more
knowledge in this area is needed, besides that of how the individual design solutions
behave in real conditions, which was also the goal of this presented research.

There is a great deal of research dealing with wooden buildings from different perspectives
and with different methods of analysis. For example, the research by Tapanainen et al. [30]
dealt with the combustion efficiency of log wood in the context of the production of partic-
ulate matter. These authors state that in terms of emission production during combustion,
the technique and method of combustion play an important role. Thus, it is possible with
these techniques to influence the mentioned adverse effects on the environment.

Falk’s [31] work focused on wood from the point of view of sustainability as such and
its use and application in wood-based constructions. Based on the analyses presented in
this work, the conclusions state that it is clear that the green building movement is here
to stay and will undoubtedly grow in the future. This could be beneficial for the wood
industry, because there is a positive and convincing story to tell about wood as a sustainable
and environmentally preferable material. By providing the green building community with



Sustainability 2021, 13, 2994 9 of 12

science-based facts about its sustainability, embodied energy and carbon impact, wood may
stand out as the greenest of building materials. However, an important aspect to mention in
this work is that it is necessary to consider the origin of wood. Thus, it is important to use
in construction applications such wood that is certified and comes from a sustainable forest,
is processed in a sustainable way and is applied in the construction of sustainable buildings.
The knowledge gained during our research in the field of wood-based construction systems
agrees with these statements.

The work of Eriksson et al. [32] addressed climate change mitigation through the
increased use of wood in the European construction industry—towards an integrated
modelling framework. In this research, they modelled three scenarios over 23 years. Two
scenarios assumed that, by 2030, another one million residential dwellings would be
produced annually from wooden materials instead of non-wooden ones. These scenarios
have had little impact on markets and forest management and have reduced annual carbon
emissions by 0.2-0.5% of the total European Greenhouse Gas Emissions. The third scenario,
the extreme assumption that all European countries will consume 1 m3 of sawn wood per
capita by 2030, has had a major impact on carbon emissions, volumes and trade flows.
However, price changes in this scenario also affected forest management in ways that
differed significantly from the projections of the partial equilibrium model. The results of
this research suggest that increased use of wood in construction applications will have little
impact on forestry and carbon stocks in forests. However, ultimately, the implementation
of more environmentally friendly building structures can reduce the negative impacts
of the construction industry on the environment. These findings are also supported by
our findings. Indeed, we state in our research that modern wood-based buildings can
undoubtedly compete with traditional building systems both in terms of thermal–technical
parameters and in terms of other physical and mechanical properties of buildings as such.

Similar issues have been addressed by Börjesson and Gustavsson [33] in their work
on greenhouse gas residues in building construction, focusing on wood versus concrete
in terms of life cycle and forest land use. In principle, this study shows that wood used
in construction applications can fully compete with traditional materials. In addition,
wood has many favourable environmental benefits compared to conventional materials.
Based on our knowledge, we support these claims. However, it is important to note that
the use of wood is not possible in all situations and applications to replace traditional
materials; therefore, it is necessary to deepen knowledge about wood-based constructions
and carefully consider the applications of wood in construction solutions.

Nevertheless, many works in the field of wooden buildings deal with the impact of
these buildings on the environment. Proof of this is the work of the authors Diyamandoglu
and Fortuna [34], where they focused on the reconstruction of houses with wooden frames
in the context of material recovery and environmental impact. Among other findings, it can
be abstracted from the conclusions of this work that wooden elements used in construction
can be recycled in other sub-applications, provided that disassembly is possible. Thus, the
reuse of certain wood-based parts also contributes to reducing the negative impact on the
environment. Our knowledge is based on these statements and on our work with various
wood-based applications. For example, during the implementation of our research within
the construction system based on modern log elements, it was not difficult to disassemble
and reassemble the structure without damaging the beams. Thus, the recycling or reuse
of these elements is possible, for example, in contrast to traditional monolithic reinforced
concrete structures, which, after disassembly or demolition, cannot be used in their original
state. Thus, it is necessary to separate raw materials, recycle them and expend considerable
energy for their reutilisation. Moreover, embodied energy in traditional conventional
building solutions is incomparably higher than in wood-based applications.

The consumption of primary energy during the life cycle and the carbon footprint
of conventional and passive houses with a wooden frame was addressed by the authors
Dodoo and Gustavsson [35]. From the conclusions of this research, it is possible to highlight
the fact that wooden buildings as such can undoubtedly achieve the strictest energy
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standards in comparison with traditional conventional building solutions. Thus, at present,
when enormous emphasis is placed on the efficient use of energy in all phases of the
life cycle, it is necessary to address this issue. We also support these findings on the
basis of our analyses, where we found that blue wood-based construction solutions can
achieve the required energy standard according to legislative requirements and also the
requirements of end-users of buildings. This means that modern wooden buildings may
be more interesting for future investors and developers in terms of the sustainability of
their projects.

The authors Katunská and Katunský [36] offered alternative solutions of wooden
external walls in their research. In this work, they analysed a similar type of construction
as we do in ours, but their construction system was based on round log elements. In our
research, we analysed a related system based on a traditional log construction system,
but in our case, a system based on a modern design of the so-called Scandinavian type
of wood-based buildings was analysed. By comparing this work with ours, we found
certain parallels. However, from the conclusions of this work, it can be stated that the
modern design of log construction systems provides significantly better thermal–technical
parameters than the classical alternative. The main reason is that the modern solution
uses the greater potential of solid wood than the classic solution and this results in the
mentioned benefits in terms of thermal–technical parameters but also others.

The authors Liu et al. [37] also dealt with a similar issue as we dealt with in our
research; in our work, we simulated various environmental conditions in a climate chamber,
where we investigated various wood-based wall structures. However, in this work, they
focused on a different principle of the design solution, in contrast to our work. In our work,
we investigated design solutions of perimeter structures based on massive log elements. In
their work, Liu et al. investigated construction solutions based on a sandwich construction,
the supporting part of which was a frame or skeleton. As part of the interweaving of
knowledge from the above research, it can be abstracted that sandwich constructions show
very favourable thermal–technical parameters, which can fully compete with traditional
building solutions for more subtle wall constructions. This makes it possible to make
better use of the acquired internal usable space of such solutions with a low built-up
area than with conventional building solutions. Our findings based on the analysis of
wood-based structural systems in various variants of structural compositions also coincide
with these findings.

Authors Kancelák et al. [38], in their research, also deal with the examination of
selected thermal–technical parameters of log buildings. However, the construction systems
analysed in their work were made of round beams, which is different from the system
that we analysed in our work. A certain parallel with our research is the fact that their
analysed buildings do not achieve such thermal–technical parameters as a modern log
house solution based on the Scandinavian type. The authors Kecálek and Petříček [39] also
analysed traditional log construction in their research, but only through simulation models.
From the conclusions of this research, it can be stated that traditional log constructions
have a lower so-called effective area of the structure because the rounding reduces their
thermal–technical parameters. In contrast, the constructions that we analysed in our work
eliminate these shortcomings by the fact that the individual log houses are chamfered and
have a higher contact surface, which is not cooled by rounding.

4. Conclusions

With its properties, wood meets all the requirements for modern construction ma-
terials. The main advantage of wood as a construction material is its mechanical re-
sistance, good thermal–technical properties and environmental impact. All these prop-
erties make it suitable for use in low-energy constructions. The dominant trend in the
current construction industry is reduction in energy demand and energy saving in the
operation of buildings. The objective of this research was to create, model and analyse
structural parts used as elements of modern log constructions in terms of selected thermal–
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technical parameters. The analysis of the two external wall structure variants using lab-
oratory measurements showed that the log external wall structure with cork thermal
insulation had better thermal–technical properties than the log external wall structure
with mineral thermal insulation. This finding was also confirmed by the manual cal-
culation from the values obtained from the laboratory measurements as well as by the
software calculation. The final values of the heat transfer and thermal resistance coeffi-
cients of the wood construction’s structural parts obtained using the software differed
from the final values from the calculations of the laboratory measurements. The final
values from the laboratory measurements (variant 1: U = 0.17 W/m2·K, R = 5.88 m2·K/W;
variant 2: U = 0.13 W/m2·K, R = 7.69 m2·K/W) were better than the final values from the
software (variant 1: U = 0.15 W/m2·K, R = 6.50 m2·K/W; variant 2: U = 0.16 W/m2·K,
R = 6.04 m2·K/W). The results of this research show that the theoretical characteristics of
such types of structures differ in certain ways from the calculated ones. Another significant
finding is that these types of constructions can compete with traditional constructions not
only in terms of sustainability but also in terms of the thermal–technical parameters of
external structures.
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