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Abstract: Recent developments in vehicle automation, connectivity, electro-mobility and ridesharing
are expected to transform urban mobility patterns and reshape cities. There is enormous uncer-
tainty about how these technological developments, collectively referred to as the ‘technological
shift in transportation’, may impact cities. This paper examines whether the technological shift
in transportation will lead cities on a path to sustainability in five aspects—traffic flow, space use,
energy consumption, transit and active mobility and economic affordability—through a review of
34 quantitative studies. We find that these studies backed by analytical and simulation models
can provide more precise answers, and their results tend to contradict each other based on starting
conditions, modelling methods and other driving factors. These driving factors fall within four
categories: technological integration, policy, operations and urban planning. The interaction of these
driving forces will determine if the technological shift improves transportation sustainability or is
detrimental for the city in the long term.

Keywords: autonomous vehicles; connected vehicles; shared vehicles; simulation modelling; urban
planning; policy

1. Introduction

The urban transportation sector has witnessed several technological innovations in
the last two decades, notable among these being the accelerated pace of development in
vehicle automation technologies [1,2]. There is no clear consensus on when automated
vehicles (AVs) would be widely deployed, and to what level of automation [3,4], with
implementation horizons constantly shifting. At the same time there are emerging systems
and technologies in transportation, which in combination with automation, have the
potential to fundamentally shift existing mobility patterns, ushering in a ‘new mobility
era’ [5]. Platform-based ride-hailing systems, developments in affordable electric vehicles
with constant improvements in batteries [6,7] and growing connectivity and sensing in
our environment, marked by latest developments in 5G technology [8,9], are examples
of such innovations. These technologies have been variously described as a series of
isolated technological disruptions [10,11], that amount to a revolution when seen as a
whole [6,12,13]. In this paper, we refer to the combination of vehicle automation and other
enabling technologies as the ‘technological shift in transportation’.

It is as yet uncertain how the technological shift will impact cities. Those that claim that
these technologies harbinger the next big paradigm shift in transportation often cite their
environmental, safety, speed, space and cost-saving benefits. But many critics find such
claims highly exaggerated given the current state of technology and uncertainty regarding
their impacts. Even if the latter view prevails, AVs and other supporting technologies have
already garnered significant interest in research, planning agencies and private compa-
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nies. A more nuanced understanding of the purported benefits and dangers can benefit
this discussion.

This review investigates how the technological shift in transportation will impact
cities, whether it will set them on the path to sustainability or be detrimental to it. There
is much debate about how one defines ‘sustainability’ and ‘sustainable development’,
but a widely accepted view is to carefully balance environmental concerns with economic
growth [14]. Richardson developed a framework to analyze ‘sustainable transport’ based on
a literature review, and found ‘societal factors’, safety, access, fuel consumption, congestion
and land use to be the key areas of concern [15,16]. Yigitcanlar and Dur’s sustainability
assessment model considers transit usage, walkability and bike-ability, and reduction in
vehicle kilometers travelled as the key indicators for transport sustainability [17]. Similar
indicators are also found in comprehensive documents such as the Sustainable Urban
Development Goals published by the UN [18] and the EU’s Urban Agenda [19]. This paper
examines the impact of the technological shift on cities from five lenses of sustainability—
impact on traffic flow and travel time, space consumption of transportation infrastructure,
traffic-based emissions, transit and active mobility and cost of travel.

According to Papa and Ferreira [20], studies on the impacts of automated vehicles
on cities can be classified in two types, studies on holistic scenarios and isolated impacts.
The first type analyzes broader implications of the technological shift using qualitative or
scenario-based approaches. Some examples of such type of studies include Chen et al.’s
expert interview and surveys [21] and Stead and Vaddadi’s review of scenario-based
studies on the impact of AVs [22]. The second type of studies focusses on outcomes of
the technological shift in limited areas, for example only emissions or congestion, using
analytical approaches and simulation models, which is the focus of this paper.

2. Studies on Isolated Impacts

Building an accurate model of a complex system like a city and making accurate
predictions regarding the impacts of a technology in nascent stages is difficult. Although
the studies on isolated impacts of the technological shift are quantitatively modelled, they
can hardly be considered accurate predictive models. Only a limited set of parameters can
be considered in hypothetical models and the choice of these parameters is highly subjective,
which leads to diverging results. However, qualitative holistic scenario-based studies face
similar challenges of over-simplification of reality and diverse interpretations [22]. Despite
the similar challenges in both quantitative and qualitative approaches to future thinking,
often, quantitative analyses form the bulk of such studies and by virtue of being more
precise, tangible and measurable, tend to be misconstrued as being more accurate. A better
understanding of the underlying assumptions, and the selected parameters that lead to the
diverging results, can not only help us navigate the complex inter-relationship between
planning and policy decisions and impact on transport sustainability, but also expose the
precariousness of quantitative models used to study futuristic technologies such as AVs.

Thirty-four peer-reviewed articles published between 2011 and 2020 were selected
for this review (see Appendix A for a complete list and description of selection criteria).
All studies use modelling and simulation as the primary method of analysis. Automated
vehicles (AV) are considered in all studies, and half the studies analyze the impacts of shared
automated vehicle (SAV), with some degree of connectedness. Four studies specifically look
at the impacts of connected automated vehicles (CAV), and three studies also include shared
electric AVs (SEAV). Eleven of the simulations are modelled in a hypothetical environment
with no corresponding real location. The rest are located in diverse geographies in the
US, Europe and Asia. Please note that the term ‘vehicle’ here only includes passenger
commute vehicles, ranging in size from a small four-seater to a bus, and serving different
purposes, from a private car, to a taxi, shuttle, or bus, as detailed in Appendix A. We will
now examine how the technological shift in transportation will impact cities in five areas.
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2.1. Will the Shift Augment or Curtail Traffic Flow?

Studies on the impact of the technological shift on traffic flow present two opposing
points of view. The first viewpoint suggests that there will be significant improvements
in traffic flow as the technological shift enables more efficient driving and intelligent
management of modes. In another view, these gains may be cancelled out by additional
travel due to induced demand, latent demand, change in the value of travel time and
increased detours/empty mileage.

According to some studies, AVs drive more efficiently at higher speeds through
smoother driving and a shorter minimum headway, resulting in an increase in capacity.
Wagner [23] demonstrates through traffic simulation studies that autonomous systems
reduce intersection delays by 5–80%. Zhai et al. study the impact of replacing one bus
line with an automated bus on-demand system in Fuyang prefecture in China, and find
the system overwhelmingly advantageous, with less road resource occupation, shorter
passenger waiting times and more efficient utilization of vehicle capacity [24]. However, a
microscopic traffic simulation by Arnaout and Arnaout [25] suggests that capacity gains
are not significant under a low to moderate penetration rate of AVs. For noticeable gains in
traffic flow, at least 40% of all vehicles on the street need to be automated. Xie et al. [26]
find that traffic efficiency can be improved when autonomous vehicles drive more op-
portunistically in normal urban traffic scenarios, but this can also lead to more potential
conflicts between the vehicles, leading to adverse safety impacts. Additionally, if the AV
has to deliver similar rider comfort as today, it needs to accelerate and decelerate consider-
ably slower than conventional vehicles, which can even reduce traffic flow from current
levels [27].

The throughput of traffic at intersections can be dramatically improved with connected
AVs (CAV). Friedrich [28] finds that with 100% automated traffic, the capacity would increase to
about 1120 cars/h per lane, a 40% increase, due to better reaction time. Tachet et al. [29] replace
traditional traffic lights with ‘slot-based intersections’ (SI) in a microscopic traffic simulation, and
show that such a transition theoretically has the potential to double capacity at an intersection
and significantly reduce delays. However, these SI simulations have been criticized for ignoring
pedestrian and cyclist flow at the intersections [30].

Shared AVs (SAV) may further reduce the transport impact since fewer vehicles are
required on the street to serve the same number of trips. For example, according to a
simulation study, a fleet of 9000 vehicles can serve all taxi trips in Manhattan with an
average waiting time of less than a minute [31]. If up to 10 minutes wait time is permitted,
the fleet size can be as low as 6470 vehicles, according to agent-based simulations by
Bauer et al. [32] for shared electric AV (SEAV) taxis in Manhattan, despite taking into
account the extra time required for vehicle charging. Several other studies find a simi-
lar reduction in overall fleet size for SAVs in different operational contexts [33–36], but
the magnitude of the reduction is subject to various external planning and operational
policy decisions.

With reduced congestion on the street, the average total service time for shared
vehicles may improve, even if we factor in the detour, waiting, pick-up and drop-off
time, as demonstrated by an agent-based simulation study of SAV deployment in Austin,
Texas [35]. Agent-based simulations of SAVs in Greenwich, UK, find a travel time reduction
of up to 41% [37], and that in the Zurich area finds a substantial improvement in network
performance (up to double the speed) [38]. However, the maximum speeds remain higher
for private vehicles compared to pooled vehicles in the Zurich study, and contrary to the
Austin study, Alonso-Mora et al. [33] observe greater delays due to detour, waiting times
and Vehicle Kilometers Travelled (VKT) in their study for New York. The overall impact of
vehicle sharing on traffic flow remains uncertain and depends on the size and capacity of
the SAV fleet.

An interesting effect of vehicle automation is the change in the value of in-vehicle
travel time, defined as the willingness-to-pay for a reduction of time spent in the vehi-
cles. Vehicle automation will allow the user to spend a large portion of in-vehicle time
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productively engaged in other activities [39]. In a more radical vision of the future with
automated vehicles, “time slots that were previously almost exclusively occupied by travel
will dissolve into permeable channels of flows, permitting overlapping continuity of activi-
ties” [40]. On the other hand, reduced (perceived) travel time, and change in the value of
travel time, may create new induced demand.

According to an activity-based model of Seattle, speed and capacity increases may
improve regional mobility, but could also induce additional demand leading to more
VKT [41]. A study of SAV implementation in Switzerland finds that the additional demand
generated outweighs the capacity benefits or automation, and would lead to substantial
increases in travel times [42]. Newly mobile population enabled by automation, such
as children, elderly and the disabled, constitute a latent demand which may add to this
induced demand. A mathematical modelling study estimates that increased travel under
this effect could reach up to 40% [43]. The magnitude of induced and latent demand can
only be very crudely speculated on at the moment, and will depend on attractiveness of
AVs, SAVs, EVs, transit or active mobility, which are in turn influenced by urban planning
and operational policy.

It is clear that the technological shift can both improve or deteriorate current traffic
flows depending on various external driving factors and starting conditions. These are
summarized in Appendix B Figure A1.

2.2. Will the Shift Increase or Decrease the Spatial Imprint of Transportation?

Transportation infrastructure such as roads and parking occupy a significant percent-
age of urban land. Consequently, one of the most popularly cited direct benefits of vehicle
automation is better utilization of road space—both lateral and longitudinal [13]. Lateral
space can be gained by narrowing lane widths to as low as 2.5 m [44], from the current
standard of 3.4–3.7 m in Singapore, since AVs can drive more precisely. Longitudinal space
can be gained by reducing the gap between vehicles. Humans should not drive with a time
gap of less than 0.9 s, and the legal recommendation is 2 s, whereas an AV can drive with a
0.3–0.5 s gap, leading to more efficient use of longitudinal space [23].

The longitudinal gains in road capacity depend on road type and changes in demand.
A mathematical model of the flow of purely autonomous traffic shows that street capacity
can increase from 40% to 80% depending on the type of street [28]. Ambühl et al. [45]
also find that road space needed can decrease by around 11–12% only as a result of
automation, serving the same number of trips. However, they also find that if the same
road infrastructure is maintained, the total number of trips may potentially triple.

Further longitudinal capacity benefits can be drawn from CAVs. Tientrakool et al. [46]
show that AVs equipped with sensors can increase highway capacity by 43%, and those
equipped with cooperative adaptive cruise control (CACC) can increase highway capacity
by 273%. It can be concluded that connected automated vehicles offer much more substan-
tial gains in terms of road capacity than only AVs. However, these gains are contingent on
the market penetration of the technology and the street type [47]. Connected vehicles can
also dramatically increase intersection capacity, as discussed previously, rendering traffic
signals obsolete and freeing up space at intersections.

Vehicle sharing may lead to fewer vehicles on the street overall, resulting in a further
increase in longitudinal capacity. In all three simulation models of Ann Arbour, Babcock
Ranch and Manhattan, Burns et al. [31] found that far fewer shared cars were needed
to serve the same number of trips as privately owned vehicles. Alonso-Mora et al. [33],
Fagnant and Kockelman’s [35] and Spieser et al. [36] also reach the same conclusion from
their studies in New York, Austin and Singapore, respectively. Hörl et al. [48] find that
the fleet size required to serve all trips originating and ending in Zurich city could vary
between 7000 to 14,000, depending on the choice of operational policy, e.g., customer
vehicle assignment, repositioning of empty vehicles, costs, etc.

The space required for parking can be significantly reduced through changes in
parking infrastructure design for automated vehicles. Nourinejad et al. [49] use numerical
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modelling to test optimal parking layout for AVs and find that AV carparks can decrease the
need for parking space by an average of 62% and a maximum of 87%. As we move towards
greater vehicle sharing, parking requirements would reduce even further. Agent-based
simulations of Greenwich show that automated mobility on demand can reduce parking
space requirement by 16–38% due to reduction in trips that require parking [37]. Zhang
et al. [50] use agent-based simulations and show up to 90% reduction in daily parking
spaces required with shared autonomous vehicles’ implementation at a penetration rate of
as low as 2%.

The technological shift will have a substantial impact on the overall footprint of the
city, by influencing work and home location choices in the long term. Zakharenko [51]
found a 7.1% increase in the urban land area in their location choice model, as a result
of vehicle automation. The willingness to travel longer distances due to decreased value
of travel time could increase the urban footprint, cancelling out the gains in longitudinal
capacity. Gelauff et al. [52] also found similar effects in their simulations of a spatial general
equilibrium model in the Dutch context. With only car automation, in-vehicle travel time
becomes more productive, and it may lead to population flight from the cities, leading
to dispersion. With public transit automation, coupled with door-to-door shared AV
service, we can expect clustering of the population in urban areas, leading to concentration.
A combination of the two leads to concentration of the population in the largest most
attractive cities at the expense of smaller cities.

It is not clear if AVs increase or decrease road capacity, parking space requirement and
urban footprint, and these effects depend on transport policy, urban planning, prevailing local
conditions and operating model [53]. But it is clear that space benefits can only be maximized
when connected and shared mobility is fully embraced, and vehicle automation reaches signifi-
cant market penetration rates. The impacts of the shift on space use vis a vis various external
driving factors and starting conditions are summarized in Appendix B Figure A2.

2.3. Will the Shift Increase or Decrease Traffic-Based Emissions?

This theme lends itself best to quantitative analysis, and several computational models
have been built to predict the environmental impacts of the technological shift in trans-
portation. Automation is expected to improve fuel economy through ‘eco-driving’, a set of
practices that can decrease fuel consumption, without any changes in vehicle design, for
example, driving at moderate speeds yields best engine efficiency or minimizing braking
and acceleration cycles. Wadud et al. [11] find a reduction in energy consumption between
5% and 20%, with lower impact when we begin high initial level of congestion. On the other
hand, vehicles may drive at a much higher speed than today to save time, which could
lead to about 7–22% higher fuel consumption for light-duty vehicles on highways [11].

Platooning is another mechanism through which energy consumption can be reduced.
As vehicles drive in tightly packed platoons, the aerodynamic drag is reduced. The longer
the platoon, the higher the drag reduction and hence, energy saving. Wadud et al. [11] find
that if platooning were universally adopted on highways by light-duty vehicles, energy
consumption may decrease by 3–25%. Brown et al. [43] find a reduction of 10% due
to platooning, but an almost 40% reduction can be achieved if stopping and braking at
intersections is eliminated altogether. The real benefits of platooning cannot be realized
unless stopping and braking instances are minimized, and the length of the platoon is
maximized, which would be detrimental to cycling and walking. Additionally, there is a
trade-off between high vehicle speeds and rider comfort in a platoon. According to a traffic
micro-simulation study, if a platoon has to match the rider comfort of a high-speed train,
the delay can constitute up to 10% of travel time [54].

The impact of vehicle electrification on emissions is generally very positive. An agent-
based simulation of Manhattan shows that replacing personal vehicles with short-range
SEAVs could reduce greenhouse gas emissions by more than half [32]. When we compare
the combined effect of electrification and vehicle sharing with personal electric vehicles
serving the same number of trips, the GHG emissions can be reduced by more than half.



Sustainability 2021, 13, 3013 6 of 21

Connected vehicles will also be better routed, selecting the most efficient route to avoid
traffic, reducing energy consumption by up to 5% [43]. However, a recent study that
takes an integrated approach to evaluate the lifecycle of greenhouse gas (GHG) emissions
of electric AVs at the urban mobility level presents a contradicting viewpoint, pointing
towards the negative environmental impacts of the Li-ion batteries process (production,
intervention of replacement and end-of-life treatment) [55].

Tailored vehicles are another mechanism to reduce fuel consumption. A self-driving
car is expected to be much safer than a human-driven one, which may eventually lead to a
smaller and lighter vehicle. A tailored vehicle that can potentially shed the extra weight of
safety equipment would lead to a reduction of about 5% in fuel consumption according to
a study [11], and up to 50% according to Brown et al. [43], depending in other enabling
technologies.

These vehicles can be further ‘right-sized’ with increased vehicle sharing and better
utilization of vehicle fleet. For example, average usage times of private cars in Switzerland
per day is 1.32 h, but could increase by a factor of 2 to 7 when shared vehicles are introduced,
irrespective of the fleet size [56]. Similarly, Martinez and Viegas [57] find that vehicles are
used much more intensely, from approximately 50 min per day today, to 12 hours per day
in an agent-based simulation of SAVs in Lisbon. High intensity of use reduces the operating
lifecycles, allowing quicker renewal of fleets, resulting in a younger and environmentally
cleaner fleet.

Vehicle sharing will also lead to fewer vehicle kilometers travelled, which can be taken
as a proxy for emissions. According to an agent-based simulation of Lisbon, if all private
vehicles and bus services were to be replaced by shared AVs, carbon emissions would
decrease by almost 40% in the most favorable scenario [57]. In a simulation of Zug, Bösch
et al. [58] find a 12.4% change in mode share, switching from private cars to automated
taxis, reducing the overall number of vehicles.

However, there are some caveats to these gains from vehicle sharing. Becker et al. [38]
simulate SAVs in Zurich and find that ride-hailing increases energy consumption by
competing with transit and active mobility. They suggest that making agents consider the
social cost of their car trip can help to reduce transport-related energy consumption by
almost 25%. A similar suggestion is made by Childress et al. [41], based on an activity-
based model of Seattle. They find that if self-driving cars are priced per mile, VKT could
be reduced, by as much as 20%. Fagnant and Kockelman [35] also observe an overall
reduction in VKT in their simulation study of Austin, contingent on a greater emphasis
on ride-sharing. However, in a simulation model for Singapore in 2030, Oh et al. [59] find
that introduction of automated mobility on demand significantly increases VKT by up
to 17%, which could be because Singapore already has high share of public transit and
shared mode usage (~66%). In this case, the increase in VKT can be mitigated if the overall
vehicle fleet is kept fixed. Thus, pricing and operational policy are key determinants for
the environmental impacts of SAVs.

Contrary to the studies discussed so far, some studies predict an increase in VKT
with SAV implementation, as result of increase in empty rides and changes in mode
choice. In their simulation study of Singapore, Spieser et al. [36] find that although SAVs
provide mobility to the entire population with far fewer vehicles, these vehicles also end
up travelling more. In the agent-based simulation of Greenwich, Segui-Gasco et al. [37]
observe that the total number of vehicle kilometers driven by the shared AV fleet increases
by 57%, leading to a 24% increase in carbon emissions. Similarly, Ambühl et al. [45]
find that although vehicle automation can reduce road space required by 11–12%, if the
given road infrastructure remains as is, it may triple the total number of trips due to
induced demand.

The impact of the addition of latent demand and induced demand on emissions can be
significant and may even eclipse the gains from eco-driving and electrification. According
to a location choice modelling study by Zakharenko [51], even though the urban footprint
area increases by 7% due to automation, the overall congestion may not increase since AVs
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are expected to operate more efficiently. On the other hand, according to an agent-based
simulation of Greenwich, although travel times for private car users are reduced by 4%,
emissions increase by 24% because of the overall increase in distances driven.

These effects due to induced and latent demand are significant but unclear at the
moment based on these contradictory results. From the agent-based simulation of Zug,
Bösch et al. [58] conclude that vehicle automation could reduce energy use and greenhouse
gas emissions by half in an optimistic scenario or double them in a ‘dystopian nightmare’.
It is clear that vehicle automation does not automatically result in reductions in energy
consumption and emissions, but it indirectly supports changes in vehicle operations,
vehicle design, choice of energy, policy intervention, or transportation system design
that may or may not be more sustainable. These impacts and the levers and drivers that
influence them are summarized in Appendix B Figure A3.

2.4. Will the Shift Threaten Transit and Active Mobility or Strengthen It?

Transit cannot compete with the flexibility of the automobility system, but shared
automated vehicles offer the possibility to close the gap between traditional fixed-route
transit and the private automobile. They facilitate flexibility in the time of arrival, offering
different levels of privacy, route options and vehicle size options. In an agent-based
simulation of Lisbon with only rail-based transport and shared taxis (4–16 seater), a vast
improvement in access to jobs for public transit users was observed [57]. Meyer et al. [42]
also find gains in accessibility in their model of SAV deployment in Switzerland. However,
these gain are distributed unevenly. While rural areas experience significant gains, in the
larger cities, the additional demand outweighs the capacity benefits, leading to an increase
in travel times and therefore lower accessibilities. This observation is consistent with Luo
et al.’s simulation study of Gunma prefecture in Japan [60].

SAVs can provide similar levels of access as a private car to everyone, depending
on the urban context of operation, but they may also reduce the ridership of traditional
transit. In agent-based simulations of SAVs in Greenwich, although private car use reduced
by 6–15%, bus trips are also reduced by 8–34% [37]. Based on an agent-based simulation
model of Singapore for 2030, Oh et al. [59] find that use of automated shared mobility is
likely to be higher than that of existing taxi services (even at comparable prices), with a
substantial proportion of new users shifting from public transit. Becker et al. [38] simulated
SAVs and shared e-bikes in Zurich and observed that the presence of small car-sharing and
ride-hailing fleets increased the demand for bike-sharing, whereas competition by large
car-sharing fleets reduced it. In contrast, the presence of a small bike-sharing schemes
lowers the demand for car-sharing, but larger bike fleets increase it. These conclusions
highlight the potential threat from new services to core public transport patronage and
active mobility.

Most studies in the area of active mobility and automated vehicles focus on the
behavioral interaction aspects (see Rasouli and Tsotos [61] for a summary), using methods
such as interviews and surveys. For example, Booth et al.’s [62] online survey revealed that
a significant number of Australians would be likely to use AVs instead of walking (18%),
cycling (32%) and public transport (48%).

There are two views on the impact of the technological shift in transportation on active
mobility. Proponents speculate that vehicle automation should efficiently integrate cars
with non-motorized modes of transport like walking and cycling, by reducing intimidation
by cars [63]. But many scholars hold an opposing view based on several considera-
tions. AVs and pedestrians are considered fundamentally incompatible, based on their
differing goals.

For example, Fernandes and Nunes [64] find that platooning may increase road
capacity by almost five times, but these capacity benefits may not be entirely realized
since the complex, unpredictable movements of city traffic, cyclists and pedestrians can
make platooning much more difficult. In order to create efficient platoons, they need to
be entirely separated from the rest of the traffic, through barriers or grade separation [3].
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Millard-Ball [65] uses game theory to analyze the interactions between pedestrians and AV
when they are not separated through grade. He finds that pedestrians can behave with
impunity since AVs are more risk-averse than human drivers, and may be more inclined to
jaywalk, thus slowing traffic down. A summary of the impacts of the technological shift on
transit use and active mobility can be found in Appendix B Figure A4.

2.5. Will the Shift Increase or Decrease the Cost of Travel?

An unresolved aspect of the technological shift is, who pays for the roads? [13] Taxes,
fees and tolls from private automobile users contribute significantly to road construction
budgets. Loss of this revenue stream, combined with the loss of revenue from parking, is a
matter of concern for transportation authorities. This loss of revenue may be supplemented
by the reduction in proposed road expansion investments as platooning and eco-driving
could increase road capacity by as much as five times [64].

Although AV technologies may raise the initial purchase price of a vehicle, reduction
in operating cost through lower insurance fees, maintenance and reduced fuel costs due to
eco-driving may balance this out. However, according to Brown et al. [43], fuel costs may
also increase due to an increase in the overall number of kilometers driven as a result of
induced demand. To counter this, Childress et al. [41] test pricing of self-driving cars per
mile, in an activity-based model of Seattle. Both vehicle kilometers travelled and vehicle
hours travelled could be significantly reduced, by as much as 20% and 30% respectively,
with transit shares almost doubling.

Shared AV implementations are expected to result in further cost benefits by eliminat-
ing the cost of drivers. According to a detailed cost model of Switzerland, autonomous
driving technology allows taxi services and buses to operate at a substantially lower cost,
even cheaper than private cars. In relative terms, automated taxis will be only 71% more
expensive for an individual, and 21% more expensive for pooled use than automated buses
(compared to 415% and 204% before automation) [66]. According to a cost model of Shared
AV implementation in Zug built by Sinner et al. [67], the operating costs of bus networks
can be reduced by 50% to 60% through automation. A simulation of SAVs in Paris shows
an operating cost of 0.27 EUR/km, which is lower than the full cost of owning a private
vehicle [56]. However, a simulation of an automated taxi system in Zurich shows that while
such a system can be beneficial for the users monetarily, the system’s impact is largely
negative due to the modal shift from transit to door-to-door AV taxis [68].

Trade-offs between monetary travel costs, the value of time and customer acceptance,
as well as additional parameters such as investment, maintenance cost and fleet size, need
to be explored. For example, increasing battery range, charging speed and the density
of chargers can decrease the number of vehicles required but also increase other costs.
In an agent-based simulation of Manhattan, the estimated cost for the operation of an
SEAV fleet is roughly ten times lower than a regular taxi fare, as a result of savings due to
electrification, the elimination of driver cost and efficiency of a single-operator, smartphone-
based system [32]. Zhai et al. compare a traditional bus system with an automated bus
on-demand (ABoD) system and find that if the travel demand exceeds five multiples of the
current demand, the total cost of conventional buses increases sharply, while the cost of the
ABoD increases almost linearly, which indicates that the ABoD system is more adaptive to
the change in travel demand than the conventional buses [24].

It is important to account for differences in local contexts when evaluating the eco-
nomic benefits of the technological shift in transportation. Becker et al. [69] conducted a
comparative study of cost benefits of vehicle automation and electrification for 17 cities,
and found that high-income countries benefit most from these technologies, due to the
different relative contribution of labor cost to the total taxi/bus operating cost. The benefits
of vehicle automation are greater in countries where drivers’ salaries are larger. Even so,
this carries the risk of increase in congestion and emissions, as taxi services are expected to
become the preferred mode with plummeting production costs.
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One unexpected outcome of vehicle automation could be inequity in real estate
values. According to simulations of the Dutch Spatial General Equilibrium Model, car
automation alone will result in population flight from cities and convergence of residential
prices between cities and rural areas. However, public transport automation has the
opposite effect. It leads to further population clustering in urban areas, and an increase in
residential price disparity between cities and rural areas [52]. Thus, several factors need
to be considered to accurately predict the long-term economic impact of the technological
shift. A summary of these factors can be found in Appendix B Figure A5.

3. Conclusions

This paper set out to understand if the technological shift in transportation will set
cities on a path to sustainability by examining impacts in five areas—traffic flow, space
consumption, emissions, transit and active mobility and cost of mobility. A review of
quantitative studies on isolated impacts shows that the technological shift could be both
beneficial and detrimental to our goals in all five areas of concern. Figures A1–A5 in
Appendix B illustrate how the new capacities enabled by the technological shift (shown in
blue text on white) can yield a myriad of results (shown in white text on blue), which can be
both beneficial and harmful to our mobility goals. Figure 1 summarizes these capabilities
and possible impacts.

Figure 1. Summary of impacts of the technological and driving forces.
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On the one hand, the technological shift can be beneficial by potentially disrupting
current automobile-dependent patterns of development. Automated vehicles drive more
efficiently, have quicker reaction time and need shorter headways. Connected vehicles
allow for better vehicle routing and avoidance of congestion. Vehicle sharing leads to a
decrease in vehicle ownership rates. Tailored vehicles can rid themselves of additional
safety gear like airbags, and be lighter and right-sized, leading to better fuel efficiency.
A combination of these factors can lead to benefits such as better traffic mobility and
road capacity gains (both lateral and longitudinal), fuel savings due to ‘eco-driving’,
intersections and parking space savings, fewer vehicles to provide the same level of service,
less congestion and safer, more pedestrian-friendly streets.

On the other hand, the technological shift can also be detrimental to future mobility
goals, by furthering the car-oriented development patterns of today. Instead of practicing
eco-driving, AVs may drive at higher speeds than today, leading to time gains, but more
fuel consumption. Vehicle sharing may lead to fewer vehicles on streets, but detours and
empty travel may increase congestion and fuel consumption. Change in value of in-vehicle
travel time may lead to induced demand and changes in home and job location choices
leading to urban sprawl. Latent demand from those sections of the population that are
currently unable to drive will also add to the induced demand.

The impacts of the technological shift are uncertain and difficult to predict. Quan-
titative models only consider a limited parameter set, and the choice of parameters is
highly subjective. This leads to highly divergent and often contradictory results. In this
context, while it is difficult to predict the impacts of the technological shift, we have
begun to identify the most influential drivers that can help us steer the impacts of the
shift, based on the dynamics of the parameter choices in the simulation studies reviewed.
Broadly, these drivers can be classified in four types: technology, policy, operations and
planning. Appendix B summarizes the various drivers and levers within the four categories
discussed here.

1. Technology

The first most influential driver will determine the impact of the shift of the level
of technological, development, deployment and acceptance. The pace of technological
development and integration of automation, electrification, vehicle-sharing and connectiv-
ity is a crucial factor in determining whether the shift can beneficially impact cities. For
example, discussion of the impact of AVs on emissions is strongly linked to developments
in electric propulsion, which is likely to precede automation. In addition, their rate of
adoption and market penetration also needs to be high enough to draw any significant
benefits [70], in each of the five areas studied here. The capabilities of AV, their uptake,
charging infrastructure for electric vehicles, development in Artificial Intelligence and
other new competing technologies are one of the most uncertain and significant driving
forces of the technological shift. Studies that take into account the pace of development of
the technological shift as a whole (such as Reference [5]), as well public acceptance of these
technologies (such as Reference [70]) are essential and must precede quantitative analysis
of any type of isolated impact.

2. Policy

The second most influential factor observed here is policy and regulatory actions.
Proactive policy can help support rapid uptake of desirable technologies, such as electric
vehicles and higher vehicle sharing, while reactive or inert actions may delay the process.
Regulating policies revolve around issues such as testing and deployment, cybersecurity
and privacy, liabilities and insurance, ethics, and most importantly, pricing and ownership.
How self-driving cars will change cities depends on who owns them. More private owner-
ship may lead to a dramatic increase in VKT, AV taxis may lead to inequitable access and a
large public transit AV infrastructure requires huge investments and subsidies. The pres-
sure for climate change action and resolution on sustainability and energy efficiency may
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lead to environmental regulations that would, in turn, determine the pace of technological
development and uptake of technologies like electric vehicles and vehicle sharing.

Many of the initial parameter choices in the simulation studies are direct policy choices.
While the first set of drivers relating to technology is largely market-driven, policymakers
also play a substantial role in driving the overall outcome. Thus, it is imperative for
policymakers to make priorities explicit and collectively set benchmarks for minimum
levels of service with appropriate indicators to measure them.

3. Operations

Once automated vehicles are deployed and regulatory priorities set, the operational
decision plays a key role in driving the impacts. Studies on the isolated impacts have
shown that the fleet type and size of shared vehicles have a strong effect on mode choice,
emissions and space consumption. Hörl et al. [48] calculate fleet size based on choice of
operational policy such as customer vehicle assignment, repositioning of empty vehicles,
costs, etc., and find a significant variation between 7000 to 14,000 vehicles. Trade-offs
between monetary travel costs, the value of time and customer acceptance, as well as
additional variables such as investment, maintenance cost and fleet size, are complex and
need tailored analysis for different contexts. Pricing of automated vehicles and rides in
shared automated services play an especially important role in influencing impacts in all
five areas studies here.

4. Planning

Finally, given a high degree of automation and large-scale deployment, urban design
and planning strategies will begin to play a more important role to steer the impacts by
modifying travel behavior. Studies such as References [11,28] find different result in their
models based on differences in existing planning contexts. Planning strategies, such as
land use planning, urban network structure, type, size and age of existing urban fabric and
scale of AV infrastructure implementation, can be effective levers to influence the impacts
of the shift. The driving factors related to planning and design can only be tested in the
long-term future when AV deployment is significant enough. The impacts of these drivers
also lend themselves better to qualitative design-based studies.

Future research in this area needs to take into account the complex interplay of all
the driving forces within the realm of technology, policy, operations and planning, to
some extent. A quantitative model that can sufficiently address all these dynamics can be
time-consuming and costly to build. At the same, the impacts of policy- and design-based
drivers are harder to analyze through these methods. This points towards the need for
innovations in modelling techniques, and better integration of quantitative methods of
investigation with qualitative studies on impacts of AVs and other emerging transportation
technologies.
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Appendix A

This review is based on an analysis of peer-reviewed studies published between
2011 and 2020 that analyze the impacts of vehicle automation technology in isolation or
in combination with other technologies, such as adaptive cruise control, electrification
or shared demand responsive transit. Three databases, ScienceDirect, Springer and IEEE
Xplore were first searched. This was supplemented by a Google Scholar search that also
encompasses books and conference papers, and forward and backward snowball tech-
niques. A combinations of three keyword sets was used. The first set related to technology:
automated vehicles, autonomous vehicles, driverless vehicles, shared vehicles, shared auto-
mated vehicles, Demand Responsive Transit (DRT), electric automated vehicles, connected
automated vehicles and vehicle to vehicle connectivity. The second set related to methods:
mathematical modelling, simulation and quantitative analysis. The third set included
themes such as impacts, implications, effects, cities, energy, congestion, cost, space and
value of travel time. An initial shortlist was prepared to include papers using quantitative
methods only, studying isolated impacts, and primarily studying AV technology in isola-
tion or in combination with other technologies. This selection was finally filtered to include
a diversity of methods, vehicle technology combinations and geographic locations.

Table A1. The thirty-four studies reviewed in this paper are described here.

Study
Reference Location Method Vehicles

[46] No geographic location Mathematical Modelling CAV only

[31] Ann Arbour, Babcock
Ranch, Manhattan Analytical Modelling and Simulations SAV only with small vehicles

[47] No geographic location Microscopic Simulation CAV in mixed traffic
[25] No geographic location Microscopic Simulation CAV in mixed traffic

[43] No geographic location Mathematical Modelling
Location agnostic estimation of impacts
of automation, connectivity, sharing and

electrification.
[71] New Jersey Mathematical Modelling Autonomous taxi network

[36] Singapore Mathematical Modelling Replacing all private vehicle with small
SAV

[41] Puget Sound Region Activity-based Simulation All vehicle types automated with varying
technology penetration rates

[64] No geographic location Agent-based Simulation CAV on dedicated tracks
[27] No geographic location Microscopic Simulation AV and CAV only
[50] No geographic location Agent-based Simulation SAV replace 2% of private vehicles

[45] No geographic location Macroscopic Fundamental Diagram and
Mesoscopic Traffic Simulation CV only and AV only

[35] Austin, Texas Agent-based Simulation SAV for dynamic ridesharing as
additional mode

[28] No geographic location Mathematical Model of Traffic flow Location agnostic estimation of impacts
of automation on flow

[72] United States Mathematical Analysis Automation of private vehicles
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Table A1. Cont.

Study
Reference Location Method Vehicles

[11] United States Mathematical Analysis Estimation of impacts of automation,
connectivity, sharing and electrification.

[23] Braunschweig Microscopic Simulation All passenger vehicles as AV

[51] No geographic location Location Choice Modelling Private and Shared AV as additional
modes

[55] Rome Traffic Simulation All vehicles fully automated and electric
[52] The Netherlands Simulations All vehicles automated (cars and transit)
[57] Lisbon, Portugal Agent-based Simulations Shared automated taxis and minibuses

[42] Switzerland Mathematical Modelling All vehicles automated with or without
sharing

[66] Switzerland Cost Model
Location agnostic study of cost changes

with automation for private vehicles,
taxis and public transport

[32] Manhattan Agent-based Simulation SEAV fleet as taxis
[58] Zug, Switzerland Agent-based Simulation with MATSim Combination of shared and private AVs
[67] Zug, Switzerland Cost Model AV Buses

[38] Zurich Agent-based Simulation with MATSim SAV with options for carsharing and
ride-hailing + E-bikes

[56] Paris Agent-based Simulation with MATSim
Automated mobility on demand with

varying vehicle sizes determined
heuristically

[68] Zurich Agent-based Simulation with MATSim Automated mobility on demand as an
additional mode

[37] Greenwich, UK Agent-based Simulations AVs as taxis and for pooled rides
[26] No geographic location Microscopic traffic simulations AVs with varying levels of automation

[59] Singapore Agent based simulations Automated mobility on demand as an
additional mode

[60] Gunma, Japan Agent-based Simulation with MATSim SAV and PAV as additional modes
[24] Fuyang, Zheijiang, China Agent-based Simulations ABoD as additional mode

PAV: Private Automated Vehicles; CAV: Connected Automated Vehicles; SAV: Shared Automated Vehicles; SEAV: Shared Electric Automated
Vehicles, ABoD: Autonomous Bus on Demand.
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Appendix B

Figure A1. Impact of the technological shift on traffic flow: summary of results.
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Figure A2. Impact of the technological shift on space use: summary of results.



Sustainability 2021, 13, 3013 16 of 21

Figure A3. Impact of the technological shift on traffic-based emissions: summary of results.
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Figure A4. Impact of the technological shift on transit and active mobility: summary of results.
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Figure A5. Impact of the technological shift on cost of travel: summary of results.
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