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Abstract: This paper uses a standard non-cooperative sequential game with two homogeneous
players to analyze investment options of groundwater development project in South Korea’s Jeju
island. The model is constructed as an option game taking the uncertainty of water price and the
irreversibility of investment into account. The results show that the threshold water price of follower
increases with the investment scale of both the leader and the follower while the threshold water
price for the leader decreases as the investment scale of the leader increases. This makes the leader
choose strategies to maximize the amount of groundwater extraction regardless of the follower’s
strategy. Based on the results, it is recommended for policymakers to manage sustainable use of
groundwater based on the policy measures such as the groundwater extraction quota system.

Keywords: real option game; groundwater extraction; uncertainty; irreversibility; Jeju island

1. Introduction

Jeju is a volcanic island located in the southwest of South Korea. The island is isolated
from the Korean peninsula, but is about a one-hour distance by flight from Seoul (see
Figure 1). Designated as a special autonomy province that maintains unique history and
culture distinctive from those of the inland of South Korea (hereafter referred to as Korea),
Jeju island attracts many tourists worldwide. With the attraction of volcanic mountain
views, clement weather, and beaches, the number of visitors, in particular, from China and
Japan is growing. The average number of visitors to Jeju is estimated to be approximately
13.6 million annually.

The island with subtropical weather normally records abundant annual rainfall that is
about 1.5 times larger than that on the inland. However, because of the lack of perennial
rivers, the island is vulnerable to water shortage problems. The water resource on the
island is mainly collected mostly beneath the ground due to its unique geological property
with permeable basalts into which rain and stream waters easily percolate to accumulate
and move slowly in accessible and exploitable aquifers. This results in a lack of perennial
streams [1]. As there are limited perennial rivers and streams, groundwater is nearly the
sole source of water supply. While Jeju, isolated from the inland, has to meet the water
demand by itself, the demand for water is expected to increase due to the increasing
population and tourists.

There are vast amounts of literature discussing the economics of water resources for
agriculture, livestock, and other uses [2–11]. Since Rubio and Castro [4] and Fisher and
Rubio [5] introduced the real options approach to water resources, there has been an ongo-
ing expansion of the application including economic evaluation of irrigation [11–13], water
infrastructure investment projects (e.g., dams and hydroelectric power generation [14–19]),
and water supply projects [20–25]. Most of the previous studies focus on the economical
evaluation of infrastructure investment and water supply project under the assumption of
a single player, e.g., supplier, investor, or government.
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However, competition among the agents is inevitable given that water resources
is limited at least for a given period of time. For example, de Sivla and Hussein [26]
focused on the water competition in South America over the La Plata River Basin and
Guarani Aquifer System, and examined the conflicts and resolutions from a water politics
perspective. Cascão [27] defined the competition for water resources in the Nile River Basin
as a hegemonic competition caused by asymmetric power, and proposed non-hegemonic
riparians for sustainable and equitable use of water. Lankford and Watson [28] developed
the river basic game between Tanzania and Nigeria to resolve the conflicts on water uses
in Africa.

Although a large body of the literature was devoted to analyzing water resources,
only a few studies were built on a real options game approach. Laukkanen et al. [29]
developed a real options game model to analyze the optimal extraction of groundwater
among heterogeneous farmers while taking the uncertainty of rainfall into account. The
heterogeneous farmers differ in terms of their choice of irrigation technology, which results
in different farmer-specific impacts on the aquifer recharge rate. Bhaduri et al. [30–32] use
a stochastic Stackelberg differential game to examine sustainable transboundary water
sharing, the case of water distribution in the Volta Basin of West Africa between Burkina
Faso and Ghana.

In this paper, we build on the real options game model to examine the investor’s
optimal strategy on groundwater development project, which could provide implications
for policymakers to manage sustainable use of groundwater. Specifically, we develop
a standard non-cooperative sequential game with two homogeneous players [33] in the
context of the groundwater development project in Jeju Island. The model is presented
as an option game to invest in water development project, which takes the uncertainty of
water price and the irreversibility of investment into account. By combining irreversible
investment under uncertainty with non-cooperative sequential game, this paper integrates
the two bodies of the literature, i.e., real options and game theory. Real options models
have been used to explain uncertainty and irreversibility of investment in a number of
contexts, but often times in monopolistic or perfectly competitive framework. On the other
hand, games of entry and exit have been studied mostly in a deterministic framework.

The rest of the paper is organized as follows. We present the theoretical model
in Section 2. Section 3 provides the numerical analysis in the case of the Jeju Island
groundwater development project. Section 4 concludes the paper.
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2. Methods
2.1. Model

In this paper, we present a standard non-cooperative sequential game with two
homogenous players. The game is presented as an option game where two players sequen-
tially make decisions on groundwater extraction investment under water price uncertainty.
The resulting equilibrium is a Markov perfect equilibrium, in which each player’s strategy
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consists of the current state variables. The Markov perfect equilibrium is derived by assum-
ing that each player exercises a Markov strategy based on the other player’s best response,
which follows a Markov strategy as well. In Section 3, we use the model to examine a
groundwater development project in Jeju Island where water resource management is an
important issue because groundwater is nearly the sole source of water supply while the
availability of groundwater is limited.

We now introduce the model. Two players are indexed by leader (l) and follower (f ).
Under the profit maximization, the value function can be written as

Vi(p, h) = E
∫ ∞

0
[p(t)qi(t)− C(L, h(t))qi(t)]e−ρtdt (1)

where the subscript i = l and f denotes the leader and follower, respectively. In Equation (1),
qi is the amount of groundwater extraction of the corresponding player. p(t) is the price of
water. The cost C is a function of L and h(t), where L denotes the surface elevation and h(t)
denotes the groundwater level, both are measured in meters. Lastly, p is the discount rate
and E is the expectation operator.

Water price p(t) evolves exogenously and stochastically according to a geometric
Brownian motion (GBM) with drift given by the following expression [12,13,20,21,34]:

dp(t) = µp(t)dt + σp(t)dz(t) (2)

where µ is a drift rate and σ is a volatility rate. dz is the increment of a standard Wiener’s
process satisfying E(dz) = 0 and E(dz2) = dt.

We specify the cost C(L, h)(t)) as follows:

C(L, h) = c1 + c(h(t)) + c3 (3)

where c1 denotes charges for utilization of water, which is imposed to players by local
government, c(h(t)) cost for groundwater extraction depending on groundwater level
h(t), and c3 maintenance cost including costs for meeting water quality requirements and
periodic inspections. Let γ denote the marginal cost of groundwater extraction per cubic
meter of groundwater from depth of one meter. Thus, L − h(t) represents the depth from
which groundwater has to be extracted, and the marginal cost of groundwater extraction
per cubic meter can be written as

c(h(t)) = γ(L− h(t)) (4)

Groundwater reservoir (S(t)) is assumed to be a single cell [35], which allows us to
calculate S(t) as the area of aquifer (m) multiplied by the groundwater level (h(t)).

S(t) = m× h(t) (5)

where S(t) and h(t) evolves according to

dS(t) = d(mh(t)) = (N − q(t))dt (6)

dh(t) =
N − q(t)

m
dt =

N − ql(t)− q f (t)
m

dt (7)

where N denotes the natural recharge which is calculated as

N = α×m× r (8)

In Equation (8), α and r denote natural recharge rate and total precipitation, re-
spectively. In the simulation, total precipitation is assumed to be fixed at the average
precipitation for 30 years.



Sustainability 2021, 13, 3431 4 of 11

We now rewrite the value function and constraints as follows.

Vi(p, h) = E
∫ ∞

0
[p(t)qi(t)− c1qi(t)− c(h(t))qi(t)− c3qi(t)]e−ρtdt (9)

s.t. dp(t) = µp(t)dt + σp(t)dz(t)

dh(t) =
N − ql(t)− q f (t)

m
dt (10)

Using Ito’s Lemma and the property that dt2→ 0, dtdz→ 0 and dz2→ dt, the following
Hamilton–Jacobi–Bellman (HJB) equation is obtained [36]:

ρVl(p, h) = (p− c1 − γ(L− h)− c3)ql + µpVl,p +
1
2

σ2 p2Vl,pp +
N − ql − q f

m
Vl,h (11)

ρVf (p, h) = (p− c1 − γ(L− h)− c3)q f + µpVf ,p +
1
2

σ2 p2Vf ,pp +
N − ql − q f

m
Vf ,h (12)

which are linear and differentiable with respect to ql and qf. In this model, the optimal
quantity of extraction(qopt) follows the bang-bang solution where if p < V (p), then qopt = qmax,
and if p > V (p), then qopt = 0 [34,37]. We can get Vl,h = m (p − c1 − c(h) − c3) and
Vf,h = m (p − c1 − c(h) − c3) by differentiating Equations (11) and (12) with respect to ql and
qf, respectively. By substituting these first order conditions into the Equations (11) and (12),
the following constrained HJB is obtained:

ρVl(p) = (p− c1 − γ(L− h)− c3)
(

N − q f

)
+ µpVl,p +

1
2

σ2 p2Vl,pp (13)

ρVf (p) = (p− c1 − γ(L− h)− c3)(N − ql) + µpVf ,p +
1
2

σ2 p2Vf ,pp (14)

2.2. The Follower’s Problem

Since the model is solved backwards, we first solve the optimization problem of the
follower. The option value function and the solution for the value function are written as

Ff (p) = A f ,1 pβ (15)

Vf (p) =

(
N − q1

l
)

p
ρ− µ

− (N − ql)(c1 + γ(L− h) + c3)

ρ
(16)

where the superscript 1 denotes after the investment is made. In equation (15), β > 0 should
be satisfied. In Equations (15) and (16), the two unknowns are the threshold water price
(p*

f) and the option constant term (Af,1), which are determined by imposing the value
matching and smooth pasting conditions. While the value matching condition (F (p) = V
(p) − If) imposes that the net benefit from the investment should exceed the investment
cost, the smooth pasting condition (∂F (p)/∂p = ∂V (p)/∂p) imposes that the marginal net
benefit and the marginal investment cost should be equal at the threshold water price. If
denotes the initial irreversible investment cost of the follower.

The p*
f and Af,1 are obtained as follows.

p∗f =
β

β− 1

(ρ− µ)
[(

N − q1
l
)
(c1 + γ(L− h) + c3) + ρI f

]
ρ

(17)

A f ,1 =
N − q1

l
β(ρ− µ)

p1−β
f (18)

Equation (17) shows that an increase in groundwater extraction cost and discount
rate increase the threshold water price, which delays the follower’s investment. On
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the other hand, an increase in groundwater level decreases the threshold water price.
β/(β−1), the option multiplier, represents hysteresis in the real options literature, i.e.,
the optimal investment threshold under uncertainty should exceed the threshold point
without uncertainty.

2.3. The Leader’s Problem

The leader’s problem is analyzed for the two regimes, i.e., the regime before the
follower makes the investment decision and the regime after the follower makes the
investment decision.

Vl(p) =


Np

ρ − µ
− N(c1 + γ(L − h) + c3)

ρ
, when p < p f(

N − q1
l
)

p
ρ − µ

− (N − ql)(c1 + γ(L − h) + c3)

ρ
, when p f ≤ p

(19)

Equation (19) includes an option-like term, which anticipates the negative effects of
the follower’s investment on the leader’s expected payoff. It is not actually the value of
the investment option to be exercised by the leader, but the value of the future investment
induced by the follower to the leader [33]. Al,1 can be obtained as follows.

Al,1 = [
q1

f p f

ρ− µ
−

q1
f (c1 + γ(L− h) + c3)

ρ
]p−β1

f (20)

Fudenberg and Tirole [38] state that the expected payoff of the two players must be
equal at the leader’s investment point. For two player preemption games, Fudenberg and
Tirole [38] show that there exists a symmetric mixed strategy equilibrium that involves rent
equalization, which means that in equilibrium, the expected value of the first mover equals
that of the second mover. If it were not the case, one player would have an incentive to
deviate and the proposed outcome could not be an equilibrium. In our model, this can be
written as follows:(

Al,1 + A f ,1

)
pβ1

l =
Npl

ρ− µ
− N(c1 + γ(L− h) + c3)

ρ
− Il (21)

Since there is no closed form solution for Equation (21), in the next section, the numer-
ical analysis is used to solve for pl by using MATLAB. The solution from the Equations (17)
and (21) provides the Markov perfect equilibrium.

3. Simulation
3.1. Data

We consider the case of groundwater facility located in the east of Jeju Island (Figure 1).
The area of aquifer (m) is 150,682,797 m2. Topographic elevation of the facility is 342.6EL.
m, with depth of 490 m, and the average groundwater level (h) of 250.75 m in 2015 [39].
The average precipitation (r) of the region is 1,923 mm [40] and the natural recharge rate
(α) is 0.431 [41].

The drift rate (µ) and the volatility rate (σ) of the water price (p) that follows the gBm
process are estimated using the data obtained from the annual statistics of Jeju Special
Self-Governing Province [42]. When we define y(t) = log(p(t) − log(p(t−1)) and denote
∆ the time interval, it can be shown that y(t) follows the normal distribution, where the
mean and variance of y (t) are written as E(y(t)) = (µ − σ2/2)/∆ and Var(y(t)) = σ2∆,
where µ = ӯ/∆ + sy2/2∆ and σ = sy-

√
∆ can be obtained from the sample mean (ӯ) and the

standard deviation (sy) of y(t) [43]. The price parameters are calculated as µ = 0.0436 and
σ = 0.1009.

Cost parameters are assumed as follows. Charges for utilization of water (c1) is derived
as 0.071 US$ /m3 [39]. In general, the marginal cost of groundwater extraction, could vary
depending on the fuel cost or depth of water [44,45]. However, this paper assumes that the
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marginal cost of groundwater extraction (γ) is constant at 0.00038 US$/m3·m based on [11].
We also assume the constant maintenance cost (c3) at 0.041 US$/m3 based on [46]. The
maintenance cost should not be constant especially if there exists the saltwater intrusion
problem, as the intrusion of saltwater would increase the maintenance cost. However,
as [46] discussed, desalination is not a significant issue on Jeju island. Based on [47,48],
investment cost for leader (Il) is calculated as US$9108,333. Assuming that investment
cost for follower is lower than that for leader, we simply multiply Il by 0.9 to calculate
investment cost for follower (If). Finally, we take the discount rate p = 0.054, which is the
average yield of AA- and BBB- grade corporate bonds in 2015 [34].

3.2. Results

Using the parameter values in Table 1, the threshold water price is calculated for three
scenarios, the follower’s groundwater extraction is set as (i) 80% of qmax, (ii) equal to qmax,
and (iii) 120% of qmax. The scenarios allow us to investigate the optimal extraction of the
leader (ql) in response to the possible investment scale of the follower. The scenarios also
analyze the threshold water prices corresponding to the investment scale.

Table 2 presents the threshold water price of the leader p*
l and the follower (p*

f) for
each of the three scenarios. For example, p*

l and p*
f are estimated as 0.1239 US$/m3 and

0.2593 US$/m3 for scenario 2, respectively. While p*
f increases with the investment scale of

both the leader and the follower, p*
l decreases as the investment scale of the leader increases.

Moreover, for each scenario of the investment scale of the leader, p*
l is highest when the

investment scale of the follower is equal to qmax. Table 2 suggests that the leader selects the
strategy to increase ql to lower the p*

l and raise p*
f regardless of the follower’s strategy. The

follower chooses the strategy to decrease qf to lower p*
f. Therefore, scenario 3 for the leader

and scenario 1 for the follower is the strategic dominance, i.e., (p*
l/p*

f) = (0.6950, 0.2660),
where the ratio of threshold (p*

f/p*
l) is highest with 2.61 as shown in Table 3. The results

can be summarized that the leader chooses the strategy to maximize the amount of her
groundwater extraction regardless of the follower’s strategy.

Table 1. Parameters for simulation.

Category Parameter Value

Groundwater

m area of aquifer 150,682,797 m2

L topographic elevation 342.6 EL. m
h groundwater level 250.75 m
r precipitation 1.923 m
α natural recharge rate 0.431

qmax amount of groundwater extraction 122 million m3

Water Price
µ drift rate 0.0436
σ volatility rate 0.1009

Cost
c1 charges for utilization 0.071 US$/m3

γ marginal cost of groundwater extraction 0.00038 US$/m3·m
c3 maintenance cost 0.041 US$/m3

Investment
Il investment cost of leader 9,108,333 US$
I f investment cost of follower 7,725,000 US$

Discount Rate ρ discount rate 0.054

We now perform the sensitivity analysis of the investment threshold price over the
range of the variables. Figure 2 shows the sensitivity of the threshold water price (p*

f) with
respect to the volatility (σ) and the investment cost of follower (If). While an increase in
both σ and If increases p*

f, Figure 2 shows that p*
f is more sensitive to the initial investment

cost If than the uncertainty σ.
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Table 2. Investment threshold price by scenario (unit: US$/m3).

Factor
Investment Scale of Leader

80% of qmax Equal to qmax 120% of qmax

Investment Scale
of Follower

80% of qmax
p∗l 0.0848 0.0764 0.6950
p∗f 0.2427 0.2521 0.2660

Equal to qmax
p∗l 0.1328 0.1239 0.1158
p∗f 0.2475 0.2593 0.2767

120% of qmax
p∗l 0.1395 0.1248 0.1122
p∗f 0.2523 0.2665 0.2873

Table 3. Ratio (p*
f/p*

l) of investment threshold price by scenario.

Factor
Investment Scale of Leader

80% of qmax Equal to qmax 120% of qmax

Investment Scale of
Follower

80% of qmax 0.35 0.30 2.61
Equal to qmax 0.54 0.48 0.42
120% of qmax 0.55 0.47 0.39
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Figure 3 shows the effects of the groundwater extraction of the leader (ql
1) and the

follower (qf) on the threshold water price of the follower (p*
f). p*

f increases as ql
1 and qf

increases, and is more responsive to ql
1 compared with qf. It implies that the leader can

defer the entry of the follower by increasing ql
1 and therefore increasing p*

f, which enables
the leader to collect monopolistic profits until the follower enters into the market.



Sustainability 2021, 13, 3431 8 of 11
Sustainability 2021, 13, x FOR PEER REVIEW 8 of 12 
 

 
Figure 3. Sensitivity analysis of p*f with respect to ql and qf. 

We now examine dynamics of the extraction cost c(h(t)) in Equation (4) and the 
groundwater level h(t) in Equation (7). We investigate three scenarios where the total 
groundwater extraction qtotal is equal to (i) qmax × 1.5, (ii) qmax × 2.0, and (iii) qmax × 2.5. 

Figure 4 presents the dynamics of the groundwater extraction cost. As [49] pointed 
out, late entry of the follower allows the leader to extract the groundwater at a lower cost. 
Since the leader collects monopolistic profits from preemption, the leader is likely to ex-
tract more than the efficient amount. Finally, Figure 5 presents the dynamics of the 
groundwater level. If the groundwater recharge is greater than the groundwater extrac-
tion, the groundwater level will rise, and the positive slope in Figure 5 shows that the 
recharge is greater than the extraction under all scenarios. On the other hand, it can be 
shown that the competition between the two players decreases the groundwater level in 
case of duopoly. 

Figure 3. Sensitivity analysis of p*
f with respect to ql and qf.

We now examine dynamics of the extraction cost c(h(t)) in Equation (4) and the
groundwater level h(t) in Equation (7). We investigate three scenarios where the total
groundwater extraction qtotal is equal to (i) qmax × 1.5, (ii) qmax × 2.0, and (iii) qmax × 2.5.

Figure 4 presents the dynamics of the groundwater extraction cost. As [49] pointed
out, late entry of the follower allows the leader to extract the groundwater at a lower
cost. Since the leader collects monopolistic profits from preemption, the leader is likely
to extract more than the efficient amount. Finally, Figure 5 presents the dynamics of the
groundwater level. If the groundwater recharge is greater than the groundwater extraction,
the groundwater level will rise, and the positive slope in Figure 5 shows that the recharge is
greater than the extraction under all scenarios. On the other hand, it can be shown that the
competition between the two players decreases the groundwater level in case of duopoly.
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4. Conclusions

In this paper, we developed a model of standard non-cooperative sequential game with
two homogeneous players to analyze investment decisions on groundwater development
project on South Korea’s Jeju island. The model was presented as an option game, which
allowed us to take the uncertainty of water price and the irreversibility of investment
into account.

The results show that the threshold water price of the follower increased with the
investment scale of both the leader and the follower while the threshold water price of
leader decreased as the investment scale of the leader increased. This made the leader
choose the strategy to maximize the amount of her groundwater extraction regardless of the
follower’s strategy, which allowed the leader to collect monopolistic profits by deferring the
entry of the follower. Based on the results, it is recommended for policymakers to manage
sustainable use of groundwater based on the policy measures such as the groundwater
extraction quota system.

Future research can be extended to several directions. First, our model could be
extended to incorporate precipitation uncertainty. Second, it would be interesting to
model the conjunctive use of surface water and groundwater. Third, this paper was built
on the single-cell aquifer model, which assumed that an aquifer responded uniformly
and instantly to groundwater pumping. However, as Brozovic [50] pointed out, our
results could be misleading especially if the magnitude of the groundwater pumping
externality is large. This should be demonstrated in the future research. Fourth, it is also
important to incorporate emerging issues including climate change, ecosystem projection
and groundwater quality. Finally, a possible extension could be to develop a model with
heterogeneous groundwater developers.
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