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Abstract: Fine particulate matter (PM2.5) is one of the main air pollution problems that occur in major
cities around the world. A country’s PM2.5 can be affected not only by country factors but also by the
neighboring country’s air quality factors. Therefore, forecasting PM2.5 requires collecting data from
outside the country as well as from within which is necessary for policies and plans. The data set of
many variables with a relatively small number of observations can cause a dimensionality problem
and limit the performance of the deep learning model. This study used daily data for five years in
predicting PM2.5 concentrations in eight Korean cities through deep learning models. PM2.5 data of
China were collected and used as input variables to solve the dimensionality problem using principal
components analysis (PCA). The deep learning models used were a recurrent neural network (RNN),
long short-term memory (LSTM), and bidirectional LSTM (BiLSTM). The performance of the models
with and without PCA was compared using root-mean-square error (RMSE) and mean absolute error
(MAE). As a result, the application of PCA in LSTM and BiLSTM, excluding the RNN, showed better
performance: decreases of up to 16.6% and 33.3% in RMSE and MAE values. The results indicated
that applying PCA in deep learning time series prediction can contribute to practical performance
improvements, even with a small number of observations. It also provides a more accurate basis for
the establishment of PM2.5 reduction policy in the country.

Keywords: principal components analysis (PCA); PM2.5; recurrent neural network RNN); long
short-term memory (LSTM); bidirectional LSTM (BiLSTM); deep learning

1. Introduction

Fine particulate matter (PM2.5) indicates particles with an aerodynamic diameter of
2.5 µm or less. It is not a specific chemical, such as sulfur oxides (SOx) and nitrogen
oxides (NOx), but a mixture of particles of varying sizes, components, and shapes. Typical
substances that form PM2.5 include elemental carbon (EC), organic carbon (OC), NOx,
volatile organic compounds (VOC), ozone (O3), ammonia (NH3), SOx, condensate particles,
metal particles, mineral particles, etc. Because of its small size, it penetrates the body
through the respiratory tract, causing inflammation or damaging organs [1]. The WHO
considers PM2.5 a major environmental risk factor that causes cardiovascular, respiratory,
and various other cancers [2]. Figure 1 shows the effects of PM2.5 on the body [3].

Korea’s PM2.5 concentration was the highest among the 37 OECD (Organization for
Economic Co-operation and Development) countries in 2019 [4], and studies have shown
that it has a negative effect on people’s health. Han et al. [5] stated that 1763 early deaths
in Seoul in 2015 were closely related to PM2.5. Hwang et al. [6] explained that, when the
average annual concentration of PM2.5 in Seoul increases by 10 µg/m3, the risk of death
over 65 years increases by 13.9%. This is in line with the major causes of death for Koreans
in 2019. Statistics Korea shows that cancer (158.2 deaths per 100,000 people), cardiovascular
diseases (60.4 deaths per 100,000 people), and pneumonia (45.1 deaths per 100,000 people)
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are the three major causes of death [7]. This suggests that PM2.5 is highly correlated to the
main cause of death for Koreans.
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Figure 1. Effects of fine particulate matter (PM2.5) on the body. Source: French National Health
Agency, InVS (Institut de veille sanitaire), European Environment Agency, and AFP.

The Korean government is making great efforts to reduce PM2.5 concentration to
protect people’s health. The government has divided the crisis into three stages according
to the current status and prediction of PM2.5 concentration and has devised a manual
for local governments for each stage of action. The government also aims to reduce the
annual average concentration of PM2.5 by 35% compared to 2016 by establishing a five-year
plan for PM2.5 concentration reduction. To achieve this purpose, the government selected
15 major tasks by evaluating its potential reduction, cost effectiveness, linkage with other
policies, and social impact. These tasks are implemented by each local government [8].

Table 1 shows Korea’s crisis stage standard for PM2.5 concentration, which reflects
the concentration of PM2.5 in the current period and future forecast values. It suggests
that the accurate prediction of PM2.5 concentration is needed in the short and long terms.
In this regard, several studies have conducted air quality prediction using deep learning
methods with domestic data (wind speed, NO2, SO2, temperature, etc.) in Korea, and
new deep learning models have been developed to show high performance in air quality
prediction [9,10]. However, foreign factors should also be considered in predicting PM2.5
concentration in Korea, as the concentration of PM2.5 in the Shandong region of China
is also found to affect Korea’s PM2.5 concentration [11]. However, as China’s past PM2.5
concentration data are composed of daily data, Korea’s data should also be organized on a
daily basis for deep learning PM2.5 prediction. This data composition can cause a “curse of
dimensionality” due to the small number of observations compared to variables, which
can reduce the performance of the model.

This study aims to show that the application of principal component analysis (PCA)
in the deep learning time series prediction models for PM2.5—a recurrent neural network
(RNN), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM)—can result in
better performance by comparing the root-mean-square error (RMSE) and mean absolute
error (MAE) with the same models without PCA application.
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Table 1. Crisis stage standard.

Crisis Stages Criteria Main Contents

Stage 1 150 µg/m3 for 2 h or longer +
75 µg/m3 for the following day

Strengthening the current system

Stage 2 200 µg/m3 for 2 h or longer +
150 µg/m3 for the following day

Strengthening public sector measures

Stage 3 400 µg/m3 for 2 h or longer +
200 µg/m3 for the following day

Strengthening private sector
measures/disaster response

2. Previous Research

Several studies have shown the association of PM2.5 with lung and cardiovascular
disease (CVD). Wang et al. [12] reported that CVD is the one of the main mortality factors
of elder people. It was found that the ambient PM2.5 concentration is related to several
CVDs by linking PM2.5 exposure and CVD based on multiple pathophysiological mecha-
nisms. César et al. [13] showed that the exposure to PM2.5 can cause hospitalizations for
pneumonia and asthma in children younger than 10 years of age through an ecological
study of time series and a generalized additive model of Poisson regression. Kim et al. [14]
reported associations of short-term PM2.5 exposure with acute upper respiratory infection
and bronchitis among children aged 0–4 years through a difference-in-differences approach
generalized to multiple spatial units (regions) and time periods (day) with distributed
lag non-linear models. Vinikoor-Imler et al. [15] studied the relationship between PM2.5
concentration, lung cancer incidence, and mortality by linear regression and concluded
that there is a possibility of an association between them. Choe et al. [16] reported that
the effect of changes in PM2.5 emissions on changes in internal visits and hospitalization
probabilities due to respiratory diseases was estimated through Probit and Tobit models.
If PM2.5 emissions change by 1%, the probability of visitation due to respiratory diseases
increases from 0.755% to 1.216%, and the probability of hospitalization increases from
0.150% to 0.197%.

The need for PMx prediction research is emerging, and various studies are underway
on PMx prediction. Zev Ross et al. [17] developed the land use regression model to predict
PM2.5 in New York City and showed that urbanization factors such as traffic volume and
population density have a high explanation in predicting PM2.5. Rob Beelen et al. [18]
compared the performance of ordinary kriging, universal kriging, and regression mapping
in developing EU-wide maps of air pollution and showed that universal kriging performs
better in mapping NO2, PM10, and O3. Vikas Singh et al. [19] suggested a cokriging-based
approach and interpolated PM10 in areas not observed in the network in PM10 monitoring
based on the suggested method with secondary variable from the results of a deterministic
chemical transport model (CTM) simulation. And the results showed that the proposed
method provides flexibility in collecting ultrafine dust data.

Other studies have shown examples of predicting PM2.5 through machine learning
and deep learning. Zhao et al. [20] predicted the PM2.5 contamination of stations in
Beijing using long short-term memory—fully connected (LSTM-FC), LSTM, and an artifi-
cial neural network (ANN) with historical air quality data, meteorological data, weather
forecast data, and the day of the week data. They showed that the LSTM-FC model outper-
forms LSTM and the ANN, with MAE = 23.97–50.13 and RMSE = 35.82–69.84 over 48 h.
Karimian et al. [21] also predicted Tehran’s PM2.5 concentration by implementing multiple
additive regression trees (MARTs), a deep feedforward neural network (DFNN), and a new
hybrid model LSTM with meteorological data (temperature, surface-level pressure, relative
humidity, etc.). The best model in this research was LSTM in 12, 24, and 48 h prediction,
with RMSE = 7.03–11.73 µg/m3 and MAE = 5.59–8.41 µg/m3. Qadeer et al. [22] used XG-
Boost (XGB), the light gradient boosting machine (LGBM), the gated recurrent unit (GRU),
convolutional neural network–LSTM (CNNLSTM), BiLSTM, and LSTM to predict PM2.5
concentration of eight sites in Seoul and Gwangju with community multiscale air quality
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(CMAQ) data. The result showed that LSTM performs best, with MAE = 3.5847 µg/m3,
RMSE = 4.8292 µg/m3, R = 0.8989, and IA = 0.9368 of the mean in all sites.

The RNN, LSTM, and BiLSTM models were used in this study, because previous
studies have shown that the deep learning sequence model performs better in prediction.
The local weather and air quality data were used to predict PM2.5, as shown in previous
studies, and used as predictive input variables. The regional data of China are also used as
predictive input variables, which were found to affect PM2.5 in Korea.

3. Data
3.1. Spatial Area

Figure 2 shows the spatial range of the research. A total of eight cities in Korea were
selected for analysis. Of the eight cities, six are metropolitan cities (Busan, Daejeon, Daegu,
Gwangju, Incheon, and Ulsan) representing each province, one is the capital city (Seoul),
and one is the most populous city (Wonju) in the province without a metropolitan city. In
each city, daily air quality data (PM2.5, SO2, O3, NO2, and CO) [23] and meteorological data
(temperature, wind speed, wind direction, humidity, precipitation, etc.) [24] were collected
in consideration of the internal factors of PM2.5 generation. Air quality data were collected
within 5 km of each city’s meteorological data observatory.
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Figure 3 shows that Korea is mainly a country with north and west winds. As a result,
the air quality of Korea can be directly and indirectly affected by the air quality of China, a
country located in the west and north. Figure 4 [25] also shows the concentration of PM2.5
in Korea and China at the same time before and after the outbreak of COVID-19. According
to Bao et al. [26], it can be seen that the lockdown of Chinese factories after the COVID-19
outbreak actually improved the Chinese air quality. Considering this, with the direction
of the wind in Korea, we can see that the air quality of Korea is highly affected by the air
quality in China. Accordingly, daily PM2.5 concentrations in 55 areas in China close to
Korea were selected as input variables in this study, including the PM2.5 concentration in
Shandong province, which was found to increase PM2.5 concentration in Korea.
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3.2. Data Preprocessing

All variables have a time range from 1 January 2015 to 31 December 2019 and are
collected as daily data. There are missing values in some variables, and these missing
values were processed by the exponentially weighted moving average (EWMA) using
the imputeTS package of the R software [27]. The EWMA gives higher weights to the
latest data, reducing the weight of older values, and the formula for EWMA imputation
suggested by Hunter [28] is as follows:

Ŝt = Ŝt − 1 + αet − 1 (1)

= Ŝt − 1 + α
(
St − 1 − Ŝt − 1

)
(2)

= αSt − 1 + (1 − α)Ŝt − 1 (3)

...

= α
t−2

∑
k=1

(1 − α)k − 1St−k + (1 − α)t − 2S2 (4)

∗ α =
2

n + 1
, n = Moving Average Period, k ∈ {1, 2, . . .}, t ≥ 2 (5)

Ŝt is the predicted value at time t, St is the observed value at time t, et is the observed error
at time t, and α is a constant value called the weight from zero to one. The higher the α
value is, the less it reflects past data.

Figures 5 and A1–A3 show the concentration of PM2.5 in China (Figure 5a), Seoul
(Figure 5b) with air quality, and the meteorological data of Seoul (Figures A1–A3). Each
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variable shows the values in a different range due to the differences in units of measurement
and the characteristics within the region. In the case of Chinese data, the concentration
of PM2.5 in each city over time seems to be constant, but some cities have outliers. If
one variable has a relatively greater value, or a wider range of values than the others, in
the composition of the data, it can result in a significant impact on the predicted value,
regardless of the predictive importance of the variable.
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To solve these problems, the scope of the variables should be adjusted through nor-
malization. In this study, maximum–minimum normalization was carried out to every
data of each city as shown in the following equation:

Normalized Variable′s value =
Variable′s Original value − Variable′s Minimum value

Variable′s Maximum value − Variable′s Minimum value
(6)

Because the wind direction data were collected as 16 cardinal points, these are labels
encoded to transform direction data into numerical data.

3.3. Variable Correlation Analysis

As mentioned above, the prediction target of this study is the concentration of PM2.5.
The efficiency of the forecast results in deep learning, and machine learning depends on the
correlation between the dependent and the independent variables. It is important to add
variables with a strong negative or positive correlation between the dependent variable
and the independent variable. In addition, the results of correlation are necessary for data
analysis because they provide a basis for determining the influence of each independent
variable on a dependent variable. In this study, the Pearson correlation coefficient was
calculated, which is expressed as the covariance and standard deviation of the variables, as
shown in the following equations in the case of observation vector X = (X1, X2, X3 . . . , Xn):

Correlation Matrix

=



∑(X1 − X1)(X1 − X1)√
∑(X1 − X1)

2
√

∑(X1 − X1)
2

∑(X1 − X1)(X2 − X2)√
∑(X1 − X1)

2
√

∑(X2 − X2)
2 · · · ∑(X1 − X1)(Xn − Xn)√

∑(X1 − X1)
2
√

∑(Xn − Xn)
2

...
...

...
...

∑(Xn − Xn)(X1 − X1)√
∑(Xn − Xn)

2
√

∑(X1 − X1)
2

∑(Xn − Xn)(X2 − X2)√
∑(Xn − Xn)

2
√

∑(X2 − X2)
2 · · · ∑(Xn − Xn)(Xn − Xn)√

∑(Xn − Xn)
2
√

∑(Xn − Xn)
2


(7)

=



Cov(X1,X1)√
Var(X1)

√
Var(X1)

Cov(X1,X2)√
Var(X1)

√
Var(X2)

· · · Cov(X1,Xn)√
Var(X1)

√
Var(Xn)

...
...

...
...

Cov(Xn ,X1)√
Var(Xn)

√
Var(X1)

Cov(Xn ,X2)√
Var(Xn)

√
Var(X2)

Cov(Xn ,Xn)√
Var(Xn)

√
Var(Xn)


(8)

Each element in the correlation matrix has a value between −1 and 1, showing that a
value greater than 0 is a positive correlation and a value less than 0 is a negative correlation.
The correlation matrix is symmetric, and all of the diagonal elements of the matrix have a
value of 1 considering Cov(Xi, Xi) = Var(Xi), i ∈ {1, 2, . . . n}.

Figure 6 is a visualization of the correlation between PM2.5 concentrations and the
highest eight factors inside Seoul, Korea. Appendix A Tables A2–A9 show the correlation
between PM2.5 concentrations and the meteorological air quality factors of each city in
Korea. Overall, the factors that have a strong positive correlation with PM2.5 are air quality
factors except for O3. PM2.5 also appears to have a positive correlation with local air
pressure (LAP), sea-level pressure (SP), wind direction, and relative humidity. Conversely,
temperature, wind speed, O3, wind flow sum (wind flow sum refers to the distance that
the air flows, and the Korea Meteorological Administration produces a day-to-day wind
flow sum (24 h wind flow sum).), and daily precipitation were found to have a negative
correlation with PM2.5 concentrations. However, the variables that have a relatively weak
correlation with PM2.5 changed the sign of the correlation depending on the region.
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Figure 6. Correlation between the highest eight factors and PM2.5 concentrations in Seoul, Korea.

Figure 7 shows an origin–destination map of PM2.5 correlations between Chinese [29]
and Korean cities. The correlations between PM2.5 concentrations in each Chinese city
and PM2.5 concentrations in each Korean city vary, but as shown in Table 2, an overall
correlation between 0.13 and 0.55 is shown. Comparing this with the factors inside the
Korean cities, we can see that the PM2.5 concentration of each city in China is as much
related with the PM2.5 concentration in Korea as the data of air quality inside the city. This
suggests that China’s PM2.5 concentration could be an important independent variable in
predicting PM2.5 concentrations in Korea.
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Table 2. Correlation range from Chinese cities to Korean cities.

Cities Minimum Maximum Cities Minimum Maximum

Seoul 0.1993 0.4994 Busan 0.1320 0.5084
Gwangju 0.1446 0.4035 Ulsan 0.1419 0.5394

Daegu 0.1813 0.5087 Wonju 0.1824 0.5550
Daejeon 0.1839 0.5087 Incheon 0.2556 0.5415

4. Analytical Methods
4.1. PCA

PCA reduces dimensions by linear combinations of variables with high explanatory
power of the overall data variability, explaining variation in high-dimension data in low
dimensions. Vectors with p variables can have total p principal components, and the
principal components of vector x (1× p), whose covariance matrix is Σ(p× p), can be
generated as follows:

PC = aTx = a1x1 + a2x2 + · · ·+ apxp (9)

Var
(

aTx
)
= aTVar(x)a = aTΣa (10)

L = aTΣa − λ
(

aTa − 1
)

(11)

∂L
∂a

= 2Σa − 2λa = 0 (12)

Σa = λa (13)

Var(PC) = aTΣa = aT(λa) = λ (14)

PCi = aT
i x = ai1x1 + ai2x2 + · · ·+ aipxp (15)

Var(PCi) = λi (16)

Because the principal component is a linear combination of X, it can be expressed as
Equation (9), and the variance of this linear combination can be expressed as Equation (10).
The PCA has to preserve the variance of the original data as much as possible, so Equation (10)
should also be maximized. Therefore, the method of generating principal components
can be transformed into the problem of obtaining a(p× 1), which maximizes aTΣa under
the condition aTa = 1. Equation (11) was derived by applying Lagrange’s multiplier
method to Equation (10). Equation (13) was made by Equation (12), which partially
differentiates Equation (11) by a. Equation (13) shows that λ is the eigenvalue of Σ, and a is
the eigenvector of Σ. As a result, a linear combination that maximizes Equation (10), i.e., the
principal component, can be expressed as Equation (9). In addition, Equation (10), which is
the variance of the principal component, can be expressed as λ under the condition aTa = 1.
Therefore, in vectors with p variables, the i-th principal component is Equation (15), and
the variance is Equation (16). Subsequently, the number of principal components is selected
for convenience by the principal components where the sum of the principal components
is more than 80% to 90% of the total variance. For example, the number of principal
components i has to be selected out of principal components p. Equation (17) has to
produce results of more than 80% to 90%:

λ1 + λ2 + · · ·+ λi
λ1 + λ2 + λ3 + λ4 + · · ·+ λp

(17)

4.2. RNN

The RNN is a deep learning model for processing sequence data, such as stock
charts [30], music [31], and natural language processes [32]. It remembers the state entered
from the previous time point (t − 1) through the hidden layer and passes the hidden layer
state at that specific time point (t) to the next time point (t + 1). That is, the status at the
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previous time point affects the state at the present time point, and the state at the present
time point affects the status at the next time point. This procedure is repeated until result
values becomes optimized; hence the name “recurrent neural network.”

ht − 1 = tanh(Whhht − 2 + Wxhxt − 1 + bh) (18)

ht = tanh(Whhht − 1 + Wxhxt + bh) (19)

ŷt = Whyht + by (20)

Lt = MSE =
∑(yt − ŷt)

2

n
(21)

Figure 8b is the unrolled and inner structure of Figure 8a. In Equations (18)–(20), xt is
an input, and ht is a hidden state at time t. Wij is the weight from layer i to layer j, and bi is
the bias in each layer. In Equation (21), Lt is the loss at time t, and yt and ŷt are the actual
and predicted values, respectively, at time point t.
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The RNN model shares the weights and biases at all time points and circulates the
input data to output the results. Model training is repeated until the loss value is minimized
by gradient descending in the loss function, with information of specific previous time
steps. At the same time, the weight is updated to find the optimum value. This is called
backpropagation through time (BPTT) and in an RNN can be expressed as follows [33]:

Updated Wxh = Existing Wxh − η
n

∑
t=1

n

∑
k=0

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂hk
∂Wxh

(22)

Updated Whh = Existing Whh − η
n

∑
t=1

n

∑
k=0

∂Lt

∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂hk
∂Whh

(23)

Updated Why = Existing Why − η
n

∑
t=1

∂Lt

∂Why
(24)

∗ η = learning rate [0, 1]

4.3. LSTM and BiLSTM

In an RNN, tanh is used as an activation function to train the model in a non-linear
way. However, there is a long-term dependency problem caused by a “vanishing gradient”
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problem in the RNN’s BPTT, in which the gradient (weights update rate) disappears as
the value (derivative value of the tanh function with respect to ht) less than 1 continues to
multiply. Thus, the state of a relatively distant past time point has almost no effect on an
output of the present time point. As a result, the model relies only on short-term data and
has a limit in achieving the best performance. To solve this problem, Hochreiter et al. [34]
suggested the LSTM model. Figure 9 shows the internal structure of LSTM and its process.
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LSTM is the model in which forgetting and memory ( ft), the input (it), the inner cell
state candidate

(
C̃t

)
, the conveying and inner cell state at time point t (Ct), and the output

(ot) are added to the RNN model. Especially, Ct , which penetrates all time points, greatly
contributes to solving the long-term dependency problem. The order of each part and the
internal algorithm can be explained by the following process:

ft = σ
(

Wxh( f )xt + Whh( f )ht − 1 + bh( f )

)
(25)

it = σ
(

Wxh(i)xt + Whh(i)ht − 1 + bh(i)

)
(26)

C̃t = tanh
(

Wxh(C̃t)
xt + Whh(C̃t)

ht − 1 + bh(C̃t)

)
(27)

Ct = ft � Ct − 1 + it � C̃t (28)

ot = σ
(

Wxh(o)xt + Whh(o)ht − 1 + bh(o)

)
(29)

ht = ot � tanh(Ct) (30)

∗ � = Hadamard product, σ = sigmoid f unction =
1

1 + e − x

Equation (25), output of the forget gate, determines whether the historical state is
forgotten by the combination of xt and ht−1. The output value of this step is converted to a
number between 0 and 1 by the sigmoid function and multiplied by Ct−1 (memory of past
data, i.e., historical state) to determine how much past data to preserve or forget. A value of
0 indicates forgetfulness, and 1 indicates memorization of past data. Equations (26) and (27)
are involved in the storage of the inner cell state of time point t. Equation (26), output
of the input gate, determines how much data of time point t are memorized. In other
words, it has a value between 0 and 1, indicating the degree of memorizing for the new
information. At the same time, Equation (27) generates the inner cell state candidate of
time point t. Equation (28) generates the new cell state at time point t and passes it on
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to the LSTM cell at the next time point (t + 1). In other words, LSTM solves the RNN’s
long-term dependency problem by adjusting the memorization and forgetfulness of the
past and presents the state through Equations (25)–(28). In the end, the output is decided
by Equations (29) and (30). Equation (29), output of the output gate, decides which part of
the new cell state will become output. A value of the new cell status is converted through
the tangent function and calculated with the result value of Equation (29) to produce the
final output of time point t, as shown in Equation (30).

BiLSTM is a variant of the bidirectional RNN proposed by Schuster et al. [35]. Figure 10
shows an example of applying a bidirectional way to sentence learning. If (A) is taught in
the model and “went” is set as the target, (B) predicts in a forward way and (C) predicts in
both a forward and a backward way. If LSTM uses a historical state to predict the value
of time point t, bidirectional LSTM predicts the value of time point t by adding an LSTM
layer that reads data from a future state. The computations within the model are the same
as those of LSTM, and LSTM and BiLSTM update their weights in the training model as an
RNN [36].
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Figure 10. Internal structure of bidirectional long short-term memory (BiLSTM) and an example.

4.4. Evaluation Model Performance

In this study, MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) were
used as evaluation indicators to compare the performance of each model with and without
PCA application. The calculations of each indicator are expressed as follows:

MAE =
1
n

n

∑
t=1
|yt − ŷt| (31)

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)
2 (32)

4.5. Workflow

The flow of this study is divided into four stages: data collection, data preprocessing,
prediction, and evaluation (Figure 11). The application of PCA is used in the data prepro-
cessing stage, aiming to reduce the number of variables and increase the performance of
model predictions. Thus, the data preprocessing stage was divided into two cases. Case 1
was set as a prediction without a PCA application, and Case 2 was set as a prediction with
the PCA application. Afterwards, each case will be compared using evaluation indicators
(MAE and RMSE).
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5. Results
5.1. PC Selection

For each city, PCA was performed on the input variables, except the dependent
variable, PM2.5. The variance of each city’s data was explained by a relatively small number
of principal components, which resulted in the selection of five principal components in all
cities. This reduced the number of input variables to about 1/16. Tables A10–A17 show the
results of the PCA of each city, and Table 3 shows how much the five principal components
describe the overall variation of each city.

Table 3. The ratio of variance explained by five principal components in each city.

Cities Cumulative Variance Cities Cumulative Variance

Seoul 0.9631(=96.31%) Busan 0.98102(=98.102%)
Gwangju 0.9553(=95.53%) Ulsan 0.9655(=96.55%)

Daegu 0.9770(=97.70%) Wonju 0.9366(=93.66%)
Daejeon 0.9539(=95.39%) Incheon 0.98123(=98.123%)

5.2. Setup and Case Comparison

China’s daily PM2.5 concentration and Korea’s air quality and meteorological data
were collected from 1 January 2015 to 31 December 2019 to predict the concentration of
PM2.5 in eight Korean cities. In total, 85% of the collected data were allocated to the train set
and 15% to the test set. In the aspect of details in models, the three models have 256 units
in the layer, a tanh activation function, 200 epochs, a batch size of 64 and an adaptive
moment estimation (ADAM) optimizer [37]. To avoid overfitting, 30% of the train set
was designated as a validation set, and a 30% dropout regulation was used between the
input layer and the output layer. Additionally, in model learning, earlystopping, one of
the callback functions of Keras, was applied to stop learning in the epoch when optimal
learning had achieved 200 epochs.

Figure 12 shows the predicted and actual values of PM2.5 for each case and model in
Seoul. Figures A4–A10 show the PM2.5 concentration prediction of each city except for
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Seoul. Unlike LSTM and BiLSTM, the RNN appears to have outputted average values
for all time periods and shows relatively low predictive power in both Case 1 and Case
2. The RNN without PCA seems to follow the trend more and to show relatively higher
performance than the RNN with PCA. However, although there are differences between
cities, LSTM and BiLSTM show that they follow the trend relatively well, regardless of
whether PCA is applied or not. Furthermore, it can be seen that PCA application in all cities
corrects the difference between the predicted and actual values that exists if PCA is not
applied. It also appears to have produced more accurate results in predicting peak values.
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Tables 4 and 5 are numerical representations of these visual results. As noted above,
it is understood that the reduction in dimension in all cities leads to a relatively low
performance in the RNN, except for Daegu in terms of the MAE. This means that, for
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RNNs, reducing variables does not help model learning; rather, providing a high amount
of information in a short period of time can lead to a better performance, depending
on the feature of the model that relies on short-term information. Instead of an RNN,
which lacks overall accuracy, the results that should be considered are those of LSTM
and BiLSTM. Unlike the RNN, PCA application to LSTM and BiLSTM showed better
results in RMSE and MAE evaluation, similar to the visual results. The order of cities with
high performance is as follows: Busan > Daejeon > Gwangju > Daegu > Seoul > Ulsan >
Wonju > Incheon, while the order of cities with high improvement in MAE and RMSE is as
follows: Busan > Incheon > Gwangju > Seoul > Ulsan > Daegu > Daejeon > Wonju. LSTM
showed high performance in Daejeon, Daegu, and Busan, while BiLSTM showed higher
performance in the rest of the cities.

Table 4. Evaluation results from PM2.5 prediction in each Korean city (Case 1).

City Model RMSE MAE City Model RMSE MAE

Seoul

RNN 9.730 7.328

Gwangju

RNN 9.002 7.472

LSTM 8.020 6.374 LSTM 7.7415 5.797

BiLSTM 8.101 6.168 BiLSTM 8.300 6.590

Daegu

RNN 10.171 8.110

Busan

RNN 8.410 7.224

LSTM 7.654 6.223 LSTM 7.770 6.504

BiLSTM 7.707 6.193 BiLSTM 7.897 6.578

Daejeon

RNN 9.361 7.497

Ulsan

RNN 10.558 8.988

LSTM 7.042 5.753 LSTM 8.660 6.959

BiLSTM 7.231 5.927 BiLSTM 8.383 6.772

Wonju

RNN 11.603 9.208

Incheon

RNN 13.686 11.408

LSTM 8.718 6.520 LSTM 11.900 9.828

BiLSTM 8.459 6.251 BiLSTM 10.393 8.285

Table 5. Evaluation results from PM2.5 prediction in each Korean city (Case 2).

City Model RMSE MAE City Model RMSE MAE

Seoul

RNN 11.680
(20%↑)

9.310
(27%↑)

Gwangju

RNN 9.492
(5.4%↑)

7.746
(3.7%↑)

LSTM 7.667
(4.6%↓)

5.455
(16.8%↓) LSTM 7.148

(8.3%↓)
5.541

(4.6%↓)

BiLSTM 7.567
(7.1%↓)

5.368
(14.9%↓) BiLSTM 7.110

(16.7%↓)
5.455

(20.8%↓)

Daegu

RNN 10.208
(0.4%↑)

7.824
(3.5%↓)

Busan

RNN 9.924
(18%↑)

8.316
(15.1%↑)

LSTM 7.491
(2.2%↓)

5.664
(9.9%↓) LSTM 6.668

(16.5%↓)
4.881

(33.3%↓)

BiLSTM 7.552
(2.1%↓)

5.703
(8.6%↓) BiLSTM 6.779

(16.5%↓)
4.999

(31.6%↓)

Daejeon

RNN 9.602
(2.6%↑)

7.824
(4.4%↑)

Ulsan

RNN 11.160
(5.7%↑)

9.389
(4.5%↑)

LSTM 6.967
(1.1%↓)

5.374
(7.1%↓) LSTM 8.021

(8%↓)
6.251

(11.3%↓)

BiLSTM 7.098
(1.9%↓)

5.537
(7%↓) BiLSTM 7.871

(6.5%↓)
5.993

(13%↓)

Wonju

RNN 12.132
(4.6%↑)

9.758
(6%↑)

Incheon

RNN 14.744
(7.7%↑)

12.427
(8.9%↑)

LSTM 8.424
(3.5%↓)

6.251
(4.3%↓) LSTM 10.205

(16.6%↓)
8.000

(22.9%↓)

BiLSTM 8.345
(1.4%↓)

6.137
(1.9%↓) BiLSTM 9.709

(7%↓)
7.354

(12.7%↓)
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The difference in performance and performance improvements city by city makes
it worthwhile to consider which characteristics of each city would cause regional differ-
ences in the performance of the same model, and which model would perform better
depending on regional characteristics. To do so, it is expected that such studies require
multidisciplinary considerations.

6. Conclusions

Performance degradation due to the curse of dimensionality can occur in deep learn-
ing and machine learning. We proposed a PCA-applied model to solve this problem, and
through performance comparison with a non-PCA model, we showed that PCA applica-
tions produce better results in deep learning time series prediction. Such a performance
improvement technique can be a way to increase the efficiency of the government system
by providing better forecasts as a basis for issuing crisis alerts and establishing air pollution
reduction policies in the future.

As the correlation analysis shows, the concentration of PM2.5 in China appears to have
positive correlations with the concentration of PM2.5 in China, indicating that we have to
consider China’s air pollution factors in predicting the concentration of PM2.5 in Korea.
It suggests that there is a justification for the setup of real-time air pollution databases
between the two countries from the ongoing joint research between Korea and China [38].

However, while PCA applications can improve model performance, the results show
relatively weak predictions on predicting the minimum and maximum concentration PM2.5
for each city. It seems to be a problem due to a small number of observations (daily obser-
vations, not hourly observations). It is expected that future joint cross-border research will
result in better performance by collecting much more observations. Some meteorological
data in each Korean city showed a relatively weak correlation with concentration, so it
seems necessary to find variables that have causality or strong correlation within areas
other than deep learning. For example, if spatial factors (spatial homogeneity, autocorrela-
tion, etc.) in Chinese cities and Korean cities are added to the model as input variables, it
is expected that the model will produce better performance by learning time and spatial
features of data.

This research will continue to maximize the prediction performance of deep learning
models by collecting observations and optimizing models, while applying new algorithms
and adding other variables that have causality with concentration of PM2.5 in terms of
econometrics and spatial econometrics.
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Appendix A

Table A1 shows the acronym list of Tables A2–A17 and Figures A1–A3.
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Table A1. Acronym list.

Acronym Meaning

Min Temp Minimum temperature (◦C)
Max Temp Maximum temperature (◦C)

Mean Temp Mean temperature (◦C)
Daily prep Daily precipitation (mm)

Max inst WS Maximum instantaneous wind speed (m/s)
Max inst WSD Maximum instantaneous wind speed directions (16 cardinal points)

Max WS Maximum wind speed (m/s)
Max WSD Maximum wind speed directions (16 cardinal points)
Mean WS Mean wind speed (m/s)

WFS Wind flow sum (100 m)
Max freq WD Maximum frequent wind directions (16 cardinal points)

Mean DP Mean dew point (◦C)
Mean RH Mean relative humidity (%)
Mean LAP Mean local atmospheric pressure (hPa)

Max SP Maximum sea-level pressure (hPa)
Min SP Minimum sea-level pressure (hPa)

Mean SP Mean sea-level pressure (hPa)
Min RH Minimum relative humidity (%)

NPC The number of principal components
CV Cumulative variance

Tables A2–A9 show the correlation coefficient of the meteorological and air quality
factors between PM2.5 concentrations in each city.

Table A2. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Seoul.

Air
quality
factors

O3
(ppm) −0.021

Meteorological
factors

Min
Temp −0.175

Max
inst
WS

−0.196 Mean
WS −0.174 Mean

RH 0.013 Mean
SP 0.168

CO
(ppm) 0.565 Max

Temp −0.185
Max
inst

WSD
0.09 WFS −0.175 Mean

LAP 0.166 Min
RH −0.047

NO2
(ppm) 0.627 Mean

Temp −0.156 Max
WS −0.098 Max

freqWD 0.041 Max
SP 0.17

SO2
(ppm) 0.417 Daily

prep −0.143 Max
WSD 0.118 Mean

DP −0.141 Min SP 0.169

Table A3. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Gwangju.

Air
quality
factors

O3
(ppm) 0.108

Meteorological
factors

Min
Temp −0.223

Max
inst
WS

−0.226 Mean
WS −0.28 Mean

RH −0.164 Mean
SP 0.192

CO
(ppm) 0.532 Max

Temp −0.122
Max
inst

WSD
0.108 WFS −0.281 Mean

LAP 0.192 Min
RH −0.235

NO2
(ppm) 0.562 Mean

Temp −0.179 Max
WS −0.214

Max
freq
WD

0.11 Max
SP 0.186

SO2
(ppm) 0.276 Daily

prep −0.212 Max
WSD 0.102 Mean

DP −0.2 Min SP 0.196

Table A4. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Daegu.

Air
quality
factors

O3
(ppm) −0.113

Meteorological
factors

Min
Temp −0.291

Max
inst
WS

−0.305 Mean
WS −0.373 Mean

RH −0.056 Mean
SP 0.256

CO
(ppm) 0.665 Max

Temp −0.193
Max
inst

WSD
0.156 WFS −0.374 Mean

LAP 0.252 Min
RH −0.128

NO2
(ppm) 0.702 Mean

Temp −0.244 Max
WS −0.317

Max
freq
WD

0.053 Max
SP 0.26

SO2
(ppm) 0.437 Daily

prep −0.157 Max
WSD 0.14 Mean

DP −0.214 Min SP 0.253
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Table A5. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Daejeon.

Air
quality
factors

O3
(ppm) −0.086

Meteorological
factors

Min
Temp −0.299

Max
ins

tWS
−0.241 Mean

WS −0.265 Mean
RH −0.101 Mean

SP 0.272

CO
(ppm) 0.535 Max

Temp −0.236
Max
inst

WSD
0.121 WFS −0.265 Mean

LAP 0.271 Min
RH −0.173

NO2
(ppm) 0.483 Mean

Temp −0.272 Max
WS −0.239

Max
freq
WD

0.211 Max
SP 0.27

SO2
(ppm) 0.41 Daily

prep −0.18 Max
WSD 0.1 Mean

DP −0.271 Min SP 0.272

Table A6. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Busan.

Air
quality
factors

O3
(ppm) 0.029

Meteorological
factors

Min
Temp −0.139

Max
inst
WS

−0.231 Mean
WS −0.162 Mean

RH −0.126 Mean
SP 0.104

CO
(ppm) 0.32 Max

Temp −0.095
Max
inst

WSD
0.196 WFS −0.162 Mean

LAP 0.102 Min
RH −0.187

NO2
(ppm) 0.554 Mean

Temp −0.119 Max
WS −0.07 Max

freqWD 0.178 Max
SP 0.086

SO2
(ppm) 0.366 Daily

prep −0.17 Max
WSD 0.249 Mean

DP −0.125 Min SP 0.124

Table A7. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Ulsan.

Air
quality
factors

O3
(ppm) 0.095

Meteorological
factors

Min
Temp −0.084

Max
inst
WS

−0.198 Mean
WS −0.318 Mean

RH −0.125 Mean
SP 0.032

CO
(ppm) 0.665 Max

Temp 0.053
Max
inst

WSD
0.023 WFS −0.319 Mean

LAP 0.064 Min
RH −0.233

NO2
(ppm) 0.667 Mean

Temp −0.015 Max
WS −0.166

Max
freq
WD

−0.055 Max
SP 0.016

SO2
(ppm) 0.525 Daily

prep −0.167 Max
WSD 0.014 Mean

DP −0.055 Min SP 0.051

Table A8. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Wonju.

Air
quality
factors

O3
(ppm) −0.129

Meteorological
factors

Min
Temp −0.384

Max
inst
WS

−0.187 Mean
WS −0.257 Mean

RH −0.018 Mean
SP 0.309

CO
(ppm) 0.686 Max

Temp −0.339
Max
inst

WSD
0.171 WFS −0.259 Mean

LAP 0.299 Min
RH −0.077

NO2
(ppm) 0.675 Mean

Temp −0.366 Max
WS −0.187

Max
freq
WD

0.077 Max
SP 0.318

SO2
(ppm) 0.575 Daily

prep −0.184 Max
WSD 0.14 Mean

DP −0.326 Min SP 0.302

Table A9. The correlation coefficient of the meteorological and air quality factors between PM2.5 concentrations in Incheon.

Air
quality
factors

O3
(ppm) −0.102

Meteorological
Factors

Min
Temp −0.15

Max
inst
WS

−0.288 Mean
WS −0.308 Mean

RH 0.214 Mean
SP 0.149

CO
(ppm) 0.621 Max

Temp −0.122
Max
inst

WSD
0.045 WFS −0.309 Mean

LAP 0.143 Min
RH 0.091

NO2
(ppm) 0.667 Mean

Temp −0.142 Max
WS −0.254

Max
freq
WD

0.07 Max
SP 0.155

SO2
(ppm) 0.559 Daily

prep −0.144 Max
WSD 0.049 Mean

DP −0.054 Min SP 0.151
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Tables A10–A17 show the results of the PCA of each city.

Table A10. The PCA result of Seoul.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 82.06% 11 97.88% 21 98.99% 31 99.49% 41 99.77% 51 99.92% 61 99.99% 71 100.00%
2 93.11% 12 98.04% 22 99.06% 32 99.52% 42 99.79% 52 99.93% 62 100.00% 72 100.00%
3 94.58% 13 98.19% 23 99.12% 33 99.56% 43 99.81% 53 99.94% 63 100.00% 73 100.00%
4 95.71% 14 98.33% 24 99.18% 34 99.59% 44 99.82% 54 99.95% 64 100.00% 74 100.00%
5 96.31% 15 98.45% 25 99.23% 35 99.62% 45 99.84% 55 99.96% 65 100.00% 75 100.00%
6 96.69% 16 98.56% 26 99.28% 36 99.65% 46 99.85% 56 99.97% 66 100.00% 76 100.00%
7 97.01% 17 98.66% 27 99.33% 37 99.68% 47 99.87% 57 99.98% 67 100.00% 77 100.00%
8 97.28% 18 98.76% 28 99.37% 38 99.70% 48 99.88% 58 99.98% 68 100.00%
9 97.50% 19 98.85% 29 99.41% 39 99.72% 49 99.90% 59 99.99% 69 100.00%

10 97.70% 20 98.92% 30 99.45% 40 99.75% 50 99.91% 60 99.99% 70 100.00%

Table A11. The PCA result of Gwangju.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 79.42% 11 97.44% 21 98.79% 31 99.38% 41 99.72% 51 99.90% 61 99.99% 71 100.00%
2 91.66% 12 97.64% 22 98.87% 32 99.43% 42 99.74% 52 99.92% 62 100.00% 72 100.00%
3 93.45% 13 97.82% 23 98.94% 33 99.47% 43 99.76% 53 99.93% 63 100.00% 73 100.00%
4 94.80% 14 97.99% 24 99.01% 34 99.51% 44 99.78% 54 99.94% 64 100.00% 74 100.00%
5 95.53% 15 98.13% 25 99.08% 35 99.54% 45 99.80% 55 99.95% 65 100.00% 75 100.00%
6 95.98% 16 98.26% 26 99.13% 36 99.58% 46 99.82% 56 99.96% 66 100.00% 76 100.00%
7 96.36% 17 98.39% 27 99.19% 37 99.61% 47 99.84% 57 99.97% 67 100.00% 77 100.00%
8 96.69% 18 98.52% 28 99.24% 38 99.64% 48 99.86% 58 99.98% 68 100.00%
9 96.96% 19 98.61% 29 99.29% 39 99.66% 49 99.87% 59 99.98% 69 100.00%

10 97.21% 20 98.70% 30 99.34% 40 99.69% 50 99.89% 60 99.99% 70 100.00%

Table A12. The PCA result of Daegu.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 89.40% 11 98.69% 21 99.38% 31 99.69% 41 99.86% 51 99.95% 61 100.00% 71 100.00%
2 95.70% 12 98.79% 22 99.42% 32 99.71% 42 99.87% 52 99.96% 62 100.00% 72 100.00%
3 96.62% 13 98.88% 23 99.46% 33 99.73% 43 99.88% 53 99.97% 63 100.00% 73 100.00%
4 97.33% 14 98.96% 24 99.49% 34 99.75% 44 99.89% 54 99.97% 64 100.00% 74 100.00%
5 97.70% 15 99.04% 25 99.53% 35 99.77% 45 99.90% 55 99.98% 65 100.00% 75 100.00%
6 97.93% 16 99.11% 26 99.56% 36 99.79% 46 99.91% 56 99.98% 66 100.00% 76 100.00%
7 98.13% 17 99.17% 27 99.59% 37 99.80% 47 99.92% 57 99.99% 67 100.00% 77 100.00%
8 98.30% 18 99.23% 28 99.61% 38 99.82% 48 99.93% 58 99.99% 68 100.00%
9 98.44% 19 99.28% 29 99.64% 39 99.83% 49 99.94% 59 99.99% 69 100.00%

10 98.57% 20 99.33% 30 99.66% 40 99.85% 50 99.95% 60 100.00% 70 100.00%

Table A13. The PCA result of Daejeon.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 78.91% 11 97.36% 21 98.74% 31 99.36% 41 99.71% 51 99.91% 61 99.99% 71 100.00%
2 91.31% 12 97.56% 22 98.82% 32 99.41% 42 99.74% 52 99.92% 62 100.00% 72 100.00%
3 93.19% 13 97.75% 23 98.90% 33 99.45% 43 99.76% 53 99.93% 63 100.00% 73 100.00%
4 94.62% 14 97.92% 24 98.97% 34 99.49% 44 99.78% 54 99.95% 64 100.00% 74 100.00%
5 95.39% 15 98.06% 25 99.04% 35 99.53% 45 99.81% 55 99.96% 65 100.00% 75 100.00%
6 95.86% 16 98.20% 26 99.10% 36 99.57% 46 99.83% 56 99.97% 66 100.00% 76 100.00%
7 96.26% 17 98.33% 27 99.16% 37 99.60% 47 99.84% 57 99.97% 67 100.00% 77 100.00%
8 96.60% 18 98.45% 28 99.21% 38 99.63% 48 99.86% 58 99.98% 68 100.00%
9 96.88% 19 98.55% 29 99.26% 39 99.66% 49 99.88% 59 99.99% 69 100.00%

10 97.13% 20 98.65% 30 99.31% 40 99.69% 50 99.89% 60 99.99% 70 100.00%
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Table A14. The PCA result of Busan.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 90.96% 11 98.92% 21 99.49% 31 99.74% 41 99.88% 51 99.96% 61 100.00% 71 100.00%
2 96.47% 12 99.00% 22 99.52% 32 99.75% 42 99.89% 52 99.97% 62 100.00% 72 100.00%
3 97.22% 13 99.08% 23 99.55% 33 99.77% 43 99.90% 53 99.97% 63 100.00% 73 100.00%
4 97.79% 14 99.15% 24 99.58% 34 99.79% 44 99.91% 54 99.98% 64 100.00% 74 100.00%
5 98.10% 15 99.21% 25 99.61% 35 99.80% 45 99.92% 55 99.98% 65 100.00% 75 100.00%
6 98.30% 16 99.27% 26 99.63% 36 99.82% 46 99.93% 56 99.98% 66 100.00% 76 100.00%
7 98.47% 17 99.32% 27 99.65% 37 99.83% 47 99.93% 57 99.99% 67 100.00% 77 100.00%
8 98.60% 18 99.37% 28 99.68% 38 99.85% 48 99.94% 58 99.99% 68 100.00%
9 98.72% 19 99.41% 29 99.70% 39 99.86% 49 99.95% 59 99.99% 69 100.00%

10 98.83% 20 99.45% 30 99.72% 40 99.87% 50 99.95% 60 100.00% 70 100.00%

Table A15. The PCA result of Ulsan.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 83.59% 11 98.04% 21 99.07% 31 99.52% 41 99.78% 51 99.92% 61 99.99% 71 100.00%
2 93.60% 12 98.19% 22 99.13% 32 99.55% 42 99.80% 52 99.93% 62 100.00% 72 100.00%
3 94.97% 13 98.32% 23 99.18% 33 99.58% 43 99.82% 53 99.94% 63 100.00% 73 100.00%
4 96.00% 14 98.45% 24 99.24% 34 99.61% 44 99.83% 54 99.95% 64 100.00% 74 100.00%
5 96.55% 15 98.56% 25 99.28% 35 99.64% 45 99.85% 55 99.96% 65 100.00% 75 100.00%
6 96.90% 16 98.66% 26 99.33% 36 99.67% 46 99.86% 56 99.97% 66 100.00% 76 100.00%
7 97.21% 17 98.76% 27 99.37% 37 99.69% 47 99.88% 57 99.97% 67 100.00% 77 100.00%
8 97.46% 18 98.86% 28 99.41% 38 99.71% 48 99.89% 58 99.98% 68 100.00%
9 97.68% 19 98.93% 29 99.45% 39 99.74% 49 99.90% 59 99.99% 69 100.00%

10 97.87% 20 99.00% 30 99.48% 40 99.76% 50 99.91% 60 99.99% 70 100.00%

Table A16. The PCA result of Wonju.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 71.67% 11 96.38% 21 98.28% 31 99.13% 41 99.61% 51 99.87% 61 99.99% 71 100.00%
2 88.12% 12 96.65% 22 98.39% 32 99.19% 42 99.64% 52 99.89% 62 100.00% 72 100.00%
3 90.65% 13 96.91% 23 98.50% 33 99.25% 43 99.68% 53 99.91% 63 100.00% 73 100.00%
4 92.60% 14 97.14% 24 98.60% 34 99.31% 44 99.71% 54 99.92% 64 100.00% 74 100.00%
5 93.66% 15 97.34% 25 98.69% 35 99.36% 45 99.73% 55 99.94% 65 100.00% 75 100.00%
6 94.32% 16 97.53% 26 98.77% 36 99.41% 46 99.76% 56 99.95% 66 100.00% 76 100.00%
7 94.86% 17 97.71% 27 98.85% 37 99.45% 47 99.78% 57 99.96% 67 100.00% 77 100.00%
8 95.33% 18 97.88% 28 98.93% 38 99.50% 48 99.81% 58 99.97% 68 100.00%
9 95.71% 19 98.02% 29 99.00% 39 99.54% 49 99.83% 59 99.98% 69 100.00%

10 96.05% 20 98.15% 30 99.06% 40 99.57% 50 99.85% 60 99.98% 70 100.00%

Table A17. The PCA result of Incheon.

NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV NPC CV

1 91.12% 11 98.93% 21 99.49% 31 99.74% 41 99.88% 51 99.96% 61 100.00% 71 100.00%
2 96.52% 12 99.01% 22 99.52% 32 99.75% 42 99.89% 52 99.96% 62 100.00% 72 100.00%
3 97.25% 13 99.08% 23 99.55% 33 99.77% 43 99.90% 53 99.97% 63 100.00% 73 100.00%
4 97.83% 14 99.15% 24 99.58% 34 99.79% 44 99.91% 54 99.97% 64 100.00% 74 100.00%
5 98.12% 15 99.21% 25 99.61% 35 99.80% 45 99.92% 55 99.98% 65 100.00% 75 100.00%
6 98.31% 16 99.27% 26 99.63% 36 99.82% 46 99.92% 56 99.98% 66 100.00% 76 100.00%
7 98.47% 17 99.32% 27 99.65% 37 99.83% 47 99.93% 57 99.99% 67 100.00% 77 100.00%
8 98.61% 18 99.37% 28 99.68% 38 99.84% 48 99.94% 58 99.99% 68 100.00%
9 98.72% 19 99.42% 29 99.70% 39 99.85% 49 99.95% 59 99.99% 69 100.00%

10 98.83% 20 99.45% 30 99.72% 40 99.87% 50 99.95% 60 99.99% 70 100.00%

Figures A1–A3 show the meteorological data of Seoul and Figures A4–A10 show the
PM2.5 concentration prediction of each city.
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Figure A4. The	PM . 	prediction in Gwangju by two cases. Figure A4. The PM2.5 prediction in Gwangju by two cases.
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Figure A5. The	PM . 	prediction in Daegu by two cases. Figure A5. The PM2.5 prediction in Daegu by two cases.
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Figure A6. The	PM . 	prediction in Daejeon by two cases. Figure A6. The PM2.5 prediction in Daejeon by two cases.
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Figure A7. The	PM . 	prediction in Busan by two cases. Figure A7. The PM2.5 prediction in Busan by two cases.
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Figure A8. The	PM . 	prediction in Ulsan by two cases. Figure A8. The PM2.5 prediction in Ulsan by two cases.
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Figure A9. The	PM . 	prediction in Wonju by two cases. Figure A9. The PM2.5 prediction in Wonju by two cases.
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Figure A10. The	PM . 	prediction in Incheon by two cases.[M9] Figure A10. The PM2.5 prediction in Incheon by two cases.



Sustainability 2021, 13, 3726 29 of 30

References
1. Gong, S. A Study on the Health Impact and Management Policy of PM2.5 in Korea 1.; Korea Environment Institute: Sejong, Korea,

2012; pp. 1–209. (In Korean)
2. WHO Health Organization. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/

detail/ambient-(outdoor)-air-quality-and-health (accessed on 8 December 2019).
3. French National Health Agency, InVS, European Environment Agency. Available online: https://news.yahoo.com/micro-

pollution-ravaging-china-south-asia-study-031634307.html (accessed on 3 March 2020).
4. OECD. Available online: https://data.oecd.org/air/air-pollution-exposure.htm (accessed on 11 December 2019).
5. Han, C.; Kim, S.; Lim, Y.-H.; Bae, H.-J.; Hong, Y.-C. Spatial and Temporal Trends of Number of Deaths Attributable to Ambient

PM2.5in the Korea. J. Korean Med Sci. 2018, 33, e193. [CrossRef]
6. Hwang, I.C.; Kim, C.H.; Son, W.I. Benefits of Management Policy of Seoul on Airborne Particulate Matter; The Seoul Institute Policy

Research: Seoul, Korea, 2018; pp. 1–113. (In Korean)
7. Statistics Korea Office Press Release. “Results of Cause of Death Statistics in 2019”, Statistics Korea. Available online:

http://kostat.go.kr/portal/korea/kor_nw/1/6/2/index.board?bmode=read&bSeq=&aSeq=385219&pageNo=1&rowNum=
10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt= (accessed on 22 September 2020). (In Korean).

8. Joint Association of Related Korean Ministries of Korea. Comprehensive Plan for Fine Dust Management (2020–2024); Joint
Association of Related Korean Ministries of Korea: Seoul, Korea, 2019. (In Korean)

9. Xayasouk, T.; Lee, H.; Lee, G. Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE)
Models. Sustainability 2020, 12, 2570. [CrossRef]

10. Mengara, A.M.; Kim, Y.; Yoo, Y.; Ahn, J. Distributed Deep Features Extraction Model for Air Quality Forecasting. Sustainability
2020, 12, 8014. [CrossRef]

11. Park, S.; Shin, H. Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors. J. Environ. Policy Adm. 2017,
25, 227–248. (In Korean) [CrossRef]

12. Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and Cardiovascular Diseases in the Elderly: An Overview. Int. J. Environ. Res. Public Heal.
2015, 12, 8187–8197. [CrossRef]

13. César, A.C.G.; Nascimento, L.F.C.; Mantovani, K.C.C.; Vieira, L.C.P. Fine particulate matter estimated by mathematical model
and hospitalizations for pneumonia and asthma in children. Rev. Paul. Pediatr. 2016, 34, 18–23. [CrossRef] [PubMed]

14. Kim, K.-N.; Kim, S.; Lim, Y.-H.; Song, I.G.; Hong, Y.-C. Effects of short-term fine particulate matter exposure on acute respiratory
infection in children. Int. J. Hyg. Environ. Health 2020, 229, 113571. [CrossRef]

15. Vinikoor-Imler, L.C.; Davis, J.A.; Luben, T.J. An Ecologic Analysis of County-Level PM2.5 Concentrations and Lung Cancer
Incidence and Mortality. Int. J. Environ. Res. Public Health 2011, 8, 1865–1871. [CrossRef]

16. Choe, J.-I.; Lee, Y.S. A Study on the Impact of PM2.5 Emissions on Respiratory Diseases. J. Environ. Policy Adm. 2015, 23, 155. (In
Korean) [CrossRef]

17. Ross, Z.; Jerrett, M.; Ito, K.; Tempalski, B.; Thurston, G. A land use regression for predicting fine particulate matter concentrations
in the New York City region. Atmos. Environ. 2007, 41, 2255–2269. [CrossRef]

18. Beelen, R.; Hoek, G.; Pebesma, E.; Vienneau, D.; de Hoogh, K.; Briggs, D.J. Mapping of background air pollution at a fine spatial
scale across the European Union. Sci. Total. Environ. 2009, 407, 1852–1867. [CrossRef] [PubMed]

19. Singh, V.; Carnevale, C.; Finzi, G.; Pisoni, E.; Volta, M. A cokriging based approach to reconstruct air pollution maps, processing
measurement station concentrations and deterministic model simulations. Environ. Model. Softw. 2011, 26, 778–786. [CrossRef]

20. Zhao, J.; Deng, F.; Cai, Y.; Chen, J. Long short-term memory—Fully connected (LSTM-FC) neural network for PM2.5 concentration
prediction. Chemosphere 2019, 220, 486–492. [CrossRef] [PubMed]

21. Karimian, H.; Li, Q.; Wu, C.; Qi, Y.; Mo, Y.; Chen, G.; Zhang, X.; Sachdeva, S. Evaluation of Different Machine Learning
Approaches to Forecasting PM2.5 Mass Concentrations. Aerosol Air Qual. Res. 2019, 19, 1400–1410. [CrossRef]

22. Qadeer, K.; Rehman, W.U.; Sheri, A.M.; Park, I.; Kim, H.K.; Jeon, M. A Long Short-Term Memory (LSTM) Network for Hourly
Estimation of PM2.5 Concentration in Two Cities of South Korea. Appl. Sci. 2020, 10, 3984. [CrossRef]

23. Air Korea. Available online: http://www.airkorea.or.kr/web (accessed on 30 January 2020). (In Korean).
24. Korea Meteorological Agency. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 15 February 2019).

(In Korean)
25. Nullschool. Available online: https://earth.nullschool.net/ko/ (accessed on 30 January 2020).
26. Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020,

731, 139052. [CrossRef] [PubMed]
27. Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [CrossRef]
28. Hunter, J.S. The Exponentially Weighted Moving Average. J. Qual. Technol. 1986, 18, 203–210. [CrossRef]
29. China National Environmental Monitoring Centre. Available online: http://www.cnemc.cn/sssj/ (accessed on 1 March 2020).

(In Chinese)
30. Hsieh, T.-J.; Hsiao, H.-F.; Yeh, W.-C. Forecasting stock markets using wavelet transforms and recurrent neural networks: An

integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 2011, 11, 2510–2525. [CrossRef]
31. Franklin, J.A. Recurrent Neural Networks for Music Computation. INFORMS J. Comput. 2006, 18, 321–338. [CrossRef]

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://news.yahoo.com/micro-pollution-ravaging-china-south-asia-study-031634307.html
https://news.yahoo.com/micro-pollution-ravaging-china-south-asia-study-031634307.html
https://data.oecd.org/air/air-pollution-exposure.htm
http://doi.org/10.3346/jkms.2018.33.e193
http://kostat.go.kr/portal/korea/kor_nw/1/6/2/index.board?bmode=read&bSeq=&aSeq=385219&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt=
http://kostat.go.kr/portal/korea/kor_nw/1/6/2/index.board?bmode=read&bSeq=&aSeq=385219&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt=
http://doi.org/10.3390/su12062570
http://doi.org/10.3390/su12198014
http://doi.org/10.15301/jepa.2017.25.1.227
http://doi.org/10.3390/ijerph120708187
http://doi.org/10.1016/j.rpped.2015.06.009
http://www.ncbi.nlm.nih.gov/pubmed/26522821
http://doi.org/10.1016/j.ijheh.2020.113571
http://doi.org/10.3390/ijerph8061865
http://doi.org/10.15301/jepa.2015.23.4.155
http://doi.org/10.1016/j.atmosenv.2006.11.012
http://doi.org/10.1016/j.scitotenv.2008.11.048
http://www.ncbi.nlm.nih.gov/pubmed/19152957
http://doi.org/10.1016/j.envsoft.2010.11.014
http://doi.org/10.1016/j.chemosphere.2018.12.128
http://www.ncbi.nlm.nih.gov/pubmed/30594800
http://doi.org/10.4209/aaqr.2018.12.0450
http://doi.org/10.3390/app10113984
http://www.airkorea.or.kr/web
https://data.kma.go.kr/cmmn/main.do
https://earth.nullschool.net/ko/
http://doi.org/10.1016/j.scitotenv.2020.139052
http://www.ncbi.nlm.nih.gov/pubmed/32413655
http://doi.org/10.32614/RJ-2017-009
http://doi.org/10.1080/00224065.1986.11979014
http://www.cnemc.cn/sssj/
http://doi.org/10.1016/j.asoc.2010.09.007
http://doi.org/10.1287/ijoc.1050.0131


Sustainability 2021, 13, 3726 30 of 30

32. Goldberg, Y. Neural Network Methods for Natural Language Processing. Synth. Lect. Hum. Lang. Technol. 2017, 10, 1–309.
[CrossRef]

33. Chen, G. A gentle tutorial of recurrent neural network with error backpropagation. arXiv 2016, arXiv:1610.02583.
34. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
35. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
36. Gonzalez, J.; Yu, W. Non-linear system modeling using LSTM neural networks. IFAC-PapersOnLine 2018, 51, 485–489. [CrossRef]
37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn, Represent

(ICLR), San Diego, CA, USA, 5–8 May 2015.
38. Ministry of Environment. Ministry of Environment Press Release “Korea-China Joint Research Group to Reduce Fine Dust”.

Available online: http://me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1201300&menuId=286 (accessed on
22 January 2020). (In Korean)

http://doi.org/10.2200/S00762ED1V01Y201703HLT037
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/78.650093
http://doi.org/10.1016/j.ifacol.2018.07.326
http://me.go.kr/home/web/board/read.do?boardMasterId=1&boardId=1201300&menuId=286

	Introduction 
	Previous Research 
	Data 
	Spatial Area 
	Data Preprocessing 
	Variable Correlation Analysis 

	Analytical Methods 
	PCA 
	RNN 
	LSTM and BiLSTM 
	Evaluation Model Performance 
	Workflow 

	Results 
	PC Selection 
	Setup and Case Comparison 

	Conclusions 
	
	References

