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Abstract: Lead zirconate titanate (PZT) has been widely used because of its electrochemical effect,
but its effect on soil microorganisms is rarely studied. In this study, laboratory soil microcosms with
different soil moisture content and pH were established to explore the effects of the PZT-5H bimorph
with different quantities and states on soil microorganisms after 49 days. Plate counting was used to
study the number changes of soil bacteria, fungi and actinomycetes. Isothermal microcalorimetry
was used to evaluate microbial activity. High-throughput sequencing was used to analyze soil
microbial diversity and community structure. The results showed that the number and activity
of microorganisms could be significantly promoted by two vibrating PZT bimorphs under the
appropriate soil moisture content (20%) and pH (7). At the same time, it promoted the growth of non-
dominant microorganisms and increased the diversity of microorganisms. These results indicate that
it is possible for PZT bimorphs to be used in soil field.

Keywords: lead zirconate titanate; High throughput sequencing; microcalorimetry; soil ecologi-
cal impact

1. Introduction

Piezoelectricity was first discovered in 1880 [1]. The term “piezoelectricity” originates
from “piezo” and “electricity”, in which “piezo” represents the application of a pressure
and “electricity” corresponds to moving electrons [2,3]. Piezoelectric effect can be divided
into positive piezoelectric effect and inverse piezoelectric effect, which reflects the mutual
transformation of mechanical energy and electrical energy [4]. As a piezoelectric material,
lead zirconate titanate (PZT) has been widely used in vibration control, energy collection,
energy conversion, artificial intelligence, measurement of soil properties, and other fields
due to its excellent electrical performance, fast response, and easy processing [5–9].

Electrochemical technology is one of the current research hotspots in the field of
environmental protection [10]. In the field of soil remediation, electrochemical methods
have also been well developed from single electrokinetic remediation to coupling with
other technologies (such as electrokinetic microbial remediation) [11–14]. Electrochemical
processes improve the bioavailability of pollutants by promoting the migration of nutrients,
electron acceptors, and microorganisms in soil [15]. When the piezoelectric material is
subjected to external stress or mechanical vibration, the ion displacement is induced,
which leads to the change of unit cell dipole moment and produces net charge, thus
forming piezoelectric potential on the material [16]. If the outer surface of the material is in
contact with the dielectric at this time [17], the rearrangement of the charges will change
the conductivity, which will strongly affect the electrochemical process [18]. The charge
polarity on the surface of piezoelectric material will change with the direction of applied
force. In theory, when one end of the PZT bimorph is fixed and the other end vibrates
reciprocally under the action of force, the polarity of the charge received by the medium
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contacting the piezoelectric material is constantly changing, which can avoid the extreme
change of pH and keep the electrochemical effect for a long time. The electrochemical effect
is widely used in the field of soil remediation as a means of bioaugmentation [19,20]. Hong
et al. reported research on the degradation of organic pollutants by piezoelectric catalysis
under ultrasound [21], extending the application of piezoelectric materials to the field of
environmental remediation [22–24]. From the perspective of sustainable development, it is
possible for PZT bimorphs to be used in soil field.

At present, scholars pay more attention to the performance improvement and structure
innovation of PZT. However, in the process of application, the ecological effect of PZT on
soil microorganisms is rarely studied. Before any kind of material is applied to soil, the
effect on soil microorganism is an important evaluation index [25,26]. Therefore, based on
the purpose of applying PZT bimorphs to the field of soil remediation, this study makes a
preliminary exploration on evaluation of the positive or negative effects of PZT bimorphs
on soil microorganisms from three aspects of microbial quantity, microbial growth activity,
and microbial diversity. Isothermal microcalorimetry is an essential structural biology
method developed in recent years to study thermodynamics and biokinetics [27]. It can
continuously and accurately monitor and record the calorimetric curve of a change process
and provide thermodynamic and kinetic information [28,29], becoming a new breakthrough
in the study of microbial metabolism in soil systems [30,31]. High throughput sequencing
technology has become the main method to study soil microbial diversity because of its
high efficiency and accuracy [32,33]. In this study, plate counting method, isothermal
microcalorimetry, and high-throughput sequencing method were used to investigate the
effects of different quantities and states of PZT-5H bimorphs on soil microorganisms, so as
to provide a theoretical basis for the application of PZT bimorphs in soil remediation in
the future.

2. Materials and Methods
2.1. Soil Sampling

The alluvial soil samples were taken from grassland without artificial disturbance.
The sampling site was located in Baodi District, Tianjin, China (39◦ 33′8′′ N, 117◦ 24′18′′ E).
The sampling time occurred in April 2019. The S-type sampling method [34] was used to
strip the surface cover and mix the soil sample after removing the stones and tree roots.
The mixed soil sample was transported to the laboratory and stored at 4 ◦C until used.
Soil pH value was detected by a pH-meter (PHS-3E). The pH value was determined by
placing the pH electrode in the supernatant solution prepared by mixing 10.0 g soil and
25.0 mL deionized water. Organic matter was determined by titrating the samples in an
acidic medium, with the end point followed by a redox reaction [35]. The soil moisture
content was determined by the weighing method [36]. Soil used in the microcosm setup
was measured to contain 12% of moisture content, 37.54 g/kg of organic matter, and weakly
alkaline (7.1 ± 0.1).

2.2. Microcosms Assemblement

The PZT bimorph consists of five layers, including a copper elastic substrate in the
middle, PZT-5H in the upper and lower layers and silver films on the surface with the
same size as the PZT sheet. The sizes of the PZT sheet and the copper substrate were
60 mm × 30 mm × 0.1 mm and 80 mm × 33 mm × 0.6 mm, respectively. The two ends of
the PZT bimorph were respectively fixed by an insulating base and an insulating clamp,
the insulating base was fixed at the bottom center of the square rubber box (8 cm × 8 cm
× 8 cm), and the insulating clamp was fixed on the stepping motor to ensure that the
mechanical force of PZT bimorph was equal and the direction was opposite (Figure 1). Soil
sieved through a 2 mm sieve was collected as described in Section 2.1 and 500 g was added
to each box. Deionized water was used to adjust soil moisture content (MC). HCl (1 mol/L)
solution and NaOH solution (1 mol/L) were used to adjust soil pH. The temperature was
maintained at room temperature (28 ◦C ± 1 ◦C). Considering the service life of the PZT
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bimorph and the friction of the stepper motor, the reciprocating amplitude and period of
the stepper motor were set as 4 mm and 2 s. Oscilloscope (UNI-T-UTD2102CEX) was used
to monitor the output voltage–curve under this condition (Figure 2). The maximum output
voltage of single-sided PZT was 2 V. Therefore, the maximum number of the PZT bimorph
in the experiment was 2 [37,38]. Five soil microcosms were set up in each experiment.
Group A was the blank control (without the PZT bimorph). Groups B, C, D, and E were
fixed with one static PZT bimorph, two static PZT bimorphs, one vibrating PZT bimorph,
and two vibrating PZT bimorphs, respectively. Through comprehensive consideration of
relevant literature [39,40], the period of each experiment was determined as 49 days.
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2.3. Biological Analyses
2.3.1. Count of Bacteria, Fungi, and Actinomycetes

The experiment was divided into two parts. In part one, without changing other
properties of the original soil, the soil content of water was adjusted to 15%, 20%, and
30% [41,42]. Part two was based on part one; the soil content of water was set to 20%; at the
same time, soil pH was adjusted to 6, 7, and 8, and other properties remained unchanged.
The number of culturable microorganisms in the soil was determined by the plate counting
method [43]. Soil bacteria, actinomycetes, and fungi were cultured in a beef extract peptone
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medium, Gaoshi No.1 medium, and Martin medium, respectively [44–47]; 10 g soil samples
from different microcosms were taken out and put into the above liquid medium. Bacteria
were cultured at 37 ◦C for 24 h, fungi at 25 ◦C for four days, and actinomycetes at 28 ◦C
for 7 days. After cultured, three kinds of the liquid medium were serially diluted with
sterilized water and then coated on the corresponding solid medium plate. The experiment
was repeated three times.

2.3.2. Microcalorimetric Analysis

Based on the result of Section 2.3.1, the soil content of water was set to 20%; at the
same time, the number of PZT bimorphs is determined to be 2 and the state is vibration.
Soil pH was adjusted to 6 (G), 7 (I), and 8 (K). At the same time, the control group F, H,
and J were set respectively. Tam III isothermal microcalorimeter (TA instruments, New
Castle, DE, USA) [48] was used to reflect the effect of PZT bimorph on soil microbial growth
activity under different pH and MC conditions. The microcalorimeter was adjusted to
28 ◦C. Under aseptic condition, 1.0 g dry soil sample passing through 1 mm fine sieve was
put into the sample bottle; 0.2 mL of a mixed solution containing 5.0 mg glucose and 5.0 mg
ammonium sulfate was added into the sample bottle. After being sealed, it was placed in a
microcalorimeter for determination. Four thermodynamic parameters to characterize the
microbial growth were analyzed after each power–time curve was obtained: growth rate
constant (k), maximum thermal power (Ppeak), time to reach the maximum peak (Tpeak), and
total heat dissipation (Qtotal). Ppeak and Tpeak were obtained directly from the power–time
curve. To obtain k, the power–time curve in the logarithmic growth stage was fitted in the
thermokinetic equation: lnPt = lnP0 + kt, where t is the time, and P0 is the power at the
beginning of the exponential growth phase. Qtotal is the sum of metabolic processes that
occur during substrate consumption.

2.3.3. High Throughput Sequencing

Based on the result of Section 2.3.1, the soil MC was determined to be 20%, and
the number of vibrating PZT bimorphs was 2. The soil (pH = 7) without PZT bimorph
was used as control group (S1). The condition of experimental groups was as follows:
pH = 8 (S2) and pH = 7 (S3), and high-throughput sequencing analysis was conducted
after 49 days. After mixing the soil evenly, the soil (10 g) from each soil chamber was
removed and stored in dry ice and sent to Shanghai Meiji Biomedical Technology Co.,
Ltd. IlluminaMiSeq high-throughput sequencing technology has been used to analyze
microbial diversity and structural characteristics [49,50]. The amplified region was V3–V4
of 16S rDNA gene. 338F_806R was the forward and reverse primer [51]. The length
of the amplified fragment was 468 bp, the sequencing method was PE300, the original
sequence number was 148,818 × 2, and the total base number was 89,588,436 bp. After
optimization, the effective sequence number was 148,818 and the effective base number
was 61,928,949 bp. The 16S rRNA gene sequences were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA) under accession number
PRJNA707201.

2.4. Data Analysis and Processing

Graphpad Prism 8 and Origin 10.5.1 were used for statistical analysis. In high-
throughput sequencing analysis, all sequences were classified as OTU (operational taxo-
nomic units) with 97% similarity (Uparse vsesion 7.1). Sequence similarity≥97% was classi-
fied as one OTU unit. RDP classifier Bayes algorithm (RDP Classifier version 2.2) was used
to classify the OTU representative sequences with 97% similarity level. The community
species composition of each sample was counted at the taxonomic level of Phylum, Class,
and Genus (Silva Release119, Unite Release 6.0, GeneBank Release 7.3). The community
bar chart was constructed by R language package, and the Venn diagram was constructed
by online R language package (http://bioinformatics.psb.ugent.be/webtools/Venn/, ac-
cessed on 17 November 2020). The circos diagram was drawn by Perl package.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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2.5. Statistical Analysis

Statistical procedures were performed with the SPSS 19.0 software. Data were ex-
pressed as the means with standard deviation (SD). Significant differences of means for all
treatments were judged by t test. The statistical significance level was set at p < 0.05.

3. Results
3.1. Response of Bacteria, Fungi, and Actinomycetes to the PZT Bimorph

The effect of PZT bimorphs on the number of microorganisms in microcosms with
different MC is shown in Figure 3a–c. Compared with group A, microbial numbers in
group B and group C had no significant difference. There was no significant difference
between group E and group D, but both groups showed significant differences compared
with group A. Group E showed obvious growth-promoting effect in soil with MC = 20%.
The number of bacteria, fungi, and actinomycetes increased by 14.61%, 23.28%, and 15.91%,
respectively, after 49 days.
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The effect of PZT bimorphs on the number of microorganisms in microcosms with
different pH is shown in Figure 3d–f. Microbial numbers in group B and group C had no
significant change compared with group A. There was no significant difference between
group E and group D when pH = 6. For bacteria and actinomycetes, group D and group E
showed significant differences at pH = 7 and 8. Group E showed obvious growth-promoting
effect in soil with pH = 7 and pH = 8 after 49 days. The quantity of bacteria, fungi, and
actinomycetes increased by 16.17%, 17.99%, and 17.15% when pH = 7, respectively. The
number of bacteria, fungi, and actinomycetes increased by 14.45%, 18.71%, and 17.07%,
when pH = 8, respectively.
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3.2. Isothermal Microcalorimetric Analysis

Group E (MC = 20%), which had the greatest influence on microbial number, was
selected for microcalorimetric analysis. Adaptation, proliferation, logarithmic growth,
delay, nutrient depletion, endogenous metabolism, typical decline, and incubation period
were included in each curve in Figure 4. There was only one peak power in the power-
time curve of each soil sample. The thermodynamic parameters of the microcalorimetry
curve were shown in Table 1. Tpeak, k, Ppeak, and Qtotal of all soil microcosms containing
vibrating PZT bimorphs increases compared with the control group. Ppeak in a short time
with high k, which means that they have high metabolic activity [41,42]. Qtotal has a high
correlation with soil microbial community composition [52–54]. When pH = 7 or 8, Ppeak
and Qtotal change obviously. When pH = 7, the increasing rates of Ppeak and Qtotal were
20.63% and 33.66%, respectively. When pH = 8, the increasing rates of Ppeak and Qtotal were
51.13% and 30.85%, respectively. The results showed that, in a word, the vibration PZT
bimorph promoted the growth activity and quantity of soil microorganisms, which led to
the increase of heat release, but also prolonged the slow growth period and logarithmic
period of microorganisms.
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Table 1. Thermodynamic parameters of soil under different treatment conditions.

Group Ppeak
(µW)

Tpeak
(h)

Qtotal
(J)

k
(h−1)

F 57.73 5.64 0.57 0.1882 ± 0.0047
G 62.73 5.93 0.60 0.2445 ± 0.0036
H 64.05 5.42 0.63 0.2485 ± 0.0010
I 85.61 5.93 0.76 0.2718 ± 0.0058
J 83.99 5.71 0.94 0.2648 ± 0.0078
K 126.93 6.43 1.23 0.3153 ± 0.0061

3.3. Microcalorimetric Analysis

Rank abundance curve is one of the ways to analyze microbial diversity. The abun-
dance of species is reflected by the width of the curve. The higher the species richness,
the larger the range of the curve on the horizontal axis. The smoother the curve, the
more uniform the species distribution [55,56]. On the OTU level, the species richness and
evenness of S3 group were the best, while those of S2 were the worst, shown Figure 5.
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The community bar chart can directly show the microbial types of each soil sample
at a certain taxonomic level (phylum, class, genus) and the relative abundance of various
microorganisms in each soil sample (Figure 6). The columns with different colors repre-
sent different microorganisms, and the length of columns represents the proportion of
microorganisms. At the phylum level, the dominant phyla of S1 and S3 were Actinobacteria,
Proteobacteria, Chloroflexi, and Acidobacteria. However, the proportion of Proteobacteria in S3
increased significantly (from 26% to 35.1%), while Actinobacteria decreased significantly
(from 36.1% to 26.9%), indicating that vibrating PZT bimorphs promoted the growth and
reproduction of Proteobacteria, but inhibited that of Actinobacteria. In S2, Acidobacteria was
not dominant, while Firmicutes was the most advantageous (27.2%). At the class level,
the microbial composition of S3 is more uniform than that of S1. Compared with S1,
Actinobacteria and Bacilli of S2 showed significant changes. Actinobacteria decreased from
36.1% to 25%, and Bacilli increased from 0.8% to 25.1%. Compared with S1, Actinobacteria
decreased from 36.1% to 26.8% in S3, and others increased from 6.9% to 9.2%. At the genus
level, the composition ratio of the three groups was very similar. Nevertheless, Bacillus
accounted for the largest proportion in S2 (22.6%). Others in S3 (52.6%) accounted for more
than others in S1 (44.1%) and S2 (33.8%). It was revealed that vibrating PZT bimorphs
increased the diversity of microorganisms.

The venn diagram can directly reflect the difference of microbial community structure
composition and find the “core microbial community” in these environments [57]. On the
OTU level, the core groups of the three groups were very obvious (Figure 7a). The common
OTUs in S1 and S3 groups were the most, while those in S1 and S2 groups were the least.
S3 had the most OTUs, while S2 had the least. At the same time, S2 was also the sample
with the least number of OTUs.

The Circos diagram was used to visualize the distribution proportion of dominant
species in each sample (Figure 7b). The composition and proportion of dominant genera in
S1 and S3 groups were similar. In S2 group, Bacillus accounted for the largest proportion
(22.6%), which was different from S1 (0.4%) and S3 (0.3%) groups. The abundance of others
in S3 group was higher than that in S1 group and S2 group, so the richness of S3 was better
than the other two samples.
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4. Discussion

Bacteria, fungi, and actinomycetes prefer different pH and MC because of their own
growth characteristics. However, under the action of vibrating PZT bimorphs, they all
showed different growth promoting trends. In the soil with same MC, the quantity of
PZT bimorphs had no significant effect on microbial number. When the PZT bimorph
is subjected to an external mechanical force, it generates opposite charges on the two
surfaces [58], making soil microbes electrically stimulated. Liu et al. [59] found that a
strong electric field (3 V/cm) can reduce the activity of microbial, while a weak electric
field (1 V/cm) can activate microbial activity [60]. G. Lear et al. [61] found that appropriate
electrical stimulation can promote the migration of microorganisms and the transportation
of nutrients. Some of the microbes that are not resistant to electricity will be inhibited and
even die, while most of them will promote growth under low electrical stimulation [62]. An
appropriate amount of water can play a positive role in the transport and distribution of
nutrients and electrons [63,64]. This may be the reason why the number of microorganisms
increased more under the condition of 20% MC. Moreover, the growth promoting effect
of two piezoelectric bimorphs was more obvious with different pH. There was a positive
correlation between the number of microorganisms and their respiration rate [65,66]. When
PZT bimorph vibrated, the air circulation of soil was accelerated, and the electrolysis
of water may be caused under the condition of electron input. The oxygen produced
can also promote the respiration rate of microbial cells, thus increasing the number of
microorganisms. The original soil is slightly alkaline, and the surface of microbial cells is
usually negatively charged [62]. When the pH is adjusted to 6, H+ will combine with the
negative charge on the cell, causing changes in the absorption of nutrients by cells, leading
to microbial death, and electron input is likely to accelerate this process.

The change of microcalorimetry was consistent with that of microorganism number.
Some scholars [67] have shown that there is a significant positive correlation between the
difference of microcalorimetric value and the change of microbial quantity (r = 0.8134;
p = 0.0131). Ppeak and Qtotal of all groups with vibrating PZT bimorph inside increased;
this indicated that vibrating PZT bimorph activated microbial activity. Periodic changes
in the direction of the electric field drive microorganisms to move back and forth in the
soil [68]. The charge polarization of vibrating PZT bimorph changes with the direction of
force may also be one of the reasons for the increase of microbial activity. In the traditional
electrochemical process, a large amount of H+ is produced at the anode, and a large amount
of OH- is produced at the cathode to form the alkali zone. However, PZT has no acid and
alkaline bands so that the electrochemical reaction time can maintain more prolonged time
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stability. Because the original soil is weakly alkaline, when pH = 6, the activation effect of
PZT bimorphs on microorganisms is not obvious compared with other groups, and it may
even accelerate the death of intolerant microorganisms.

Fan et al. [69] found that the application of the electric field helps to maintain the
uniformity of microbial community distribution. The main microbial composition of S1
and S3 was similar, but the proportion of major microorganisms in S2 changed obviously
at the phylum level. At the class level, the vibrating PZT bimorph can make the soil
microbial community more uniform. The vibrating PZT bimorph promoted the growth
and reproduction of some non-dominant microorganisms at the genus level. When the
pH value was close to the original soil, the vibrating PZT bimorph would increase the
microbial richness on the premise of protecting the microbial genus structure through the
analysis of high-throughput sequencing. However, when the pH = 8, although the addition
of vibrating PZT bimorph can increase the number and activity of microorganisms, the
structure of microorganisms still changed.

Bioremediation is a sustainable remediation technology that rectifies and re-establishes
the natural soil condition [70]. At present, many scholars try to use the electric field to
strengthen the remediation of contaminated soil by microorganisms, including oil pollu-
tion [71], heavy metal pollution [72], organic pollution [73], and so on. Its shortcomings
include the loss of microbial viability during inoculation, eventual cell death after inocula-
tion, and long repair time [74]. According to the research in this paper, the vibrating PZT
bimorph can activate the microorganisms in soil and increase the biodiversity. With the help
of vibrating PZT bimorphs, it is possible to keep the activity of inoculated microorganisms
and make them adapt to the soil environment quickly. At the same time, the proportion
of unknown microorganisms which originally accounted for a small proportion increased
due to the activation of vibrating PZT bimorphs, and there may be some microorganisms
which can transform pollutants efficiently and adapt to vibrating PZT bimorphs. Future
research will be based on this as a starting point.

5. Conclusions

The laboratory studies indicated that the number of bacteria, fungi, and actinomycetes
all increased under the action of vibrating PZT bimorph under different MC and pH
conditions. When MC = 20%, the increase of microbial number was the largest. The effect
is more obvious when the number of PZT bimorphs is 2 with different soil pH. Under
different pH conditions, the vibrating PZT bimorph can promote the growth activity of
microorganisms, but the promotion effect is more obvious with pH = 7 and 8. Meanwhile,
vibrating PZT bimorphs can increase the microbial diversity. However, when pH = 8, the
structure of the microbial system would change significantly.

In conclusion, the effect of the PZT bimorph on soil microorganisms has been pre-
liminarily explored. Our studies suggest that the number, activity, and abundance of soil
microorganism can be improved by vibrating PZT bimorph under suitable MC and pH
conditions. Piezoelectric materials are developing in the direction of non-toxic and efficient
conversion efficiency, and their electrical parameters will become more controllable. In the
future research, piezoelectric materials have the possibility to become a sustainable in-situ
soil remediation method.
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