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Abstract: Current electricity markets do not efficiently achieve policy targets i.e., sustainability,
reliability, and price efficiency. Thus, there are debates on how to achieve these targets by using either
market mechanisms e.g., carbon and capacity markets, or non-market mechanisms such as offer-caps,
price-caps, and market-monitoring. At the same time, major industry changes including demand
response management technologies and large scale batteries bring more elasticity to demand; such
changes will impact the methodology needed to achieve the above mentioned targets. This work
provides market solutions that capture all three policy targets simultaneously and take into account
the above-mentioned industry changes. The proposed solutions are based on: (i) a model of electricity
markets that captures all the above mentioned electricity policy targets; (ii) mechanism design
and the development of a framework for design of efficient auctions with constraints (individual,
joint homogeneous, and joint non-homogeneous). The results show that, within the context of the
proposed model, all policy targets can be achieved efficiently by separate capacity and carbon markets
in addition to efficient spot markets. The results also highlight that all three policy targets can be
achieved without any offer-cap, price-cap, or market monitoring. Thus, within the context of the
proposed model, they provide clear answers to the above-mentioned policy debates.

Keywords: electricity policy; electricity market; mechanism design; auctions with constraints

1. Introduction
1.1. Motivation

Electricity policies in most countries aim at providing reliable and sustainable elec-
tricity with an efficient price to customers [1]. Reliability refers to meeting the uncertain
demand almost at all times. Sustainability primarily refers to overcoming global warming
(sustainability solutions are subject to being economically profitable as emphasized in
new studies e.g., [2]). Price efficiency (affordability) refers to non-discriminatory price
equal to the marginal cost of production for all participants. System operators translate
reliability target into different factors e.g., planning reserve requirement, n− 1 criterion,
interconnection frequency response, element availability percentage, etc.). Modeling all the
reliability constraints will make the model and presentation complicated. Hence, in this
study, we consider only the planning reserve requirement for reliability (whenever reliability
is referred to in this work, it means meeting the planning reserve requirement), that is, the
total capacity should exceed a threshold to ensure uncertain supply can meet the uncertain
demand at almost all outcomes (depending on the definition used by system operator
this could be one in ten year blackout or alternative more tight constraints); planning
reserve requirement was chosen because it is at the center of the debate for the need for
capacity markets as it is about sufficient capacity at the time of planning that operational
constraints. The sustainability target is translated into the carbon cap, which is a cap for
total carbon emission (note that the calculation of the carbon cap is subject to international
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agreements for global warming limits and advancements in other economically viable
solutions to reduce carbon emission particularly carbon sequestration [3–5]). Planning re-
serve requirements and carbon caps are uneconomic constraints (public constraints) because
generation companies (GenCos) do not have incentives to meet them unless appropriate
taxes/subsidies are in place. Addressing the policy targets for the electricity industry
should be consistent with the spirit of the restructured industry i.e., should be based on
market competition, incentives, and minimum regulations.

Before restructuring, the system operator could set the selling price, the investment
level, and the technology in-use and in this way could ensure price efficiency, reliability, and
sustainability. After restructuring however, the current electricity markets suffer from high
prices above marginal cost of production and scarce resources (capacity underinvestment);
for example in the California 2000 electricity crisis, market imperfections such as market
power and missing money problems (investors not collecting their cost of investment)
led to very high prices [6]. Moreover, post-restructuring mechanisms used for reducing
carbon emission, such as carbon tax, carbon markets, or renewable feed-in tariffs, are
inefficient and costly [7,8]. Especially, this inefficiency increases with a larger share of
renewables [9,10].

There are significant debates on the approaches to the correct solutions of these
problems: The first is centered around the need for non-market mechanisms like price-cap,
offer-cap, and market-monitoring so as to achieve efficient prices. The second is about
the need for mechanisms with direct capacity incentives, like capacity subsidy or capacity
market, so as to achieve the reliability target; this approach is referred to as the energy-and-
capacity solution in contrast to the energy-only solution. Even without planning reserve
requirements for reliability, some references argue that capacity mechanisms are required
for price efficiency because GenCos’ investment will not be socially optimal due to their
market power [11,12]. The third is with regard to carbon tax that is introduced so as to
achieve sustainability target and refers to the need for the system operator to set the carbon
tax (i.e., price policy) or the possibility of finding the efficient carbon tax by carbon markets
(i.e., quantity policy).

While the above debates are still ongoing, the electricity industry is under major
technological changes, with the most prominent ones being smart grids with demand
response management (DRM), electricity storage both in the form of large scale batteries or
small batteries (such as behind-the-meter batteries or electrical vehicles), and renewable
technologies. First, smart grids facilitate response of the demand to the prices. This facility
is used by DRM programs for demand shaping, demand shifting, and load shedding [13].
As a consequence, the demand in the wholesale market will be elastic to the prices. Second,
electricity storage allows for a mismatch between supply and demand by charging (dis-
charging) the surplus (deficit) to (from) the storage. Depending on the electricity prices, a
battery can act like an elastic demand or a producer in the market [14]. Third, renewables
discourage investment on electricity in two ways: (i) their low marginal cost of production
reduces the prices in the wholesale (spot) market and therefore makes it harder for both
renewable and conventional utilities to recover their investment costs [15]; (ii) renewables’
high uncertainty makes them a risky investment [16,17]. On the other hand, lower carbon
emission of renewables can make them an interesting investment for producers if appropri-
ate taxes/subsidies are in place [9]. Consequently, the available studies in the literature
should be updated by considering the technological changes in the industry.

The existing studies of electricity policies are limited to addressing reliability, sustain-
ability, and price efficiency separately and in isolation; however, these issues are in fact
intertwined [18]. For example, any changes in the wholesale spot market for affordable
prices, like changes in price caps, can impact reliability by changing investment incentives;
reliability subsidies, like capacity investment subsidy, work against carbon taxation so
as to reduce the capacity of conventional electricity; renewables subsidies result in more
intermittent wind and solar resources and reduce reliability, etc. In fact, the interdisci-
plinary implications of the renewable policies are extensively shown in the literature; for
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example, Reference [19] shows corporate innovation and performance linked to green
practices, References [20,21] study green incentives for farmers decisions, and [22] studies
incentives for biorefinery. Therefore, the above-stated policy targets should be studied
together. To the best of the authors’ knowledge, Reference [23] is the only study that
considers all three policy targets together but it is limited to showing the shortcomings
of the current markets by analyzing their performance. The second shortcoming of the
literature is that majority of the existing studies analyze the current markets in order to
evaluate their performance with respect to reliability, sustainability, and price efficiency.
However, in the authors’ opinion, the correct approach for addressing these problems is a
design approach starting from the desired policy targets.

This work provides market solutions that capture all three policy targets simulta-
neously and take into account the above-mentioned industry changes. The proposed
solutions are based on: (i) a model of electricity markets that captures all the above men-
tioned electricity policy targets; (ii) mechanism design and the development of a framework
for design of efficient auctions with constraints (individual, joint homogeneous, and joint
non-homogeneous). The results show that within the context of the proposed model,
all policy targets can be achieved efficiently by separate capacity and carbon markets in
addition to efficient spot markets. They also highlight that all three policy targets can be
achieved without any offer-cap, price-cap, or market monitoring. Thus, within the context
of the proposed model, they provide clear answers to the above-mentioned policy debates.

Notation: Bold letters refer to random variables; the realizations of random variables
are denoted by the corresponding non-bold letters. Capital letters refer to both sets and
vectors. Such a notation is not going to create any confusion because it will be always clear
from the context of the text where capital symbols appear. For convenience this paper uses
the notation ax:y to refer to {ax, ax+1, ..., ay−1, ay}, ax:y,v to refer to {ax,v, ..., ay,v}, and ax:y,v:w
to refer to {ax:y,v, ax:y,v+1, ..., ax:y,w}.

1.2. Objective

The objective of this study is to provide a response to the debate about efficiency of
market mechanisms vs non-market mechanisms for achieving electricity policy targets
stated in Section 1.1, namely, reliability, sustainability, and price efficiency while considering
the effect of the new technologies, particularly demand elasticity due to demand response
management programs and electricity storage. To this end, it design markets that achieve
all of the above-mentioned three electricity policy targets simultaneously, while considering
the demand elasticity due to new technologies.

1.3. Approach to Achieving the Objectives

To achieve the objective, this work proceeds in two steps. First, it proposes a model of
both the electricity industry, considering emerging electricity technological changes, and the
policy targets. Second, for the proposed model, using ideas from auction theory and Nash
implementation, it designs markets/mechanisms that achieve sustainability, reliability,
and price efficiency at all Nash equilibria of the games induced by the mechanisms.

We start by modeling an oligopoly of strategic GenCos with symmetric information
that interacts over a long horizon. The demand for electricity is elastic but non-strategic
(i.e., demand is a price-taker). This means that the system operator wants to auction the
demand among the strategic GenCos. In this model, each GenCo’s electricity generation is
constrained by its capacity. Next, the policy targets is added to the model. The reliability
target is modeled by a constraint requiring that the sum of the GenCos’ capacities exceed
the planning reserve requirement. The sustainability target is modeled by a constraint
requiring that the sum of the carbon emissions is below the carbon cap. Price efficiency is
modeled as a desired feature of the electricity market at equilibrium. This stylized model
captures, the major characteristics of the restructured electricity industry that can highlight
the innovations presented here for studying the policy targets.
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To design electricity markets/mechanisms that achieve the policy targets at all Nash
equilibria of the games induced by them, this paper studies a sequence of problems that
are increasing in complexity in terms of the constraints they include. These problems deal
with the optimization of the social welfare function (i) without any constraints, (ii) with
individual constraints (constraints on the actions of individual agents), and (iii) with
homogeneous (additive) joint constraints (constraints that are function of multiple agents’
actions). The solution of these problems combined together leads to the design of a
sequence of electricity markets that achieves the objective.

1.4. Contributions

This study presents electricity markets that achieve the electricity policy targets (relia-
bility, sustainability, and price efficiency) described in Section 1.1 considering the techno-
logical changes in the industry, namely demand elasticity. In addition to achieving the
policy targets, the proposed electricity markets possess the following desirable properties:
budget balance, individual rationality, and social welfare optimality. A market that is price
efficient and possesses the above three properties is called an efficient market. These three
properties are the important desired properties of electricity market in practice [24,25];
other desired properties of the electricity markets such as coalition proofness shown in [26]
are beyond the scope of this research and future directions. Finally, the design provides
answers to electricity policy debates described in Section 1.1. Specifically, the results
show that: (1) Price efficiency is achieved without using price caps, offer caps, market
monitoring or other sorts of market interventions. (2) With respect to the debate on reliabil-
ity, an energy-and-capacity solution/market as well as an energy-only solution/market
achieve planning reserve requirements. The energy-and-capacity solution achieves efficient
subsidy but requires extra markets (capacity markets) and corresponding regulations. The
energy-only solution requires more information and complex computations by the system
operator, and pays more subsidy to GenCos compared to the energy-and-capacity solution.
In the absence of planning reserve requirements, no capacity markets or other subsidiary
mechanisms are required to achieve socially optimal investment (this is in contrast to
References [11,12]). (3) With respect to the debate on carbon market vs carbon tax, the price
of carbon determined by the design in the carbon permit market is the efficient taxation
required to meet the carbon emission target.

1.5. Literature Review

In accordance with the objectives, first, a review of the literature related to market
design for implementing electricity policy targets, namely, price efficiency, reliability (ca-
pacity requirements), and sustainability (carbon emission constraint) is presented. Then,
a review of the literature on mechanism design that is related to the problem is presented.
Finally, the results are compared with those that appear in the reviewed literature.

1.5.1. Price Efficiency

Uniform price auctions have been proposed for electricity markets in order to achieve
price efficiency. The proposed auctions are static auctions of divisible goods. Supply
function (SF), Cournot, first and second price auctions are examples of uniform price
auctions proposed for electricity markets.

In practice, SF auctions are the major approach used for electricity spot markets. In SF
auctions GenCos bid their cost curve and the market is cleared by dispatching the minimum
cost first [27,28]. The same bids are sometimes used to clear multiple possible demands due
to demand uncertainty or demand variation during the day [29]. In general, SF auctions
have a range of equilibria and are not efficient [27]. The inefficiency of SF auctions has
been studied further within the context of oligopoly models with capacity constraints [30],
models with generation portfolio [31], models with a pivotal bidder [32] and network
constraints [33], and duopoly models with finite piece-wise linear cost function [34].
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Cournot auctions have been used to approximate SF electricity auctions [35]. These
auctions do not achieve social welfare maximizing allocations at Nash equilibria, but they
are price efficient as the price at Nash equilibria is equal to marginal cost of production [29].

First and second price auctions have been used for capacity markets [36]. While these
auctions implement the socially optimal allocation at Nash equilibria for a single indivisible
item, they do not maximize social welfare in problems concerned with the allocation of
divisible goods. Moreover, the uniform price in these auctions is not efficient.

In addition the above uniform price auctions, Vickery–Clarke–Groves (VCG) and
d’Aspremont–Gerard–Varet (AGV) have also been proposed for electricity markets [37].
VCG and AGV achieve social optimality by paying each seller an individual price that aligns
their incentive with the social welfare. However, VCG and AGV auctions are not price
efficient and, in addition, they can not be budget balanced and individually rational at the
same time [38].

The auctions/mechanisms proposed here are price-efficient, and in addition they
are budget balanced, individually rational, and social welfare maximizing. A key idea in
these proposed auctions for electricity is to use a uniform price at equilibrium to achieve
price efficiency and budget balance, and discriminatory prices off-equilibrium to align
individuals’ incentives with the social welfare. Such an idea has also been proposed during
the early discussions concerning the restructuring of the British electricity markets [39].

1.5.2. Reliability

Implementation of reliability targets for electricity markets has been studied by con-
sidering sources of underinvestment, mainly market power and market imperfections
leading to the missing money problem. Market power originates from the oligopoly nature
of the market and increases in the case of inelastic demand. Market imperfections are
further categorized into demand inelasticity and uncertainties. If the inelastic demand
exceeds maximum capacity it results in market failure where supply and demand mismatch
without any scarcity price to signal correct investment [40].

Several papers have studied underinvestment in capacity-trade competition where
firms first expand their capacity and later use that capacity to compete in the trade market.
These studies analyze specific forms of trade markets including Bertrand (capacity–price
competition) [41], Cournot (capacity–quantity competition) [42], VCG [43], and competitive
markets [44]. In the case of Bertrand and Cournot, the market equilibrium is not socially
optimal. In the case of VCG and competitive markets, the outcome is socially optimal; but,
VCG is not budget-balanced, and perfect competition is a strong assumption for electricity
oligopolistic markets.

The methods proposed to address the issue of underinvestment and ensure meeting
reliability constraints can be categorized into [44]: (i) correcting the spot (energy) markets
e.g., using new market processes, lifting price caps, and price-dependent market inter-
vention techniques [45]; (ii) using supportive energy remuneration mechanisms (ERM),
e.g., operation reserve markets [46], forward generation contracts [47], and mandatory
load hedging (MLH) [48]; (iii) using supportive capacity remuneration mechanisms (CRM)
e.g., forward capacity obligation with capacity markets/bilateral trades (ICAP), capacity
payments, strategic reserve, and reliability options [40,48]. Supportive mechanisms should
be designed in a way that their effect automatically diminishes as the spot market imper-
fections are resolved [49]. These studies use a basic model of one stage investment decision
followed by one stage production market.

Reliability has also been studied within the context of long-term dynamic interactions
among strategic GenCos [50]. Models of long-term dynamic interactions incorporate
uncertainty, symmetric, or asymmetric. For electricity industry, symmetric uncertainty
has been particularly studied in the literature. Reference [51] provides an energy-only
model (a model of only spot markets) for capacity expansion under uncertainty and by
finding a Markov perfect equilibrium using simulations, it shows that the underinvestment
problem causing high prices exists in this model. Reference [11] uses a highly stylized
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energy-only model with Cournot spot markets and provides the same results analytically.
These results do not model capacity reserve requirement explicitly, but only argue that even
in the absence of such requirements underinvestment exists in current markets which leads
to high prices (inefficient prices). Dynamic markets with capacity reserve requirement
are studied in [50]. They show the capacity market can reduce market power but provide
concrete conditions for need of capacity markets. The exacerbating effect of renewables
uncertainty in this context reliability is studied by [52].

This work relates to the literature of reliability as follows. Reference [53] implements
reliability targets using energy-only markets but the analysis of that paper is limited to
static environments and also the mechanism results in inefficient subsidy for reliability. In
this paper, reliability and efficiency are achieved as follows: first the one-period problem
of simultaneous decision on investment expansion and production is formulated as auc-
tions with constraints. This study shows that in the absence of the reliability constraint,
one can use the efficient spot markets to implement socially optimal investment. Then,
reliability constraints are added in terms of capacity reserve requirements and character-
ized as homogeneous (additive) joint constraints. Implementing joint constraints in the
auction design is a challenging task because it couples the GenCos’ decisions, furthermore,
such constraints are uneconomic and require appropriate subsidy/tax. This study pro-
poses a method that sequentially decomposes the problem with joint constraints into two
problems, an expansion decision followed by a production decision each with individual
constraints only. This method implements the efficient investment and production in
subgame perfect Nash equilibrium of a dynamic two-stage mechanism where at each
stage an efficient auction is used. The methodology results in an efficient capacity and
spot market (capacity-and-energy solution). Furthermore, this study extends the results
by considering long-term interaction of strategic GenCos, which are not myopic, with
symmetric uncertainty. The model of long-term interactions and uncertainty provided in
this study is similar to References [11,51], but in contrast to those papers, this study takes
a design approach to propose efficient markets. This study extends the decomposition
technique to design a sequence of efficient capacity and spot markets.

1.5.3. Sustainability

Practices for charging carbon emission have been in the form of a carbon emission tax
or carbon market (also carbon cap-and-trade market) [54,55]. With a fully-informed system
operator, they lead to the same outcome [56]; otherwise, only an efficient carbon market
can find the efficient carbon tax [57]. Moreover, calculation and continuous adjustment of
the carbon tax is a difficult task [8]. However, current carbon markets are not efficient as
GenCos can use their market power to pay a price for carbon that is lower than the efficient
tax [9,10]. Designing efficient markets for charging carbon is an open problem [49].

This study addresses this problem by first translating the carbon constraint into
a homogeneous joint constraint (constraints that are function of multiple agents’ actions)
via the introduction of carbon permit as auxiliary variables. Then this study uses the
presented method for implementing homogeneous joint constraints, presented in the
discussion of reliability, to design efficient carbon markets.

1.5.4. Literature on Mechanism Design

Since this study considers problems with symmetric information, the games induced
by the auction/mechanisms this study proposes have symmetric information structure,
therefore, this study adopts the Nash equilibrium (NE) as the solution concept for the
games induced by the mechanisms for one-period problems and subgame perfect Nash
equilibrium (SPNE) for games induced by mechanisms for multi-period problems.

Implementation in NE was first studied by [58] in the context of static (one-period)
problems. Reference [58] determined conditions necessary and sufficient to achieve im-
plementation of social choice functions in NE when the number N of strategic users is
larger than two. Furthermore, he specified a mechanism that achieves implementation
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in NE. The message space of this mechanism is, in general, infinite dimensional (as the
agents report their type completely) and this is its main drawback. Additional results
refining Maskin’s work were presented in [59–63]. Reference [64] presented a mechanism
that achieves implementation of Walrasian and Lindahl outcomes in NE when N ≥ 3 and
has a low-dimensional message space. Necessary and sufficient conditions for implementa-
tion in NE when N = 2 were presented in [65,66]. A thorough discussion and survey of
implementation in NE for one-period (static) problems appear in [67,68].

Mechanism design has been used to solve static problems in engineering where the
environment is non-Bayesian, strategic agents posses private information, and NE is the
solution concept in the games induced by the mechanisms. Instances of such problems are
bandwidth allocation in wired networks [69,70], spectrum allocation and spectrum sharing
in wired networks [71], cybersecurity and cyberinsurance [72], and energy markets [73].

Implementation in subgame perfect Nash equilibrium (SPNE) for a static problem
was first studied by [74,75]; the authors determined necessary and sufficient conditions
under which a social choice function is implementable in SPNE.

1.5.5. Comparison of the Results with the Relevant Literature

The auction/mechanisms we propose in this paper achieves the implementation of
the social welfare function in subgame perfect NE, they are individually rational, budget-
balanced, and price efficient. Thus, they are efficient. Consequently, they are different
from all previous work in the literature of price efficiency, reliability, and sustainability,
as none of them is efficient and none of them considers all three policy targets together.
In the energy-and-capacity solution, the price in the carbon market will be the efficient
tax for carbon emission and the price in the capacity market will be the efficient subsidy
for reliability. Furthermore, we also propose an energy-only solution by adding to the
spot market demand, which can be implemented in the form of operation reserve market,
and show that this solution requires more subsidy for reliability compared to the efficient
energy-and-capacity solution.

The mechanisms we propose are also different from the mechanism design literature
in the following way. (i) We studied the efficient auction of a divisible elastic and inelastic
good. (ii) The auctions include multiple decision variables for the agents, e.g., capacity
expansion and production, where one variable sets a constraint for the others (individual
constraints). (iii) The auctions put constraints as a function of the decisions of multiple
agents (homogeneous joint constraints). These are explained below.

The presented efficient mechanisms without constraints is inspired by price mecha-
nism of [64] for implementing a Walrasian outcome. But this work is distinctly different
from [64] because we studied designing auctions; in other words the mechanism design
allocates non-strategic demand, both elastic or inelastic, among multiple strategic agents.
Moreover, this study adds price efficiency as a desired feature for the design. Also, the
individual and joint constraints are not present in that work.

To the best of the authors’ knowledge the design of the efficient mechanism with
individual and joint constraints similar to the ones appearing in this paper has been an
open problem. The closest works to this work are the subgame perfect implementation
of [74] and the literature following that. This study adopts similar decomposition ideas
in [74] that are used for dynamic implementation of an originally static problem. But
those are not price mechanisms, i.e., there is not a uniform price for agents, and moreover,
the message space has large dimensionality (each agent should report his entire private
information), which makes them impractical. Moreover, this study extends the results
to the case where strategic non-myopic agents interact for a long horizon with symmetric
uncertainty. To do this, this study takes advantage of the unidirectional constraint that
some decision variables impose on the others (the capacity and carbon permission decisions
set constraints for the production in the spot market, but not vice versa), to induce GenCos’
myopic behavior in the spot markets at the subgame perfect Nash equilibrium of the games
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induced by the design mechanisms. This, in turn, allows us to handle the complicated
long term interactions.

2. Model

This section first models the electricity industry. Then, it adds the policy targets.
It discusses the model limitations and propose possible extensions in Section 8.

Industry Model: With some abuse of notation and for simplicity of presentation, con-
sider a T-period (T-year) economy, T = {1, 2, ..., T, T + 1}, consisting of N = {1, 2, ..., N}
strategic GenCos (N ≥ 3 for technical issues), a non-strategic elastic demand with discount
factor β and an independent system operator (ISO). Demand elasticity is due to the new
technologies including demand response management (DRM) programs and battery stor-
age. GenCos have symmetric information. Let en,t denote GenCo n’s electricity production
at time t. GenCo n’s production cost at time t is Ce

n,t(en,t) where Ce
n,t(en,t) is strictly convex

and increasing with respect to en,t and Ce
n,t(0) = 0. The demand’s utility at time t is denoted

by Ut(dt), where Ut(0) = 0 and Ut(dt) is strictly concave and increasing with respect to
dt. Note that this utility represents elastic demand. Let ∆xn,t denote GenCo n’s capacity
expansion at time t. GenCo n’s expansion cost at time t is Cx

n,t(∆xn,t). Cx
n,t(∆xn,t) is strictly

convex and increasing with respect to ∆xn,t with Cx
n,t(0) = 0.

Initially, GenCos have capacity xn,0, n ∈ N. At the beginning of each year t ∈ T, all
GenCos simultaneously and independently decide on how much to expand their existing
capacities. The new capacities are built and added to the system so that the total GenCo n’s
capacity for generating electricity at time t is xn,t = xn,0 + ∑τ=1,2,...,t ∆xn,τ . Next, demand
at time t+ with utility Ut(dt) realized and is cleared in the spot market at time t. GenCo n’s
production at the spot market of time t is denoted by en,t and its money transfer is denoted
by rn,t. The timeline of events during year t is shown in Figure 1. Note that this model
has only considered one spot market between expansion decisions just for simplicity of the
presentation and the results hold even if there are numerous spot markets in each year
between expansion decisions (which is the real case). Alternatively, this single market can
also be interpreted as the aggregate of all spot markets in between expansion decisions. In
the same way the assumption that the new capacity is available in the same year is for
simplicity of presentation, and the results hold with multi-stage delay in expansions (in
reality it takes multiple years to build new power plants). The model can be updated to
include both of these, and the results will not change, but the presentation will be more
complicated (see Section 8).

Figure 1. Timeline of events in the electricity industry during period t to t + 1.

After the final year, at time T + 1, each GenCo n ∈ N sells its entire capacity with
price η, gains a value of Vc(xn,T+1) = η × xn,T+1, and leaves the economy.

Next, this study models the ISO. The ISO is a social welfare that maximizes, designs
the mechanisms, and runs the auctions, but does not participate in those.

Next, the model’s information structure is presented. This model assumes that
GenCos have symmetric information, thus they know each others’ type (cost functions
and initial capacities), and any time t they know all the information history up to t. The
information history at any time t includes all the expansion decisions, bids in the market,
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market outcomes for all GenCos, and demand values (assume the ISO announces the
market outcomes and demand in case they are not already available to the GenCos). Since
information is symmetric, this study adopts the Nash equilibrium for one-period problems
and subgame perfect Nash equilibrium for multi-period problems as solution concepts for
the mechanism design. Note that the ISO does not necessarily know the type of the GenCos
(their cost functions Ce

n,t(.), Cx
n,t(.), n ∈ N, t ∈ T, and initial capacity xn,0, n = 0, 1, 2, ...), but

knows the spaces where Ce
n,t, Cx

n,t, and Xn,0 belong to.
This completes the description of the model for the industry. Note that while this

study has not considered network constraints, the above model allows isolating and
capturing some of the main dynamics of the electricity industry needed to study and
understand the policy issues proposed in Section 1.1 (oligopolistic market with certain
industry constraints). This study discusses in Section 8 about other important features of
electricity industry and how this work can be expanded to capture them.

Policy Targets Model: This study models the policy targets i.e., reliability, sustain-
ability, and price efficiency. The reliability target is in the form of the following planning
reserve requirements:

∑
n∈N

xn,t ≥ xt, ∀t ∈ T. (1)

This means that at each time t, there is a minimum capacity requirements denoted by
xt (xt is calculated by the system operator based on future demand prediction scenarios,
uncertainties in the supply side e.g., due to renewable, and degree of reliability required by
the ISO/TSO (e.g., one in ten year black out or alternative requirements) [76].

This study models the system operator’s sustainability target as follows. Consider
αn,t to be the carbon factor for the technology of producer n used for producing electricity
at time t. Then at time t, the sustainability target restricts carbon emission by carbon cap bt
is described by

∑
n∈N

αn,ten,t ≤ bt (2)

Price efficiency requires that a uniform price is paid to all GenCos and this price is
equal to the marginal cost of production for those producers whose production is positive
and is not saturated by their capacity. Assuming pn,t to be the price paid to GenCo n at
time t, then

pn,t = C′n,t(en,t) if 0 < en,t < xn,t, and pn,t = pt ∀n ∈ N, t ∈ T. (3)

Next, a methodology is described for implementing the above policy targets for the
proposed industry model. Specifically: (i) this study studies a sequence of auctions that are
increasing in the complexity of the constraints they include (Sections 3–5); (ii) this study
combines the solutions to these auctions to achieve its objective (Section 6).

3. Efficient Auctions of a Divisible Good

In this section, a design of a static (one-time period) efficient auction for allocating
a divisible good without any constraints is presented. This problem serves as the funda-
mental building block of the development in the following sections where this study
considers one-time auctions with individual or homogeneous (additive) joint constraints.
The problem is also a fundamental building block of the approach to multi-period auc-
tions. Inspired by [64], the design uses discriminatory/individual prices to implement
social welfare maximizing outcome. However, these individual prices become the same at
equilibrium to ensure price efficiency. A discussion on the interpretation of the design is
provided in Section 3.3.

We consider two separate cases of price elastic and price inelastic divisible goods. The
proposed efficient auctions with elastic divisible good are used to design spot markets with
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elastic demand. The proposed efficient auction of inelastic divisible good are used in the
next sections to design capacity market, and carbon permit market.

3.1. Model: Electricity Spot Markets

Based on the model of Section 2, this study considers a single spot market without
constraints. Since this study studies only a one-period market, for ease of presentation,
the time index is dropped in the model of this section. In Appendix B, this study extends
the results to the case where both long-term interactions among agents and symmetric
uncertainty exist. Long-term analysis of the electricity system with uncertainties is studied
with different techniques in [77–79]. We study auctions with both elastic and inelastic
divisible goods here. We use elastic demand to model the spot market. This is due to new
technologies including demand response management (DRM) and battery storage that
improve the elasticity of demand.

The social-welfare maximizing allocation for elastic demand is given by the solution of
the following problem.

max
en ,n∈N

U( ∑
n∈N

en)− ∑
n∈N

Ce
n(en) (4)

If the demand is inelastic and equal to d then, the social welfare maximizing problem is

max
en ,n∈N

− ∑
n∈N

Ce
n(en) s.t. ∑

n∈N
en ≥ d (5)

Note that both of the above problems are strictly convex optimizations with a convex
non-empty domain and therefore, have a unique solution.

3.2. Design/Mechanism

We present two auction mechanisms, one for elastic and one for inelastic demand. The
two mechanisms are only different in their payment methods.

A game form/mechanism is described by (M, g), whereM is the message/strategy
space and g :M→ A is the outcome function, a function from the message spaceM to
the space A of allocations. Consider the following mechanism.

Message space Choose GenCo n’s message space, Mn, its message, mn, and the
message space of the mechanism,M, to be

Mn := R×R+, n ∈ N, mn = (ên, p̂n), M := (M1 ⊗M2 ⊗ ...⊗MN), (6)

respectively, where ên denotes the amount of electricity GenCo n proposes to produce, and
p̂n denotes the price GenCo n proposes to charge per unit of electricity; p̂n is restricted
by p̂n ≥ 0.

Allocation Space The allocation space of the mechanism, A, GenCo n’s allocation
space, An, and GenCo n’s allocation an are

A := (A1 ⊗A2 ⊗ ...⊗AN), An := [0, xn]×R, n ∈ N, an = (en, rn), (7)

respectively, where en is the amount GenCo n is scheduled to produce, and rn is the
payment to GenCo n.

Outcome function Define g :M→ A as follows. For each m := (m1, m2, ..., mN) ∈ M
set g(m) = (e, r) = (e1, ..., eN , r1, ..., rN) where

en = ên. (8)

For elastic demand the payments are

relas.
n = p̂n+1 ên − p̂−0.5

n ζelas.
n

2
, (9)
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ζelas.
n = D( p̂n+1)− ∑

n∈N
ên, D( p̂) = (U

′
)
−1

( p̂), p̂N+1 := p̂1. (10)

For inelastic demand the payments are

rinelas.
n = p̂n+1 ên − ( p̂n − p̂n+1)

2 − 2p̂nζ inelas.2, (11)

ζ inelas. = (d− ∑
n∈N

ên)
+, pN+1 := p1. (12)

The indexing used for allocations above is for simplicity of presentation; there are
other methods for allocation that induce the same results without any indexing. Refer to
one such method at the end of Section 3.3.

3.3. Interpretation of the Design

The key challenges in the design of an efficient mechanism for the problem considered
in this section are (1) dealing with the strategic GenCos’ market power; (2) incentivizing
the strategic GenCos to collectively meet the price-taking demand.

Since the mechanism designer, i.e., the ISO, cannot alter the producers’ cost functions,
Ce

n(.), n = 1, 2, ..., N, even if they knew their functional form, the only way they could
achieve their objective (social welfare maximization) is through the use of appropriate
tax incentives/tax functions. For the case of elastic demand, the tax function is relas.

n =(
p̂n+1 ên

)
+

(
− p̂−0.5

n ζelas.2
n
)
. For the case of inelastic demand, it is rinelas.

n =
(

p̂n+1,ten
)
+(

− ( p̂n − p̂n+1)
2 − 2p̂nζ inelas.2

t
)
.

Allowing discriminatory individual prices charged to GenCos (off-equilibrium) pro-
vides the flexibility required for implementing social welfare maximizing generation by
eliminating market power. This is achieved by offering each producer a price per unit
of its production that does not depend on its own price proposal, that is, it is not under
its own control. Such an offer induces price-taking behavior among the producers. One
way to achieve price-taking behavior is to arbitrarily index the GenCos between 1 and
N, and then pay GenCo n according to the price proposal pn+1 of GenCo n + 1, with the
convention that pN+1 = p1. The indexing is arbitrary but known to all GenCos. The term
rn,1 = [ p̂n+1,ten] specifies the amount GenCo n receives for its production en.

Incentivizing the producers to bid the same prices can be achieved by a penalty term
for each producer n that depends on his own price. In a similar manner, incentivizing
the strategic producers to collectively meet the demand is achieved by penalizing over-
production or under-production. For inelastic demand, the incentive provided to all
producers to bid the same price per unit of capacity is described by the term −( p̂n,t −
p̂n+1,t)

2, the incentive provided to all producers to collectively propose a total production

that is at least equal to the demand, d, is captured by the term −2p̂n,tζ
inelas.2

t , which is a
penalty for underproduction. For the elastic demand, the term p̂−0.5

n ζelas.
n

2
ensures that

the equilibrium price is equal to the marginal utility of the demand at the total amount of
production. Under this price, all the electricity supplied at the suggested price is bought
and used by the demand. Note that D(p) is the optimal demand for price p, because it is
the solution of the optimization problem below:

D(p) ∈ arg max
d≥0

U(d)− pd. (13)

Since the above optimization is strictly concave, it has a unique solution.
The above incentives represent tax/subsidy payments the ISO collects from/provides

to the strategic GenCos, which, in addition to achieving the above stated objectives, allow
the ISO to align the GenCos productions with the social welfare maximizing produc-
tion profile.
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We note that, according to the above guidelines, different penalty terms can be de-
signed for efficient auctions and those terms proposed here are just one possible design.
An alternative design that does not require indexing of the GenCos is to pay every GenCo
the average of the prices proposed by the other GenCos. This alternative design process, at
equilibrium, has the same properties as the design proposed in Section 3.2.

3.4. Comparison of the Elastic and Inelastic Static Auctions

We now contrast the two auction mechanisms proposed for elastic and inelastic
divisible good. The key differences appear in the specification of the tax function that
provides incentives to strategic GenCos to align their interests/goals with those of the ISO.
In the case of elastic demand, the money the demand pays defines the amount of electricity
it consumes. Thus, the price per unit of power should be less than or equal to the marginal
utility of consumption at the amount injected to the market. This requirement expresses
the budget balance property the mechanism should have. In the case of inelastic demand,
budget balance is not required because the demand pays to the GenCos any amount it is
charged. In return, GenCos’ production profile e = (e1, e2, ..., eN) must meet the demand,
that is it must satisfy an inequality constraint of the form ∑n=1,...,N en ≥ d. The difficulty in
this case is designing a price efficient mechanism (a mechanism where the price is limited
by marginal cost of production), which also satisfies ∑n=1,...,N en ≥ d.

As a result of these differences, the two mechanisms are different in the way GenCos
contribute to the tax payment that is imposed so as to achieve an efficient allocation
at equilibrium.

3.5. Properties of the Proposed Mechanisms

The properties possessed by the two proposed mechanisms are presented in this
section. Consider Nash equilibrium (NE) as the solution concept. Denote the equilibrium
messages and outcomes corresponding to GenCo n ∈ N by p̂∗n, ê∗n, relas.

n
∗
, rinelas.

n
∗
, p∗n and e∗n.

First define the notion of a trivial equilibrium (Definition 1); it is shown that the
auction for inelastic demand has exactly one trivial NE (Lemma 2). Hereafter, for simplicity
of presentation whenever NE is referred to, it is meant non-trivial NE unless otherwise
stated. It is proven that at any equilibrium (trivial or non-trivial) outcome of the game
induced by the above mechanisms, supply and demand meet each other (Lemma 1). Use
Lemmas 1 and 2 to prove price efficiency, budget balanced, social welfare maximization,
and individual rationality at any Nash equilibrium of the game induced by the mech-
anisms in Theorems 1–4, respectively. The proofs of all these properties are presented
in Appendix A. This section is concluded by discussing uniqueness of the NE, Pareto
dominance of the non-trivial NE compared to the trivial NE for the inelastic demand, and
the anonymity of the mechanisms.

Definition 1 (TRIVIAL EQUILIBRIUM). An equilibrium where price bids, p̂∗n, are zero for all
n ∈ N is defined to be a trivial equilibrium.

Lemma 1 (MARKET CLEARANCE). At every non-trivial equilibrium, supply meets demand,
i.e., for elastic demand and inelastic demand, for all n ∈ N ,

ζelas.
n
∗
= 0, or equivalently D( p̂∗n+1)− ∑

n∈N
ê∗n = 0, (14)

ζ inelas.∗ = 0, or equivalently (d− ∑
n∈N

e∗n) ≥ 0. (15)

Theorem 1 (PRICE EFFICIENCY). The auctions proposed for elastic and inelastic demand are
price efficient at any non-trivial equilibrium m∗ of the games induced by the mechanisms; that is,
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there is a uniform price equal to the marginal cost of the next one unit of production by producers,
i.e., for every producer n ∈ N, which is not saturated,

p̂∗n = p̂∗n+1 = p̂∗, (16)

r∗n = p̂∗ ê∗n, (17)
∂rn

∂ên

∣∣∣∣
m∗

= p̂∗, (18)

p̂∗ = C′(ê∗n). (19)

Theorem 1 shows that at equilibrium all non-saturated producers propose the same
price per unit of electricity (Equation (16)). This equilibrium price is both the average price
(Equation (17)) and the marginal price (Equation (18)), and is efficient in the sense that it
is equal to the marginal cost of production for non-saturated producers (Equation (19)).
This theorem shows that the proposed mechanisms incentivize producers to reveal at
equilibrium their true cost of producing the next unit of electricity provided that they still
have free capacity. This marginal cost is the same for all producers with free capacity,
and therefore, would be the marginal cost of a hypothetical entity who would own all
the producers.

Theorem 2 (BUDGET BALANCED). The proposed auctions are budget balanced at any trivial
or non-trivial equilibrium of the game induced by them. For elastic demand, if ∑n∈N ê∗n > 0, this
means that the equilibrium price is equal to marginal utility of the demand,

p̂∗ = U
′
( ∑

n∈N
ê∗n). (20)

Note that, in contrast to the auction for elastic demand, budget balance is always
achieved in the auction for inelastic demand by charging demand the total payment to
the GenCos.

Theorem 3 (NASH IMPLEMENTATION/SOCIAL OPTIMALITY). At any non-trivial equi-
librium of the game induced by the proposed auction for elastic or inelastic demand, the allocations
of the demand to GenCos are social welfare maximizing, i.e., they are equal to the unique solutions
of the Problems (4) and (5), respectively.

Theorem 1 determines the price bids and Theorem 3 determines the production bids
at equilibrium. Using these bids, one can establish individual rationality.

Theorem 4 (INDIVIDUAL RATIONALITY). The proposed auction mechanisms for elastic and
inelastic demand are individually rational, that is at any trivial or non-trivial NE of the games
induced by the mechanisms and for every GenCo n ∈ N, the corresponding allocations (e∗n, relas.

n
∗
)

and (e∗n, rinelas.
n

∗
) are weakly preferred to the allocation (0, 0) (the allocation a strategic producer

receives when they do not participate in the market).

Theorem 4 shows that each strategic producer voluntarily participates in the electric-
ity market.

Lemma 2 (UNIQUENESS OF TRIVIAL NE). The game induced by the proposed auction for
inelastic demand has, in addition to the unique non-trivial NE, exactly one trivial NE, where for all
n ∈ N, p∗n = 0 and e∗n = 0. The game induced by the auction for elastic demand does not have any
trivial equilibrium if in the solution to Problem (4), e∗n is not zero for all n ∈ N, otherwise it has a
unique trivial equilibrium where p∗n = 0 and e∗n = 0 for all n ∈ N.

Remark 1 (UNIQUENESS OF NONTRIVIAL NE). The games induced by the proposed mecha-
nisms have a unique non-trivial NE. This is because by Theorem 3, the bids for electricity production
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at equilibrium are equal to the unique solution of Problem (4) for elastic demand and Problem (5)
for inelastic demand. Furthermore, by Theorem 1, the price bids of all the GenCos is the same at
equilibrium, and equal to marginal cost of producing the next unit of electricity.

Remark 2 (PARETO DOMINANCE). Since (0, 0) is the outcome of the trivial NE of the game
induced by the mechanism, Theorem 4 shows that the unique non-trivial NE Pareto dominates the
trivial NE.

Remark 3 (ANONYMITY). The proposed mechanisms are anonymous at equilibrium. In other
words, at equilibrium payments and productions are independent of the GenCos’ indexing. To
see this, note that at equilibrium the electricity produced by each GenCo is according to the social
welfare maximizing production which is independent of the GenCos’ indexing. Furthermore, as
shown in Lemma 1 (Equation (16)) the price paid per unit of production at equilibrium is the same
for all GenCos and independent of the GenCos’ indexing, and the penalty terms in the tax function
are equal to zero. Note that in alternative designs presented at the end of Section 3.3, the indexing is
relaxed, which induces anonymity.

4. Efficient Auctions with Individual Constraints

In this section, we study one-time period auctions where sellers have individual
constraints. This study considers a dynamic two stage setup within a one-period
framework where the agents (i.e., GenCos) decide about their investment in the first stage
and sell their product in the second stage. The constraints in the second stage are assumed
to be individual and due to agents’ individual investments. This study shows that with
individual constraints, use of the auctions proposed in Section 3.2 in the second stage
results in efficiency without any need for additional prices, corresponding markets for
discovering these prices in the first stage, or other instruments.

We study these auctions within the context of GenCo’s capacity expansion without
reliability constraints. GenCos decide their capacity expansion in stage one and then
sell electricity to demand in stage two. In this section, Section 5, and Appendix B, this
study focuses on the case of elastic demand; the extension of techniques and results to
corresponding problems with inelastic demand can be achieved in a similar way. This
study designs a capacity-trade mechanism (Section 4.2), and show that it is efficient
(Section 4.3, Theorem 5). Moreover, this study proves that the GenCos use all of the
expanded capacity in the spot market and the spot market price covers their investment
cost (Theorem 6).

In Section 4.4, the results are interpreted. Furthermore, in Section 6, results are
used to compare the proposed efficient electricity markets with an energy-only solution
to reliability.

4.1. Model: Investment without Reliability Constraint

Consider the model of Section 2 restricted to the following capacity-trade competition:
GenCos individually decide on their investment at time 1 (stage 1) and then the demand
is auctioned at the spot market of time 1+ (stage 2). GenCos’ production is limited by
their individual capacity and their capacity expansion is limited by their individual expan-
sion limits. The social-welfare maximizing allocation for elastic demand is a solution to
the problem

max
en ,∆xn ,n∈N

U( ∑
n∈N

en)− ∑
n∈N

Ce
n(en)− ∑

n∈N
Cx

n(∆xn) (21)

s.t. 0 ≤ en ≤ xn,0 + ∆xn ∀n ∈ N (22)

0 ≤ ∆xn ≤ ∆xn ∀n ∈ N (23)

Problem (21) is a strictly convex optimization problem with a convex non-empty
domain; therefore, it has a unique solution.
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4.2. Design/Mechanism

This study proposes the following dynamic mechanism for capacity–trade competi-
tion. GenCos simultaneously decide on their expansion ∆xn at time 1 (Stage 1). Then at
time 1+ (Stage 2), they participate in the efficient auction (spot market) for elastic demand
proposed in Section 3.2. Note that due to constraint in Equation (22), GenCo n’s message
space in the spot market is limited by 0 ≤ ên ≤ xn = xn,0 + ∆xn.

4.3. Properties of the Proposed Mechanism

This study considers subgame perfect Nash equilibrium (SPNE) as the solution
concept for the two-stage problem that arises within one-period time, and study the
equilibrium properties of the proposed capacity–trade mechanism. Denote the equilibrium
outcome of the game induced by the mechanism by ∆x∗n, e∗n and p∗n. The properties of the
mechanism are summarized by Theorems 5 and 6. The proofs of Theorems 5 and 6 are
special cases of the proofs of Theorems 7 and 8, respectively, in Section 6.

Theorem 5 (EFFICIENCY). The game induced by the proposed mechanism for capacity-trade
competition (capacity expansion and production) has a unique subgame perfect Nash equilibrium
(SPNE). At this unique SPNE, the proposed mechanism has the following properties: (i) implements
socially efficient investment and production corresponding to Problem (21), (ii) is individually
rational, (iii) results in efficient price in the spot market, and (iv) is budget balanced.

GenCos cover their cost of investment when their capacity becomes saturated and
therefore, the market price is above their marginal cost of production. The following
Theorem shows that the GenCos’ investment on capacity is always covered, and it is
covered at its marginal cost.

Theorem 6 (SATURATION & SCARCITY PRICE). If GenCo n’s expansion at time 1 is positive,
i.e., ∆x∗n > 0, then its production in the spot market at time 1+ is saturated i.e., e∗n = xn,0 + ∆x∗n.
Furthermore, the equilibrium price in the spot market covers the investment at marginal cost, that is,

p∗ = Ce
n
′(e∗n) + Cx

n
′(∆x∗n) (24)

4.4. Interpretation of the Design

The one-period mechanism of Section 4.2 consists of two stages. In the first stage
the GenCos decide for their investments independently and without any coordination
mechanism such as an auction. In the second stage they participate in an auction for selling
electricity. The second stage is similar to the one-stage mechanism of Section 3.2. The
results of Section 3.5 ensure price efficiency, social welfare-maximization, budget balance,
and individual rationality for any amount of investment that the GenCos make in the first
stage. It is worth noting that the second stage of the mechanism generates the right (correct)
signals for investment in the first stage. As a consequence, at equilibrium, the amount
of investment the GenCos make is social welfare maximizing and is determined by the
solution of problem (21). Note that such an efficient investment is implemented without
any coordinator/coordinating mechanism in the first stage; this happens because each
GenCo’s decision in the first stage sets constraints only on his own production level in the
second stage (i.e., individual constraints).

5. Efficient Auctions with Homogeneous (Additive) Joint Constraints

Joint constraints are public (uneconomic) constraints and their implementation re-
quires appropriate tax/subsidy, which is in contrast to the implementation of the individual
constraints of Section 4. To this end, a decomposition technique is introduced for design
and analysis of the auctions. The one-time period optimization problem with homoge-
neous joint constraints is decomposed into a sequence of optimizations with individual
constraints, and then implement them by a sequence of efficient auctions with individual
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constraints. The equilibrium price in the market corresponding to each homogeneous
joint constraint determines the efficient tax/subsidy needed to implement that constraint.
This study shows that the auctions proposed are efficient (Theorem 7) and discovers the
efficient tax/subsidy for implementation of the homogeneous joint constraint (Theorem 8).
In Appendix B, the results for one-time period auction of this section are extended to
long-horizon interaction of agents.

This study presents a decomposition technique and results on homogeneous joint
constraints through the study of reliability constraints (planning reserve requirements)
for electricity investment where in the first stage the GenCos decide their expansion and
in stage two they sell electricity in the spot market. In contrast to the setup of Section 4,
here there is minimum expansion that GenCos should meet collectively due to reliability
constraints. Later, Section 6 discusses how to implement carbon emission constraints using
the results on auctions with homogeneous joint constraints.

5.1. Model: Electricity Investment with Reliability Constraint

This study uses the one-time period model of Section 2 and add the reliability con-
straint to the model of Section 4.1. The social welfare maximizing investment and produc-
tion are a solution to the Problem (25)

max
en ,∆xn ,n∈N

U( ∑
n∈N

en)− ∑
n∈N

Ce
n(en)− ∑

n∈N
Cx

n(∆xn) (25)

s.t. 0 ≤ en ≤ xn,0 + ∆xn ∀n ∈ N (26)

∑
n∈N

(xn,0 + ∆xn) ≥ x (27)

Problem (25) is a strictly convex optimization with a convex non-empty domain;
therefore, it has a unique solution.

5.2. Design/Mechanism

This study decomposes Problem (25) and implement its solution with separate mar-
kets. The decomposition and implementation method presented here is for reliability
constraints but the method can be used for problems with other convex homogeneous joint
constraints.

Decomposition: Consider vector X = [x1, x2, ..., xN ] where xn = xn,0 + ∆xn. Problem
(25) is equivalent to the following two sequential optimization problems.

max
∆xn ,n∈N

V+(X)− ∑
n∈N

Cx
n(∆xn) (28)

s.t. 0 ≤ ∆xn ∀n ∈ N (29)

∑
n∈N

xn ≥ x, (30)

followed by

V+(X) = max
en ,n∈N

U( ∑
n∈N

en)− ∑
n∈N

Ce
n(en) (31)

s.t. 0 ≤ en ≤ xn ∀n ∈ N. (32)

Market Design: Inspired by the above decomposition, this study proposes the follow-
ing dynamic market design. First at time 1, the amount of capacity required for reliability,
x, is auctioned among the GenCos using efficient inelastic capacity market. The design of
this market is the same as the efficient inelastic spot market proposed in Section 3. Next,
at time 1+, the elastic demand U(d) is auctioned among the GenCos using an efficient
elastic spot market that is the same as that of Section 3. Note that due to constraint in
Equation (32), the GenCo n’s message space in the spot market is limited by 0 ≤ ên ≤ xn,
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furthermore, due to the constraint in Equation (29), its expansion proposals in the capacity
market should be non-negative.

Proof of the properties of this dynamic market are in the next section.

5.3. Properties of the Proposed Mechanism

The properties of the proposed dynamic auction for implementing reliability con-
straints are summarized by Theorems 7 and 8. Appendix B extends these properties to
multi-period problems with symmetric uncertainty, and the proof of Theorems 7 and 8 is
provided for the multi-period problems with symmetric uncertainty.

Theorem 7 (EFFICIENCY). The mechanism proposed for auctions with homogeneous joint con-
straints is individually rational, budget balanced, and price efficient both in the capacity market
and in the spot market. Furthermore, if the solution of Problem (25) results in non-negative total
expansion i.e., ∑n∈N ∆x∗n > 0, then the game induced by the proposed mechanism has a unique
non-trivial SPNE, and the allocations corresponding to this SPNE are the same as the solution to
Problem (25). The game induced by the proposed mechanism has also a trivial SPNE where the
investments on capacity expansion ∆xn, n ∈ N, are equal to zero. The non-trivial SPNE Pareto
dominates the trivial SPNE.

In contrast to auctions with individual constraints, the results of Theorem 6 on sat-
uration and scarcity price results of Theorem 6 do not necessarily hold for the auctions
with homogeneous joint constraints. In other words, it is possible that a GenCo expands its
capacity without using the expanded capacity in the spot market. However, the price in
the capacity market is efficient (Theorem 8).

Theorem 8 (EFFICIENT SUBSIDY/TAX). At the non-trivial SPNE of the game induced by the
mechanism of Section 5.2, the equilibrium price pc∗ in the capacity market, is equal to the efficient
level of subsidy/tax per unit of capacity expansion needed to implement the joint constraint in
Equation (27), that is

pc∗ = Cx
n
′(∆xn) + Ce

n
′(en)− p∗ (33)

where p∗ is the equilibrium price in the spot market. This equilibrium price in the capacity market
goes to zero if the joint constraint is not binding.

5.4. Interpretation of the Mechanism

The one-period mechanism of Section 5.2 consists of two stages. At each stage, a
central auction is used to coordinate the GenCos’ decisions/incentives. But these two stages
have different interpretations. In the second stage the GenCos participate in an auction
for selling electricity. The second stage auction is similar to the one-stage mechanism
of Section 3.2. Therefore, the results of Section 3.5 ensure price efficiency, social welfare-
maximization, budget balance, and individual rationality for any amount of investment
that the GenCos make in the first stage. However, in contrast to the results in Section 4,
the efficient auction in the second stage alone is not sufficient to send back appropriate
signals to GenCos for efficient investment in the first stage. This is due to the fact that each
GenCo’s decision in the first stage is subject to a joint constraints for all GenCos. In other
words, every GenCo’s investment decision has an impact on the other GenCos’ decisions
(by the reliability constraint that they should jointly meet). Therefore, in the first stage,
there is need for a coordinating mechanism that can complement the investment signals
from the second stage auction and align the GenCos’ incentives toward efficient investment.
This coordinating mechanism is the auction used in the first stage. It is worth noting that
when the joint constraints on the GenCos are homogeneous according to the decomposition
technique of Section 5.2, the efficient auction of Section 3.2 can be used for the first stage.
This is not true when the joint constraints on the GenCos are non-homogeneous.
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6. Electricity Markets for Achieving Policy Targets

This study uses the results of Sections 3–5 along with their extensions in Appendix B
to design reliable, sustainable, and price efficient electricity markets. Also, discussion of
how results contribute to the electricity policy debates of Section 1.1 are provided.

6.1. Model: Sustainable, Reliable, and Price Efficient Electricity

Considering reliability, sustainability, and price efficiency as desired features of the
market, this study poses the question of the social welfare maximizing investment and
production plans. These plans are functions of the information history. At year t, denote
the information history for expansion by ht, the information history for production by
ht+ , and their spaces by Ht, Ht+ , respectively. Define E1:t(x0, ∆x1:t) to be the space of all
possible electricity productions based on the initial capacity x0 and capacity expansions
∆Xt. Then,

ht := {x1:N,0, e1:N,1:t−1, ∆x1:N,1:t−1}
∈ Ht :=

(
X1:N,0, E1:t−1(X1:N,0, ∆X1:N,1:t−1), ∆X1:N,1:t−1

)
(34)

ht+ := {x1:N,0, e1:N,1:t−1, ∆x1:N,1:t}
∈ Ht+ :=

(
X1:N,0, E1:N,1:t−1

(
X1:N,0, ∆X1:N,1:t−1)

)
, ∆X1:N,1:t

)
(35)

GenCo n’s investment plan/strategy, n ∈ N, at year t is denoted by σn,t : Ht →
[0, ∆xn,t] and its production plan/strategy at year t is denoted by γn,t : Ht+ → [0, xn,t].
Denote the space of all such strategies by Σn,t and Γn,t, t = 1, 2, ..., T, respectively, and
define

γ := {γn,t : n ∈ N, t ∈ T}, σ := {σn,t : n ∈ N, t ∈ T}. (36)

The investment and production strategies that maximize the social welfare are the
solution of the following problem:

max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

[∑
t∈T

βtUt( ∑
n∈N

en,t)− (37)

∑
t∈T

∑
n∈N

βt
{

Cx
n,t(∆xn,t) + Ce

n,t(en,t)

}
+ βT+1 ∑

n∈N
ηxn,T

]
(38)

s.t. ∀t ∈ T, n ∈ N, ∀u, v ∈ V

0 ≤ en,t ≤ xn,0 + ∑
τ=1,...,t

∆xn,τ (39)

0 ≤ ∆xn,t (40)

∑
n∈N

xn,t ≥ xt (41)

∑
n∈N

αn,ten,t ≤ bt (42)

Note that (41) is the capacity constraint for reliability and (42) is the cap on the total
carbon emission. The carbon constraint is non-homogeneous because of different carbon
emission factors αn,t among GenCos.

Within the context of the setup above, budget balance and individual rationality are
discussed. Budget balance is defined when the demand is elastic and requires the sum of
money paid to the producers to be equal to the money collected from the demand. The
demand is non-strategic (price-taker) and therefore, the demand’s optimization problem at
time t is the following:

max
dt

Ut(dt)− pt × dt (43)
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Since ∂Ut(dt)
∂dt

is the price per unit of electricity that the elastic demand is paying for
consuming dt units of electricity at time t, budget balance means that,

∑
n∈N

pn,ten,t =
∂Ut(∑n∈N en,t)

∂(∑n∈N en,t)
× ∑

n∈N
en,t, ∀t ∈ T. (44)

The left-hand side of the above equation is the total payment that the auctioneer (ISO)
pays to the GenCos. The right-hand side is the amount of money the auctioneer collects
from the non-strategic demand. Note that due to market clearing, dt = ∑n∈N en,t. The
condition ∑n∈N ên,t 6= 0 means the price should follow the demand–price curve,

pt =
∂Ut(∑n∈N en,t)

∂(∑n∈N en,t)
. (45)

Individual rationality requires that the future utility of each GenCo n ∈ N at each
time t ∈ T is greater than its outside option, that is, the future utility each GenCo receives
by not participating in the production and expansion process. Based on the definition of
the cost functions, assume the outside option for not producing or expanding to be zero. If
the payment GenCo n receives at time t is denoted by rn,t, then individual rationality at
times t ∈ T and t+ ∈ T are expressed by the following requirements.

∑
τ=t,t+1,...,T

βτ
(
− Ce

n(en,τ)− Cx
n(∆xn,τ) + rn,τ

)
≥ 0 ∀ht ∈ Ht, (46)

and

βt(− Ce
n(en,t) + rn,t

)
+ ∑

τ=t+1,t+2,...,T
βτ

(
− Ce

n(en,τ)− Cx
n(∆xn,τ)

+rn,τ
)
≥ 0 , ∀ht+ ∈ Ht+ , (47)

respectively.
Note that price efficiency in this setup means that

pn,t = Ce
n(en,t) if 0 < en,t < xn,t (48)

If en,t = xn,t then the pn,t ≥ Ce
n(xn,t) and if en,t = 0 then pn,t ≤ Ce

n(0).

6.2. Design/Mechanism

In this section, we describe how to design a mechanism that implements, in SPNE, the
social welfare function of Problem (37), and in addition, is individually rational, budget-
balanced, and price efficient. In Problem (37), individual constraints exist, Equations (39)
and (40), homogeneous joint constraints, Equation (41), and non-homogeneous joint con-
straints, Equation (42), describe the carbon emission limit. Since Equations (41) and (42)
in terms of productions at time t, in order to decompose them into separate optimization
problems, we introduce carbon permits as auxiliary variables are introduced. Also, carbon
permit are designed in a way to achieve a homogeneous joint constraint for these auxiliary
variables (note that Equation (42) is non-homogeneous due to different carbon emission
factors αn,t among GenCos).

Let auxiliary variable bn,t be GenCo n’s carbon emission permit at time t; then
Equation (42) can be replaced with one individual and one homogeneous joint constraint
as follows

0 ≤ en,t ≤ bn,t/αn,t (49)

∑
n∈N

bn,t ≤ bt. (50)
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Using the auxiliary carbon permit and the (49) and (50), the carbon constraints (42) of
Problem (37) is replaced by homogeneous joint constraints of the same form as Problem (25)
of Section 5. Therefore, one can use the same mechanism design methodology to obtain a
mechanism for problem (37) that possesses the properties established by Theorems 7 and 8
(Note that Theorems 7 and 8 are established for the multi-period, T-period, problem).

6.3. Energy-and-Capacity Design vs. Energy-Only Design

Based on the results derived so far, two alternative market designs for implementing
policy targets are presented. The first is an energy-and-capacity design, the second is an
energy-only design. They are compared through an example.

Energy-and-Capacity Design: Based on the replacement of the constraints expressed
in Equation (42) by the constraints of (49) and (50), one way to implement electricity policies
is to design one market for each homogeneous joint constraint in the modified problem.
The set of markets at each time t will be the following: one elastic spot market, one inelastic
capacity market, and one inelastic carbon permit market. All of these markets are auctions
of divisible goods and can be designed by the method proposed in Section 3. Carbon
permit market is used to implement a cap constraint, while the capacity market is for
implementing a floor constraint. Therefore, carbon permit markets collect money from
GenCos resulting in higher prices for electricity in the spot market compared to when
the carbon permit does not exist; while the capacity market pays to the sellers resulting
in lower prices in the spot market compared to when the capacity market does not exist.
The time-line for this dynamic energy-and-capacity mechanism is shown in Figure 2. This
design implements Problem (37) in SPNE and is price efficient, budget balanced, and
individually rational.

Figure 2. Timeline for the proposed energy-and-capacity mechanism.

The equilibrium price in capacity and carbon permit markets are the efficient sub-
sidy/tax for each commodity. These prices are positive only if the corresponding constraint
in Problem (37) is binding. These prices adjust automatically to technological and economic
changes.

Energy-Only Design: An alternative energy-only solution for implementing reliabil-
ity is to set the demand profile Ũt(dt) above the actual demand profile Ut(dt) and, in this
way, to provide incentive to GenCos for more capacity expansion [10]. The difference
between the auctioned demand and the actual demand is put in the operation reserve.
The advantage of this approach is that it requires a smaller number of markets in order
to implement the policy targets (it does not require capacity market). However, such an
approach requires more subsidy to be paid to GenCos, as shown by the following example.

Example 1 (ENERGY-ONLY VS ENERGY-AND-CAPACITY). Consider an industry modeled
in Section 5 where T = 1, i.e., a single expansion decision at time 1 is followed by a single spot
market at time 1+. Consider a situation where the reliable level of capacity x, the cost of expansion,
Cx

n(.), and the cost of production Ce
n(.) are high but the utility of demand, U(.), is low. Particularly,

assume x = 100 MW, there are 4 GenCos with Cx
n(∆xn) = ∆x2

n, Ce
n(en) = e2

n and U(d) = 10d.
Assume further that the initial capacity x0,n is 0 for all n = 1, 2, 3, 4, and that there is no retirement
payment after time T = 1, i.e., η = 0$/MW.
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First consider the energy and capacity solutions. Since GenCos are similar in their costs
and initial capacity, to meet the 100 MW capacity requirement in a socially optimal way, each
GenCo should expand 25 MW capacity. This means the price for capacity in the capacity market is
50$/MW, the marginal cost of expansion by GenCos at 25 MW capacity. Therefore, total payment
by the system operator to GenCos in the capacity market is 100 MW × 50$/MW = 5 k$/MW.
This amount is the subsidy for reliable capacity. Moreover in the spot market, the price of electricity
is the marginal utility of demand which is 10$/MW. Therefore, each GenCo produces 5 MW of
electricity to have marginal cost of production equal to 10$/MW and the total payment to GenCos
for producing electricity at the spot market is 4× 5 MW × 10$/MW = 200$.

Next, consider an energy-only solution. The operation reserve demand should be set high
enough to ensure GenCos have incentive to expand 25 MW each, ∆xn = 25 MW, n = 1, 2, 3, 4.
If GenCos expand by 25 MW each, they should use all of it in the spot market i.e., en = 25 MW, n =
1, 2, 3, 4, since otherwise they do not have incentive to expand by the above amount (saturation
property). Therefore, the price of electricity in the spot market should be the marginal of production
and expansion together, and this is equal to 2× ∆xn + 2× en = 2× 25 + 2× 25 = 100$/MW.
The total payment to the GenCos is 100$/MW × 100 MW = 10k$. To calculate the subsidy paid
for reliable capacity in the energy-only solution, one should calculate the payment for operation
reserve; this is the difference between the total payment in the spot market, 10,000$, and the efficient
payment for real demand, 200$. Therefore, the subsidy for reliable capacity in the energy-only
solution is 10,000$− 200$ = 9800$, which is almost twice as large as the 5k$ efficient subsidy in
the energy-and-capacity solution.

6.4. Impact on Policy Debates

The above solutions for electricity policy targets shed light on the electricity policy
debates. First, using the auctions designed in Section 3, price efficiency is achieved without
using price caps (or offer caps), market monitoring, or other sorts of market interventions.
Second, both the energy-and-capacity solution/market as well as an energy-only solu-
tion/market achieve planning reserve requirements. The energy-and-capacity solution
achieves efficient subsidy (by using the decomposition technique in Section 5), but requires
extra markets (capacity markets) and corresponding regulations. The energy-only solu-
tion requires more information and complex computations by the system operator, and
pays more subsidy to GenCos compared to the energy-and-capacity solution. Note that
the results in Section 4 show that in the absence of planning reserve requirements, no
capacity markets, or other subsidiary mechanisms are required to achieve socially optimal
investment (this is in contrast to References [11,12]). Finally, by using the decomposition
technique in Section 5, the carbon market finds the price of carbon as the efficient taxation
required to meet the carbon emission target.

7. Implementation

The market mechanisms presented in this paper were developed under the assump-
tion that GenCos have complete (symmetric) information about the environment (see
Section 1.5 for the use and implications of this assumption in the electricity industry).
Therefore, each GenCo can calculate the subgame perfect Nash equilibrium of the game
induced by the market mechanism according to Theorems 7 and 8. Note that finding
these equilibrium strategies requires solving Problem (37); this problem can be solved by
dynamic programming (each GenCo can solve the dynamic program). Similar to other
sustainable practices, the implementation can benefit from Industry standards [80,80] us-
ing advance analytic and state-of-the-art machine learning for solving the optimization
problems [81–83]. Also, the auctions presented here require indexing of the GenCos and
paying each GenCo according to the bids of the next one, but this indexing can be relaxed
in alternative designs with similar properties as discussed at the end of Section 3.3.
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8. Model Limitations and Possible Extensions

The model presented in Section 2 includes the essential features needed for the study of
electricity policy targets, but of course does not capture all the salient features of real-world
electricity markets; nevertheless, it can be extended in the following major directions so as
to become closer to reality. This can be achieved by including (i) the network constraints,
(ii) delays in building new capacities, (iii) fixed (startup) costs, (iv) information asymmetries
across GenCos, and v) other engineering constraints such as ramping and n− 1 reliability
constraints. The impact of such extensions on the design of electricity markets is further
discussed in Section 9.

The first extension is related to the network. This study did not consider the network
constraints in the model so as to focus on market forces and the effect of policy constraints,
Equations (39)–(42), on the strategic GenCos’ production and capacity expansion plans.
This assumption is adapted in other major studies of wholesale electricity markets that
are primarily for finding the time difference of the price (see [84] for survey). In practice,
some pooling markets like Germany and France do not consider the network constraints
for clearing the wholesale pooling market; the challenging optimal power flow problem is
then solved at the re-dispatch phase to slightly modify the trades for a feasible dispatch of
electricity in the network. Even in the cases when the network constraints are considered
in clearing the wholesale market, these constraints have minor impact in the market
performance when the network is not congested and the locational marginal prices are
close to each other, for example in California [85]. Reference [73] studies electricity market
design considering network constraints while incorporating loop flow effect to the second
order approximation and shows their local public good effect.

The second extension relates to capacity expansion. This study assumes that the
new capacities are immediately built and available at the same year; in practice it takes a
number of years to build and add them to the system. Also, the model does not consider
depreciation of the capacity. The above modeling assumptions are made for simplicity of
presentation; the results of this paper hold also when newly planned capacities are added
several years later, and when there exists a fixed constant rate or an uncertain reliable rate
of capacity depreciation. In addition, whereas in practice companies review their expansion
decisions each year, there are numerous spot markets during the year (one in almost every
10 minutes). Therefore, the spot market in this model should be interpreted as an abstract
market model that captures the aggregate effect of all the spot markets during a year. The
results of the paper hold if several spot markets are included in between the capacity
expansions. Finally, this study has not considered technology selection by the GenCos in
their expansion, rather their decisions are limited to the size of expansion. Adding diverse
technology for GenCos does not change the results, but GenCos will consider the emission
factor of each technology into account.

Next, one can revisit the assumptions on costs and utilities. Although this study
assumed costs of production and expansion are convex, in real world both production and
expansion can have economy of scale and therefore can be concave [86]. Also although
this study assumed the costs are zero for zero production and expansion, in reality there
exist start-up costs or fixed costs.

Another major extension of the model is related to the information asymmetry that
exists among the strategic GenCos. This study has assumed information is symmetric,
but in reality, the GenCos have private information on their costs, technology, and budgets.
The assumption of symmetric information among GenCos and the use of Nash equilibrium
as a solution concept is central to the theoretical results. This assumption has both
theoretical and practical reasons. Theoretically, eliminating information asymmetry and
its corresponding information rent allows us to develop a basic understanding of the
problems and rigorous analytical results. This assumption is made in majority of the
literature (for example see [87]). A number of papers argue that symmetric information
is a realistic assumption for electricity markets. For example, Reference [88] argues that
symmetric information of the bidders (GenCos), which is superior to the information of
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the auctioneer (system operator), is a common rationale and a reasonable assumption for
oligopolistic markets where bidders monitor each other (each others’ technologies and
capacity), but the auctioneer does not have access to such information.

Other than the above issues, the model does not capture transmission expansion
planning and new entry. Since the model does not include network constraints, adding
transmission expansion is not readily available. However, it should be noted that in a
model with network constraints, the main challenge of adding transmission expansion
decisions will be in the case where the productions and prices in electricity market can
impact the transmission expansion outcomes and therefore the GenCo’s should consider
this impact in their strategic bidding. Otherwise, if the network expansion is determined
exogenously and independently to the decision of the GenCos, it can be simply added to
the information available to the GenCos. New entry of GenCos can be readily added to
the model. If new entry to the industry is feasible, new GenCos will enter until the profit
of the last GenCo who enters the market is equal to the outside investment options. Such
constraint will determine the number of the GenCos in the economy at equilibrium.

Finally, there exist other constraints in electricity networks such as ramping con-
straints and n − 1 power flow constraints for short term reliability. These constraints
have not been considered in the model as this study primarily focuses on long-term
investment constraints.

9. Conclusions and Future Directions

This study proposed a model for the restructured electricity industry that captures
all policy targets and takes into account the technological changes in the industry. Using
this model, this study developed a methodology based on mechanism design and auction
design with constraints that achieves all electricity policy targets. To the best of our
knowledge, this paper presents the first attempt to address all electricity policy targets
simultaneously using a concrete stylized mathematical model along with a methodological
approach.

Future work related to the model includes: (i) network constraints and transmission
expansion, (ii) delays in building new capacities, (iii) fixed (startup) costs, (iv) information
asymmetries across GenCos, (v) other engineering constraints such as ramping, (vi) new
GenCo entries, and (vii) a broader definition of reliability by considering a broader defini-
tion of reliability by considering alternative constraints for it such as the n− 1 criterion,
interconnection frequency response, element availability percentage, etc. Future work
related to the proposed methodology includes the design of: (i) coalition free mecha-
nisms [26], (ii) auctions with a more extensive set of individual and joint constraints that
capture alternative interpretations of reliability (such as the n− 1 criterion), (iii) auctions
where a divisible good is allocated among an oligopoly of agents/firms and the auctioneer
(Section 3), (iv) supply chains where producers are competing in the end-product market to
meet the demand, but there is no competition on the other upstream goods/resources in the
supply chain (Section 4) [89,90], and (v) oligopolies where agents interact with one another
over a time horizon and have to make a certain level of excess investment because of the
possible occurrence of unexpected events, such as demand shocks or supply disruption,
over the horizon (this is the case in other critical sectors such as natural gas and oil-refining)
(Section 5).
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Appendix A. Proof of Properties for the Proposed Elastic and Inelastic Auctions

Appendix A.1. Preliminaries

A set of messages m∗ = (m∗1 , m∗2 , ..., m∗N) is an NE of the game induced by the proposed
mechanism if for each producer n ∈ N, m∗n = (ê∗n, p∗n) is a best response to the others’
messages denoted by m∗−n.

First consider the auction with elastic demand. The pair (ê∗n, p̂∗n) is producer n’s best
response to other producers’ messages, if it is a solution to their profit maximization
problem

(ê∗n, p̂∗n) = arg max
ê∗n∈R,p̂∗n∈R+

{
− Ce

n(ên) + relas.
n

}
(A1)

s.t. p̂n ≥ 0. (A2)

Problem (A1) is a strictly concave optimization (the Hessian of p̂−0.5
n ζelas.

n
2

is positive
semidefinite in the domain).

Since both Problems (4) and (A1) are strictly concave optimization problems, they
have a unique solution, and the Karush–Kuhn–Tucker (KKT) conditions are necessary and
sufficient for optimality. The Lagrangian for Problem (4) is

L(4) = U( ∑
n∈N

en)− ∑
n∈N

Ce
n(en) (A3)

and the KKT conditions are, ∀n ∈ N,

∂U(∑n∈N en)

∂en

∣∣∣∣
e∗
− ∂Ce

n
∂en

∣∣∣∣
e∗

= 0. (A4)

The Lagrangian for Problem (A1) is

LQ̂1,n
= −Ce

n(ên) + relas.
n − θn pn, (A5)

and the corresponding KKT conditions are

− ∂Ce
n

∂ên

∣∣∣∣
m∗

+
∂relas.

n
∂ên

∣∣∣∣∣
m∗

= 0, (A6)

∂relas.
n

∂ p̂n
|m∗ − θ̂∗n = 0, (A7)

θ̂∗n p̂∗n = 0, (A8)

θ̂∗n ≥ 0. (A9)

Next we consider the auction for inelastic demand. Let m∗ = (ê∗1 , ê∗2 , ..., ê∗N , p̂∗1 , p̂∗2 , ..., p̂∗N)
be an NE of the game induced by the mechanism. Then, m∗ is a solution to every producer’s
profit maximization problem, that is, ∀n ∈ I

(ê∗n, p∗n) = arg max
ên ,p̂n
− Ce

n(ên) + rinelas.
n (A10)

s.t p̂n ≥ 0. (A11)
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Problem (A10) is a strictly concave optimization. Since both Problems (5) and (A10)
are strictly concave optimization, they have a unique solution and the KKT conditions are
necessary and sufficient for optimization. The Lagrangian for Problem (5) is

L(5) = −∑
i∈I

Ce
nen) + κ( ∑

n∈N
en − d) (A12)

and KKT conditions are

∂Ce
n

∂en

∣∣∣∣
e∗
− κ∗ = 0 ∀n ∈ N, (A13)

κ∗(∑
n

e∗n − d) = 0, (A14)

κ∗ ≥ 0. (A15)

The Lagrangian for Problem (A10) is

LQ̂inelas.
n

= −Ce
n(ên) + rinelas.

n + θ̂n p̂n (A16)

and the KKT conditions are, ∀n ∈ N,

− ∂Ce
n

∂ên

∣∣∣∣
m∗

+
∂rinelas.

n
∂ên

∣∣∣∣∣
m∗

= 0, (A17)

∂rinelas.
n
∂pn

|m∗ + θ̂∗n = 0, (A18)

θ̂∗n ≥ 0. (A19)

Appendix A.2. Proof of Results for the Proposed Elastic and Inelastic Auctions

Proof of Lemma 1. First, consider the auction for elastic demand. Assume ζelas.
n
∗ 6= 0 at

NE for some n ∈ N. Then, the price at equilibrium, p̂∗n, must be strictly positive because if
it is zero, the GenCo n’s utility at equilibrium is equal to −∞ and agent n can improve its
utility by changing p̂n to a positive value. From Equations (A7), we have

∂un

∂ p̂n

∣∣∣∣
m∗

=
∂relas.

n
∂ p̂n

∣∣∣∣∣
m∗

= −0.5p̂∗−1.5
n ζelas.

n
∗2∣∣∣

m∗
= 0. (A20)

Since p̂∗−1.5
n > 0, we should have ζelas.

n = (D( p̂n+1)−∑n∈N ê∗n)2 = 0, which contra-
dicts the assumption of ζelas.

n
∗ 6= 0.

Next, consider the auction for inelastic demand. Since the equilibrium is non-trivial
all prices cannot be zero at the same time, therefore, either all prices are positive or there
exists a zero price followed by a positive price.

Case 1: For all n ∈ N, p̂∗n > 0.
Here, p̂∗n ≥ 0 is not binding. Therefore, at NE for all n ∈ N,

∂ûn

∂ p̂n

∣∣∣∣
m∗

=
∂rinelas.

n
∂ p̂n

∣∣∣∣∣
m∗

=

−2( p̂∗n − p̂∗n+1)− 2ζ inelas.∗2 = 0. (A21)



Sustainability 2021, 13, 4197 26 of 38

Summing up Equation (A21) over all n we get:

∑
n∈N

∂rinelas.
n
∂ p̂n

∣∣∣∣∣
m∗

= ∑
n∈N

[−2( p̂∗n − p̂∗n+1)− 2ζ inelas.∗2]

= −2Nζ inelas.∗2 = 0. (A22)

The last equality is achieved if and only if ζ inelas.
t

∗
= 0, i.e., if and only if ∑n∈N ê∗n = d.

Case 2: ∃n ∈ N s.t. p̂∗n = 0 and p̂n+1 > 0.
We prove that this case cannot exist. Since the constraint p̂n ≥ 0 is binding for p̂∗n = 0,

at NE we must have
∂ûn

∂ p̂n

∣∣∣∣
m∗
≤ 0. (A23)

Furthermore, using p̂∗n = 0 we obtain

∂ûn

∂ p̂n

∣∣∣∣
m∗

= 2[ p̂∗n+1 − ζ inelas.∗2] ≤ 0. (A24)

Since p̂∗n+1 > 0, because of Equation (A21),

∂ûn+1

∂ p̂n+1

∣∣∣∣
m∗

= 2( p̂∗n+2 − p̂∗n+1)− 2ζ inelas.∗2 = 0 (A25)

From (A25) it follows that

p̂∗n+2 = p̂∗n+1 + ζ inelas.∗2 ≥ p̂∗n+1 > 0. (A26)

Since p̂∗n+2 > 0, we can repeat the same argument as Equations (A25) and (A26) to
calculate p̂∗n+3 and show it is positive. Continuing the same argument on the sequence of
the prices { p̂∗n+3, p̂∗n+4, ..., p̂∗n, p̂∗1 , ..., p̂∗n−1,t, p̂∗n}, we obtain

p̂∗2n = p̂∗n+1 + Nζ inelas.∗2 > 0. (A27)

This contradicts the assumption of p̂∗n = 0.

Proof of Theorem 1. First consider the auction for elastic demand. From Equation (14) of
Lemma 1, we have

D( p̂∗n) = ∑
j∈N

ê∗j ∀n ∈ N. (A28)

As a direct consequence of Equation (A28),

p̂∗n = p̂∗ = U′(∑
j∈N

e∗j ) > 0 ∀n ∈ N. (A29)

The inequality in Equation (A29) follows from concavity of demand. Moreover,
Equations (9), (14) and (16) imply r∗n = p̂∗ ê∗n, and because ζelas.

n
∗
= 0,

∂relas.
n

∂ên

∣∣∣∣∣
m∗

= p̂∗ − 2p̂∗0.5
ζelas.

n
∗ ∂ζelas.

n
∂ên

∣∣∣∣∣
m∗

= p̂∗. (A30)

From Equations (A6) and (A30), we have

C′(e∗n) = p∗ (A31)
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Next, consider the auction with inelastic demand. First note that from proof of
Lemma 1, for any non-trivial NE, we have p∗n > 0, ∀n ∈ N. Using Equation (15) in
Equation (A21), we obtain

∂rinelas.
n
∂ p̂n

∣∣∣∣∣
m∗

= −2( p̂∗n − p̂∗n+1) = 0. (A32)

Therefore,
p̂∗n = p̂∗n+1 = p̂∗ ∀n ∈ N. (A33)

Next, from Lemma 1, we get [∑n∈N ê∗n − d] = 0, therefore,

p̂∗[ ∑
n∈N

ê∗n − d] = 0 ∀n ∈ N. (A34)

Furthermore, Equations (9), (15) and (A33) imply

rinelas.
n

∗
= p̂∗ ê∗n, (A35)

and
∂rinelas.

n
∂ên

∣∣∣∣∣
m∗

= p̂∗ − 2p̂∗ζ inelas.∗ ∂ζ inelas.

∂ên
|m∗ = p̂∗. (A36)

Finally, using Equation (A36) in Equation (A17) of the KKT condition, we obtain

p̂∗ = Ce
n
′(ê∗n). (A37)

Proof of Theorem 2. At the trivial equilibrium amount paid to the GenCos is zero. There-
fore, the auctions are budget balanced. We discuss the case of non-trivial equilibria below.

First consider the auction with elastic demand. At equilibrium, producer n receives
relas.

n
∗
= p∗e∗n and demand pays p̂∗ ∑n∈N ê∗n = ∑n∈N relas.

n
∗

where from Equation (A29),
p∗ = (U−1)′(∑n∈N e∗n); therefore, the sum of all payments adds up to zero. For the auction
with inelastic demand, the amount charged to producer, ∑n∈N relas.

n
∗
, can be collected from

the inelastic demand without changing the behavior of the demand. Therefore, the auction
is budget balanced.

Proof of Theorem 3. To show that the allocation e∗n = ê∗n, n ∈ N, corresponding to non-
trivial equilibrium m∗ is a solution of Problem (4) (correspondingly Problem (5)), we
specify the KKT parameters of Problem (4) (correspondingly Problem (5)) based on the
KKT parameters of Problem (A1) (correspondingly Problem (A10)) as follows.

First consider the auction for elastic demand. Let m∗ be an NE of the game induced
by the proposed mechanism (p̂∗n > 0, ∀n ∈ N by Theorem 1). Then, Equations (A6)–(A8)
along with Theorem 1 show that Equation (A4) is satisfied for all n ∈ N. Consequently,
(ê∗1 , ê∗2 , ..., ê∗N) is a solution of Problem 4.

Second, consider the auction for inelastic demand. Let m∗ be a non-trivial NE of
the game induced by the mechanism. Then, m∗ is a solution to every GenCo’s profit
maximization problem. We set

e∗n = ê∗n, κ∗ = p̂∗ ∀n ∈ N. (A38)

Then, Equations (A17)–(A19) along with Theorem 1 show that Equations (A13)–(A14)
are satisfied.

Proof of Theorem 4. We show that each producer n ∈ N weakly prefers the equilibrium
outcome to the outside option (en, rn) = (0, 0) resulting when producer n does not partici-
pate in the auction.
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From Equation (17), we obtain that GenCo n’s utility at equilibrium is

− Ce
n(ê
∗
n) + relas.

n
∗
= −Ce

n(ê
∗
n) + Ce

n
′
(ê∗n)× ê∗n. (A39)

Furthermore, for the convex and increasing function Ce
n(.) with Ce

n(0) = 0 we have

Ce
n(en) ≤ Ce

n
′
(en)× en for any en ≥ 0. (A40)

Combining (A39) and (A40) we get,

un(m∗) = −Ce
n(ê
∗
n) + Ce

n
′
(ê∗n)ê

∗
n ≥ 0. (A41)

Proof of Lemma 2. We first prove the existence of a unique trivial equilibrium for the
inelastic demand. Consider GenCo n and assume all other GenCos propose a price of zero;
we prove GenCo n’s best response is to bid zero price and zero quantity. Since p̂∗n+1 = 0,
GenCo n is paid no compensation for his production, i.e., p̂∗n+1en = 0. Other terms in
GenCo n’s utility function include penalty term and cost of production. The penalty terms
are non-positive for any p̂n > 0 and zero for p̂n = 0. Therefore, producer n maximizes this
utility by proposing p̂n = 0. Also, the cost of production is positive for all ên 6= 0 and zero
at ên = 0. Therefore, GenCo n’s best response is en = 0.

For elastic demand, the proof of Lemma 1 and Theorem 3 is valid at all equilibria.
Therefore, in the case where the solution of Problem (4) is such that ∃n ∈ N : e∗n > 0
there does not exist any trivial equilibrium. This is because from Theorem 1, GenCos’ price
proposals are p̂∗ = Ce

n
′(e∗n), which is greater than zero. On the other hand, if the solution

of Problem (4) satisfies e∗n = 0, ∀n ∈ N then the price proposals are also zero and the game
induced by the mechanism has a unique equilibrium which is trivial.

Appendix B. Extension of Results of Proposed Auctions with Joint Constraints to
Long-Term Interactions Among Strategic GenCos with Symmetric Uncertainty

In this Section, we extend the result of Section 5 to a multi-period model.

Appendix B.1. Model Extension

Consider the extended reliability targets in the form of the following planning reserve
requirements:

∑
n∈N

xn,t ≥ xt(wt−1), ∀t ∈ T. (A42)

This means that at each time t, there is a minimum capacity requirement. The expected
social welfare maximizing investment and production is

max
σn,t∈Σn,t ,γn,t∈Γn,t :n∈N,t∈T

Ew1:T

[
∑
t∈T

βtUt( ∑
n∈N

en,t, wt)− (A43)

∑
t∈T

∑
n∈N

βt
{

Ce
n,t(en,t, wt) + Cx

n,t(∆xn,t, wt−1)

}
+ βT+1 ∑

n∈N
η(wT)xn,T

]
(A44)

s.t. 0 ≤ en,t ≤ xn,0 + ∑
τ=1,...,t

∆xn,τ (A45)

0 ≤ ∆xn,t (A46)

∑
n∈N

xt ≥ xt(wt−1) (A47)

In Lemma 3, we prove that the solution of Problem (A43), the expansion strategies at
time t, σ∗n,t, are only functions of St = {xt−1, w1:t−1} and generation strategies at time t+,
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γ∗n,t, are only functions of St+ = {xt, w1:t}. In other words, St and St+ are information state
for Problem (A43). We will also prove that the same is true for the GenCo’s SPNE strategy
in the game induced by the mechanism we design.

Appendix B.2. Design/Mechanism

Using dynamic programming and value function, Problem (A43) can be decomposed
into a set of sequential optimization problems, one for each year (See Appendix B.4).
Furthermore, using the decomposition technique of Section 5.2, the optimization of each
year t ∈ T can be further decomposed into two optimization problems, one for capacity
expansion and one for electricity generation. Considering this decomposition, we use 2× T
markets for implementing the corresponding outcome: each year t ∈ T has a capacity
market for auctioning the inelastic capacity (xt(wt−1) − ∑n∈N xn,t−1), followed by an
elastic spot market for auctioning electricity demand with utility Ut(dt, wt).

Appendix B.3. Properties of the Mechanism

In the game induced by the energy-and-capacity mechanism, the strategy of each
seller n consists of both strategies σ̃n,t, t ∈ T determining their bids in the capacity market
and strategies γ̃n,t+ , t ∈ T determining their bids in the spot markets. The history of the
game at the time of expansion is

h̃t = {x0, ∆x̃1:t−1, p̃1:t−1, ê1:t−1, p̂1:t−1, w1:t−1} ∈ H̃t (A48)

H̃t := {x0, ∆x̃1:t−1, P̃1:t, Ê1:t−1, P̂1:t−1, w1:t−1} (A49)

And at the spot market t it is

h̃t+ = {x0, ∆x̃1:t, p̃1:t, ê1:t−1, p̂1:t−1, w1:t} (A50)

H̃t+ = {x0, ∆x̂1:t, P̃1:t, Ê1:t−1, P̂1:t−1, w1:t} (A51)

Therefore, ∀n ∈ N,

σ̃n,t : H̃t → [0, ∆xn,t]×R+ (A52)

γ̃n,t+ : H̃t+ → [0, xn,t]×R+ (A53)

We denote the set of all such strategies by Σ̃n,t and Γ̃n,t.
The properties of the proposed energy-only economy at its SPNE are described by

Lemma 3 and Theorem 9.
We first show that there exists SPNE strategies of the game induced by the energy-

and-capacity mechanism that are only a function of the payoff relevant information i.e.,
they are Markov.

Lemma 3 (MARKOV STRATEGIES). There is a solution of Problem (A43) where the expansion
(respectively production) strategies are functions of St = {x1:N,t−1, w1:t−1} (respectively St+ =
{x1:N,t, w1:t}). There is an SPNE induced by the proposed finite horizon mechanism where the
GenCos’ expansion (respectively production) strategies are a function of St (respectively St+ ).

Lemma 3 implies the following corollary.

Corollary 1 (MYOPIC BEHAVIOR). There is an SPNE where GenCos act myopically in the
spot market.

This is because the actions of the GenCos in the spot market at time t+, production,
and price proposals, do not change the information state Sτ and Sτ+ for τ > t i.e., these
actions do not have any effect in the future strategies of the agents. Therefore, it is best for
GenCos to act myopically and maximize their utility in the current spot market.
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We call an SPNE of the game induced by the mechanism non-trivial, if the equilibrium
price proposal in the capacity markets of time t, pc

t
∗ is not zero for all t ∈ T.

Theorem 9 (EFFICIENCY). There is a unique non-trivial SPNE that Pareto dominates all the
trivial SPNEs of the game induced by the mechanism of Appendix B.2 and has the following features.

(i) (SOCIAL OPTIMALITY) The expansion and production outcomes corresponding to the
unique non-trivial SPNE are socially optimal, that is they are equal to the solution of Problem (A43).

(ii) (PRICE EFFICIENCY) For all t ∈ T, there is a unique capacity price proposal, pc
t
∗ in the

capacity market, and a unique electricity price, p∗t in the spot market for all GenCos n ∈ N, which
are efficient, that is

p∗t = C′(e∗n,t) if 0 < ê∗n,t < xn,t, (A54)

pc
t
∗ = Cx ′(∆x∗n,t)− Ewt |St

{
∂Vn,t+(xt+ , w1:t−1, wt)

∂∆xn,t

∣∣∣∣
m∗t

}
if 0 < ∆x∗n,t < ∆xn,t, (A55)

where Vn,t+(St+) is the future expected revenue of producer n from time t+ on.
(iii) (BUDGET BALANCED) All the capacity and spot markets are budget balanced at

equilibrium. For the elastic spot market at time t ∈ T,

p̂∗t =
∂Ut(∑n∈N en,t, wt)

∂(∑n∈N en,t)
. (A56)

if ∑n∈N en > 0.
(iv) (INDIVIDUAL RATIONALITY) The proposed mechanism is individually rational, that

is for every time t ∈ T and realization of the history, the sum of the current and expected future
utility is non-negative.

Appendix B.4. Proof of Lemma 3 and Theorem 9

Proof of Lemma 3. First we consider Problem (A43). This is a constraint Markov decision
process (MDP) with constraints on the GenCos’ capacity expansions and limits on the
GenCos’ production. Therefore there exist optimal Markov decision strategies for GenCos’
expansion and production. These strategies are determined by the following dynamic
programming. Time T + 1

VT+1(sT+1) = η(wT) ∑
n∈N

xn,T+1. (A57)

Problem Q3
t+

At time t+ optimal generations are according to the following optimization problem,

Vt+(Xt+ , w1:t) = max
en,t ,n∈N

Ut( ∑
n∈N

en,t, wt)− ∑
n∈N

Ce
n,t(en,t, wt) + βVt+1(Xt+ , w1:t) (A58)

s.t. 0 ≤ en,t ≤ xn,t+ ∀n ∈ N. (A59)

Assuming Vt+1(Xt+1, w1:t) is concave in Xt+1 (by induction), we prove Vt+ is a strictly
concave optimization problem and furthermore, Vt is strictly concave with respect to Xt
for every w1:t ∈ W1:t. For a give w1:t, Ce

n,t is strictly convex, Ut is strictly concave and
by assumption Vt+1 is concave. Since the domain is also concave, the problem is strictly
concave optimization. The corresponding Lagrangian and KKT conditions are

Lt+(St+) = Ut( ∑
n∈N

en,t, wt)− ∑
n∈N

Ce
n,t(en,t, wt) + βVt+1(St+) (A60)

+ ∑
n∈N

νn,ten,t + ∑
n∈N

µn,t(xn,t+ − en,t), (A61)
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and

∂Ut(∑n∈N en,t, wt)

∂en,t
|e∗1:N,t

−
∂Ce

n,t(en,t, wt)

∂en,t
|e∗1:N,t

+β
∂Vt+1(St+)

∂en,t
|e∗1:N,t

+ ν∗n,t − µ∗n,t = 0, (A62)

ν∗n,te
∗
n,t = 0, (A63)

µ∗n,t(x∗n,t+ − e∗n,t) = 0, (A64)

ν∗n,t ≥ 0, µ∗n,t ≥ 0, (A65)

respectively.
Next, we prove that Vt+(St+) is concave in Xt+ . Consider X1

t+ , X2
t+ , X3

t+ = λX1
t+ +

(1− λ)X2
t+ , where 0 ≤ λ ≤ 1 and their corresponding optimal production of electricity in

Equation (A58), e1
1:N,t

∗, e2
1:N,t

∗ and e3
1:N,t

∗. Consider e3
1:N,t = λe1

1:N,t
∗
+ (1− λ)e2

1:N,t
∗. Since

both e1
1:N,t

∗ and e2
1:N,t

∗ satisfy Equation (A59), 0 ≤ e3
n,t ≤ λx1

n,t+ + (1− λ)x2
n,t+ = x3

n,t+

∀n ∈ N. This means e3
1:N,t is a feasible point in the domain of optimization of Vt+ for X3

t+ .
In addition, since the objective function of function Vt+ is concave, we have

λVt+(X1
t , w1:t) + (1− λ)Vt+(X2

t , w1:t) = (A66)

λ[Ut( ∑
n∈N

e1∗
n,t, wt)− ∑

n∈N
Ce

n,t(e
1∗
n,t, wt) + βVt+1(X1

t+ , w1:t)]

+ (1− λ)[Ut( ∑
n∈N

e2∗
n,t, wt)− ∑

n∈N
Ce

n,t(e
2∗
n,t, wt) + βVt+1(X1

t+ , w1:t)]

≤ Ut( ∑
n∈N

e3
n,t, wt)− ∑

n∈N
Ce

n,t(e
3
n,t, wt) + βVt+1(X1

t+ , w1:t)

≤ Ut( ∑
n∈N

e3∗
n,t, wt)− ∑

n∈N
Ce

n,t(e
3∗
n,t, wt) + βVt+1(X1

t+ , w1:t) = Vt+(X3
t+ , w1:t) (A67)

This means Vn,t+ is concave in Xt+ .
Problem Q3

t
The expansions at time t are according to the following optimization problem, which

we refer to by Q3
t (note that (Xt−1 + ∆Xt, w1:t) = St+ ).

Vt(St) = max
∆xn,t ,n∈N

−∑
n

Cx
n,t(∆xn,t, wt−1) + Ewt

[
Vt+(Xt−1 + ∆Xt, w1:t)|w1:t−1

]
(A68)

s.t. 0 ≤ ∆xn,t ≤ ∆xn,t (A69)

∑
n∈N

∆xn,t ≥ ∆xt (A70)

Assuming that Vt+(Xt−1 + ∆Xt, w1:t) is concave with respect to Xt = Xt−1 + ∆Xt
(by induction), we prove Q3

t is a strictly concave optimization problem and furthermore,
Vt(St) is concave in Xt. First, to prove concavity of Vt(St) with respect to ∆Xt, define
the function B(∆Xt) = Xt−1 + ∆Xt. B(∆Xt) is concave and Vt(St) is concave and non-
decreasing in Xt, therefore, Vt+(B(∆Xt)) is concave in ∆Xt (See [91], Theorem 5.1) and

Ewt

[
Vt+(Xt−1 + ∆Xt, w1:t)|w1:t−1

]
is a weighted sum of concave functions, hence it is

concave in ∆Xt. Considering this, it is straightforward to see Vt(St) is concave optimization
with convex domain. The Lagrangian and the KKT conditions are

Lt(St) = −∑
n

Cx
n,t(∆xn,t, wt−1) + βEwt

[
Vt+(Xt−1 + ∆Xt, w1:t)

∣∣w1:t−1

]
+

∑
n∈N

(
αn,t∆xn,t + βn,t(∆xn,t − ∆xn,t)

)
+ κt( ∑

n∈N
∆xn,t − ∆xt) (A71)
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and

−
∂Cx

n,t(∆xn,t, wt−1)

∂∆xn,t
|∆X∗t + βEwt

[
∂Vt+(Xt−1 + ∆Xt, w1:t)

∂∆xn,t
|∆X∗t

∣∣w1:t−1

]
+ α∗n,t − β∗n,t + κ∗t = 0 (A72)

α∗n,t∆x∗n,t = 0 (A73)

β∗n,t(∆xn,t − ∆x∗n,t) = 0 (A74)

κ∗t ( ∑
n∈N

x∗n,t − ∆xt) = 0 (A75)

α∗n,t ≥ 0, β∗n,t ≥ 0, κ∗t ≥ 0 (A76)

respectively.
To prove Vt(St) is concave in Xt for a given w1:t−1 ∈W1:t−1, we use the first and the

second order conditions. First, by envelope theorem,

∂Vt(St)

∂xn,t
= βEwt

[
∂Vt+(Xt−1 + ∆Xt, w1:t)

∂xn,t
|∆X∗t

∣∣w1:t−1

]
(A77)

which is non-negative by concavity of Vt+(Xt−1 + ∆Xt, w1:t) with respect to Xt−1 + ∆Xt
(first order condition). Second,

Hessian(Vt(St)) = βEwt

[
Hessian(Vt+(Xt−1 + ∆Xt, w1:t))|∆X∗t

∣∣w1:t−1

]
(A78)

which is negative semidefinite by concavity of Vt+(Xt−1 + ∆Xt, w1:t) (second order condi-
tion). First and second order conditions prove concavity of Vt(St).

Next we consider GenCos’ best response. We fix the expansion and production
strategies of all GenCos except GenCo i to be Markovian. Then, GenCo i’s best response
problem is a constraint MDP where the constraints are on their capacity expansion and on
the limits of their production at each instant of time. Therefore, there exists a best response
for GenCo i for production and expansion that is a Markovian strategy. Consequently if
there exist SPNEs that are Markovian strategies, they will be determined by a set of N
coupled dynamic programs. The dynamic program for GenCo n is the following.

Time T + 1, GenCos’ Best Response

Ṽn,T+1(ST+1) = ηx̃n,T+1. (A79)

Q̃3
n,t+

At the spot market of time t+ with St+ , GenCo’s best response to other GenCos’
production and price proposal m̃−n,t+ = (ê−n,t, p̂−n,t) determined by their strategies γ̂−n,t is

Ṽn,t+(St+) = max
ên,t ,p̂n,t

− Ce
n,t(ên,t, wt) + p̂n+1,t ên,t − p̂−0.5

n,t ζelas.2
n,t + βṼn,t+1(St+1) (A80)

s.t. 0 ≤ ên,t ≤ xn,t (A81)

0 ≤ p̂n,t (A82)

St+1 is independent of ên,t, p̂n,t conditioned on St and wt, and therefore, βṼn,t+1(St+1)
is independent of ên,t, p̂n,t. Therefore, it is straightforward to see Ṽn,t+ is concave optimiza-
tion with respect to ên,t, p̂n,t with convex domain. The Lagrangian and the KKT conditions
are (note that St+ = St+1):

L̃n,t+(St+) = −Ce
n,t(ên,t, wt) + p̂n+1,t ên,t − p̂−0.5

n,t ζelas.2
n,t + βṼn,t+1(St+) + ν̂n,t ên,t (A83)

+ µ̂n,t(xn,t − ên,t) + θ̂n,t p̂n,t, (A84)
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and

−
∂Ce

n,t

∂ên,t

∣∣
ê∗n,t

+ p̂∗n+1,t −
∂ p̂−0.5

n,t ζelas.2
n,t

∂ên,t

∣∣
(m̃−n,t+ ,ẽn,t ,p̃n,t)

+ β
∂Ṽn,t+1(St+)

∂ên,t

∣∣
(m̃−n,t+ ,ẽn,t ,p̃n,t)

+ ν̂∗n,t − µ̂∗n,t = 0, (A85)

−
∂ p̂−0.5

n,t ζelas.2
n,t

∂ p̂n,t
|(m̃−n,t+ ,ẽ∗n,t ,p̃

∗
n,t)

+ β
∂Ṽn,t+1(St+1)

∂ p̂n,t
|(m̃−n,t+ ,ẽ∗n,t ,p̃

∗
n,t)

+ θ̂∗n,t = 0, (A86)

θ̂∗n,t p̂∗n,t = 0, (A87)

µ̂∗n,t(xn,t − ê∗n,t) = 0, (A88)

ν̂∗n,t ê
∗
n,t = 0, (A89)

ν̂∗n,t ≥ 0, µ̂∗n,t ≥ 0, θ̂∗n,t ≥ 0, (A90)

respectively.
To prove that for every given w1:t, Ṽn,t+(St+) is concave with respect to xn,t+ , assume

Ṽn,t+1 is concave in xn,t+1 for every w1:t ∈ W1:t (by induction). Now considering two
different xn,t+ and using the same approach used in the proof of concavity of V̂n,t+ , we can
show Ṽn,t+(St+) is concave in xn,t+ .

Q̃3
n,t

At expansion epoch t with St, GenCo n’s best response to the other GenCos’ expan-
sion and price proposal m̃−n,t = (∆x̃−n,t, p̃−n,t) determined by their strategies σ̃−n,t is
determined by

Ṽn,t(St) = max
˜∆xn,t ,p̃n,t

−Cx
n,t(∆x̃n,t, wt−1) + p̃∗n+1,t∆x̃n,t − ( p̃n,t − p̃∗n+1,t)

2 − 2p̃n,tζ
inelas.2

t

+ βEwt

[
Ṽt+ ,n

(
Xt−1 + ∆X̃t, w1:t

)∣∣w1:t−1

]
(A91)

0 ≤ ∆x̃n,t ≤ ∆xn,t (A92)

p̃n,t ≥ 0. (A93)

We prove that the above optimization is a strictly concave optimization and fur-
thermore, Ṽn,t(St) is concave in xn,t−1 for every w1:t−1 ∈ W1:t−1. To do so, assume (by
induction) that Ṽn,t+(Xt−1 + ∆X̃t, w1:t) is concave and increasing in Xt + ∆X̃t. Define
function B(∆X̃t) = Xt + ∆X̃t. Since B(∆X̃t) is affine, this means Ṽn,t+(Xt + ∆X̃t, w1:t) is

concave in ∆x̃n,t (See [91], Theorem 5.1). Next, Ew1:t

[
Vn,t+(Xt−1 + ∆Xt, w1:t)|w1:t−1

]
is a

weighted sum of concave functions hence concave. Considering this, and the concavity
of−Cx

n,t(∆x̃n,t, wt−1) + p̃∗n+1,t∆x̃n,t − ( p̃n,t − p̃∗n+1,t)
2− 2p̃n,tζ

inelas.2
t with respect to x̃n,t, p̃n,t

from Appendix A.1, it is straightforward to see Vn,t(St) is a strictly concave optimization
with convex domain. The Lagrangian and the KKT conditions are

L̃n,t(St) = −Cx
n,t(∆x̃n,t, wt−1) + p̃∗n+1,t∆x̃n,t − ( p̃n,t − p̃∗n+1,t)

2

−2p̃n,tζ
inelas.2

t + βEwt

[
Ṽn,t+

(
Xt−1 + ∆X̃t, w1:t

)∣∣w1:t−1

]
+ α̃n,t∆x̃n,t+

β̃n,t(∆xn,t − ˜∆xn,t) + θ̃n,t p̃n,t, (A94)

and
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−
∂Cx

n,t(∆x̃n,t, wt−1)

∂∆x̃n,t
|∆x̃∗n,t

+
∂rinelas.

n,t

∂∆x̃n,t
|(m̃−n,t ,∆x̃∗n,t ,p̃

∗
n,t)

+βEw1:t

[
∂Ṽn,t+

(
Xt−1 + ∆X̃t, wt

)
∂∆x̃n,t

|(m̃−n,t ,∆x̃∗n,t ,p̃
∗
n,t)

∣∣w1:t−1

]
,

+α̃∗n,t − β̃∗n,t = 0, (A95)

∂rinelas.
n,t

∂ p̃n,t
|(m̃−n,t ,∆x̃∗n,t ,ẽ

∗
n,t)

+ βEwt

[
∂Ṽn,t+

(
Xt−1 + ∆X̃t, w1:t

)
∂ p̃n,t

|(m̃−n,t ,∆x̃∗n,t ,p̃
∗
n,t)

∣∣w1:t−1

]
, (A96)

+α̃∗n,t∆x̃∗n,t = 0, (A97)

β̃∗n,t(∆xn,t − ∆x̃∗n,t) = 0, (A98)

θ̃∗n,t p̃∗n,t = 0, (A99)

α̃∗n,t ≥ 0, β̃∗n,t ≥ 0, θ̃∗n,t ≥ 0, (A100)

respectively.
To prove Ṽn,t(St) is concave in xn,t, note that by induction, Ṽn,t+

(
Xt−1 + ∆X̃t, wt

)
is

concave and increasing in Xt+ . Defining the affine function B(∆X̃t) = Xt−1 + ∆X̃t shows
Ṽn,t+ is also concave in ∆X̃t (See [91], Theorem 5.1). Now considering two different Xt and
using the same approach used in the proof of concavity of V̂n,t+ , we can show Ṽn,t(St) is
concave in xn,t.

Finally, using the above concavity results, at the time T + 1, by Lemma 2 there exists a
Markovian Nash equilibrium. Furthermore, going backward, because the value functions
at each time t (and respectively t+) are function of St (respectively St+ ), and concave as
shown above, with the same proof of Lemma 2 there exist a Markovian NE at each time.
The sequence of these NEs at each instant forms a Markovian SPNE.

Proof of Theorem 9. Part (i). We prove by construction. Assume σ̂∗n,t and γ̂∗n,t are the
corresponding strategies for the dominant SPNE of the dynamic game induced by the
mechanism proposed in Appendix B.2. By Lemma 3, these strategies are functions of
St and St+ , respectively. Define ê∗n,t(St+) to be GenCo n’s production at time t+ due to
strategy γ̃∗n,t(St+) and ∆x̃∗n,t(St) to be GenCo n’s expansion at time t due to strategy σ̃∗n,t(St).
Consider the following strategy for the planner.

σ∗n,t(St) = ∆x̃∗n,t(St) (A101)

γ∗n,t(St+) = ê∗n,t(St+) (A102)

Note that the capacity expansion is equivalent to an auction with inelastic demand;
therefore, using the results of Theorem 3, Lemma 1, the KKT conditions of Q̃3

n,t and
Q̃3

n,t+ , Equations (A95)–(A100), Equations (A85)–(A90), respectively, and the generation
and expansion strategies of Equations (A101) and (A102), the following parameters will
satisfy the KKT conditions of Q3

t , Equations (A72)–(A76), and the KKT conditions of Q3
t+ ,

Equations (A62)–(A65). For all t ∈ T and n ∈ N put

ν∗n,t = ν̃∗n,t (A103)

µ∗n,t = µ̃∗n,t (A104)

α∗n,t = α̃∗n,t (A105)

β∗n,t = β̃∗n,t (A106)

As a result, the energy production and expansion corresponding to the non-trivial
SPNE are solutions of Problem (A43).

Part (ii) and (iii). To prove price efficiency and budget balanced in spot (or capacity)
market of time t+ (time t), we model this market as a single elastic (or inelastic) auction pre-
sented in Section 3.2 and use the properties of these auctions presented in Section 3.5. To do
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this modeling, every GenCo’s cost of generation (cost of expansion) is the sum of both the
immediate utility from the spot (or capacity) market and the value of the future outcomes,

Ce
n,t(ên,t, wt) − βṼn,t+1(St), (or Cx

n,t(∆x̃n,t, wt−1) − βEwt

[
Ṽt+ ,n

(
St, ∆X̃t, p̃t, wt

)∣∣w1:t−1

]
).

This cost function is strictly convex and increasing and therefore the results of market
clearance, Lemma 1, price efficiency, Theorem 1, and budget balance, Theorem 2, can be gen-
eralized for the spot (or capacity) market at time t+ (t). This means Equations (A54)–(A56)
hold.

Note that for the capacity market, the price at equilibrium is the dual variable of the
long-term reliability constraint κ∗t (Equation (A71)). From Equation (A95), κ∗t represents
the difference between the marginal cost of expansion and the marginal value of the future
profits if 0 < ∆x̃n,t < ∆xn,t i.e., α̂∗n,t = 0 and β̂∗n,t = 0.

Part (iv). To prove individual rationality, we should prove that, at each time instant t,
by continuing participation in the mechanism, the GenCos’ future utility is greater than or
equal to zero (which is the utility they get by stopping to participate in the mechanism). We
prove this by induction. We show that at time T + 1 the GenCos’ values are non-negative
and then we show that if at any time t (respectively t+) it is weakly better for the GenCos
to continue the game, then so is at (t− 1)+ (respectively t).

First, note that at time T + 1, Vn,T+1, n ∈ N is non-negative by definition. Now assume
at time t + 1 it is individually rational for the GenCos to participate in the mechanism.
Consider the generation epoch t+. Since at the dominant SPNE, the firms act myopically
in time t+, by Theorem 4, their immediate revenue from the spot market is non-negative;
therefore, the assumption that individual rationality holds at time t + 1 results that it also
holds at time t+.

Next, assume the mechanism is individually rational starting from any St+ at time
t+. Consider time t. For the non-trivial NE, GenCo n’s utility from Theorem 9 Part (i)
is −Cx

n,t(
˜∆xn,t) + E{Ṽn,t(Xt−1 + ∆X̃∗t , w1:t)|St}+ p̂∗t ∆x̃∗n,t where ∆x̃∗t is the solution of Q3

t ;
if 0 = ∆x̃∗n,t, then this utility is E{Ṽn,t(Xt−1 + ∆X̃∗t , w1:t)|St} which is non-negative by
assumption. If 0 < ∆x̃∗n,t then

p̂∗t ≥
∂

(
− Cx

n,t(
˜∆xn,t) + E{Ṽn,t(Xt−1 + ∆X̃∗t , w1:t|St)}

)
∂∆x̃∗n,t

; (A107)

since −Cx
n,t(

˜∆xn,t) + E{Ṽn,t(Xt−1 + ∆X̃∗t , w1:t)|St} is strictly concave and the price p̂∗t is the
marginal of this utility, the participation utility at equilibrium−Cx

n,t(
˜∆xn,t) + E{Ṽn,t(Xt−1 +

∆X̃∗t , w1:t)|St}+ p̂∗t ∆x̃∗n,t is non-negative. Therefore, it is individually rational to continue
participation in the game at time t.
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