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Abstract: In this paper, we apply a combined revenue sharing and buyback contract to investigate
the channel coordination of a two-echelon supply chain with a loss-averse retailer. Since loss-
averse decision makers usually take on more risks, the Conditional Value-at-Risk (CVaR) measure
is introduced to hedge against it and the retailer’s objective is to maximize the CVaR of utility. We
obtain the retailer’s optimal order quantity under the combined contract. It is shown that there is a
unique wholesale price coordinating the supply chain if the retailer’s confidence level is less than
a threshold that is independent of contract parameters. Moreover, a complete sensitivity analysis
of parameters is carried out. In particular, the retailer’s optimal order quantity and coordinating
wholesale price decreases as the loss aversion or confidence level increases, while it increase as the
buyback price or sharing coefficient increases. Furthermore, there exists the situation where the
combined contract can coordinate the chain even though neither the revenue sharing nor buyback
contract can when the contract parameters are constrained.

Keywords: conditional value-at-risk; supply chain coordination; optimal policy; loss aversion;
risk management

1. Introduction

Sustainable supply chain management has drawn a great deal of attention in recent
years and has been studied in various contexts (e.g., [1–8]). Sisco et al. [9] define it as jointly
considering multiple effects (e.g., environmental, economic, and social) and implementing
friendly manufacturing practices during the product life cycle. Choi and Chiu [10] clas-
sify supply chain sustainability into economic and environmental sustainability, where
the former refers to a supply chain’s sustainable operation ability. However, as is well
known, double marginalization prevailing in supply chain management creates supply
chain inefficiency. To solve this problem, various contracts such as buyback, quantity
flexibility, and revenue sharing that can coordinate the supply chain have been proposed to
provide incentives to adjust the members’ relationship. Cachon [11] and Hezarkhani and
Kubiak [12] provide good surveys on this topic. Cachon [11] identifies that there are several
key conclusions in the supply chain contracting research: Coordination failure is common
and its consequence is context specific; multiple kinds of contracts are capable of coordinat-
ing the chain and arbitrarily dividing profit; and managing incentive conflicts can lead to
Pareto improvements. Hezarkhani and Kubiak [12] find out that the decision makers are
assumed to be rational, risk-neutral, and profit-oriented in most of the literature. That is,
their objectives are to maximize their own expected profits or minimize their own expected
costs. Nevertheless, there are many counter examples implying that the decision makers
do not always practice as the risk-neutral models predict (e.g., [13–17]). For example,
through experiments, Schweitzer and Cachon [14] and Zhang and Siemsen [17] show that
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subjects often underorder a high-profit product and overorder a low-profit product, which
is called pull-to-center effect. Thus, developing alternative choice models instead of risk
neutrality to represent more realistic situations is becoming increasingly important. Within
this research stream, many studies have deviated from this assumption and incorporated
loss-averse preferences into supply chain models (e.g., [18–22]). Loss aversion is the key
feature of Prospect Theory proposed by Kahneman and Tversky [23], and means that
people are more averse to losses than the same amount of gains. Since loss aversion is
intuitively appearing and is supported in many fields, supply chain management with
loss aversion has gradually attracted increasing attention and plays an important role in a
manager’s procurement strategy.

Although models based on loss aversion provide useful guidance to managers on their
optimal inventory decisions, they are generally studied within the expected utility theory
framework and the decisions can be made to maximize the expected utility. However,
some studies on portfolio management indicate that loss-averse investors usually take on
more risks (e.g., [24,25]). In view of this, a few recent works on the inventory problems
consider the risk management of the loss-averse decision makers and then incorporate
other objectives rather than utility maximization (e.g., [26–28]). For instance, Xu et al. [27]
introduce Conditional Value-at-Risk (CVaR) measure into the loss-averse newsvendor
problem. They formulate the CVaR of utility and demonstrate that the loss-averse newsven-
dor’s ordering policy with this CVaR objective is significantly different from that with an
expected utility-maximizing objective. They also point out that the CVaR of utility exhibits
some desirable properties as a risk measure. Motivated by their work, some interesting
questions naturally arise: (1) How does the loss-averse retailer determine the optimal order
quantity under a CVaR criterion in a supply chain? (2) What impacts will the retailer’s
loss-averse preferences and risk attitude have on the supply chain’s operational decisions?
(3) How does one coordinate the supply chain when this CVaR criterion incorporated?

To address the above issues, we try to apply a combined revenue sharing and buyback
contract to investigate the channel coordination of a two-echelon supply chain. The
manufacturer is a supply chain leader and can diversify their assets across multiple firms,
then is assumed to be risk-neutral. The retailer is a follower and the income depends highly
on their principal, and then is assumed to be loss-averse. Although this setting of one
risk-neutral supplier and one retailer with preferences is adopted in many supply chain
contract models, the retailer is generally assumed to be loss-averse and the objective is to
maximize the expected utility (e.g., [18–20]), or risk-averse and the objective is to maximize
the CVaR of profit (e.g., [29–31]). Different from them, we simultaneously consider the
loss aversion and risk management, and the CVaR measure is introduced to hedge against
the loss-averse retailer’s risk. The retailer’s objective is to maximize the CVaR of utility
under the combined contract. To the best of our knowledge, this model has not been
considered in the literature. In particular, Zhao et al. [29] have adopted this combined
contract to study the supply chain in risk-averse setting and clearly demonstrated that this
combined contract has advantages over both buyback and revenue sharing contracts in
terms of supply chain coordination and profit allocation. Although their research is most
related to ours, they only take into account the risk management and fail to consider the
retailer’s loss-averse preferences. Moreover, Yang et al. [30] also investigate the supply
chain coordination with CVaR criterion, but they only take into account several single
contracts and fail to consider composite form as well as loss-averse preferences. Therefore,
our model can be thought of as an extension to the above two works. The loss-averse
retailer’s optimal ordering policy under the combined contract is firstly obtained. Besides,
the impacts of the retailer’s loss aversion and confidence levels on their expected utility
under the optimal order quantity are investigated. Then whether the contract parameters
can be set to coordinate the supply chain is analyzed, and the sufficient condition of
coordination is established. Finally, we compare the performance of this combined contract
with both its component contracts, and show that the former has an advantage over the
latter when contract parameters are restricted. Our results indicate that when adopting
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a combined revenue sharing and buyback contract, the supply chain with a loss-averse
retailer under a CVaR criterion can be coordinated by setting a proper wholesale price.
Thus, double marginalization is eliminated, and the supply chain achieves its optimal
performance and becomes sustainable.

The rest of this paper is organized as follows. In Section 2, we review the literature
related to the present paper. In Section 3, we describe our model. Section 4 discusses the
retailer’s optimal policy under the combined contract and Section 5 investigates the issue of
supply chain coordination. In Section 6, numerical experiments are conducted to validate
our analysis. In Section 7, we come to the conclusion and future research directions.

2. Literature Review

There are three research areas that are most relevant to our study, namely the supply
chain contract models incorporating loss aversion, supply chain contract models incor-
porating risk aversion, and the inventory models incorporating both loss aversion and
risk management.

The literature on the supply chain contract models with loss-averse agents is first
discussed. Wang and Webster [18] consider a combined contract in the supply chain with
a loss-averse retailer and show there exists a special class of coordinating contracts that
are independent of demand. Chen et al. [32] investigate a supply chain via an option
contract and derive the retailer’s and supplier’s optimal policies. They also show there
always exists a Pareto contract. Zhai and Yu [19] use a robust approach to study supply
chain coordination when the distributional information of demand is limited. Xu et al. [20]
investigate the retailer’s optimal option purchase decision under emergent replenishment.
Chen and Xiao [33] design a buyback-setup-cost-sharing contract to study the supply chain
coordination under three different ordering policies. Zhang et al. [34] investigate the
loss-averse supplier’s preferences and contract performance between buyback and revenue
sharing contracts. Moreover, since supply chain risk managementhas received increasing
attention over the past few decades (e.g., [35,36]), some researchers have incorporated
supply uncertainty into the supply chain contract models. For example, Xie et al. [37]
propose a revenue-cost-sharing contract to study the supply chain with a loss-averse
retailer, yield uncertainty, and marketing effort. Du et al. [38] also consider a supply chain
with yield risk, where both the supplier and retailer are loss-averse. Both parties’ optimal
decision making under the wholesale price contract and the impacts of loss aversion on
them are investigated.

Second, the present paper is also related to the literature on the supply chain contract
models with risk-averse agents. Although there are multiple research methods for risk
management including Mean-Variance (e.g., [39,40]), VaR (e.g., [41,42]), and CVaR, CVaR
has drawn a great deal of attention and been widely adopted in the literature because of
its better computational characteristics [43]. We briefly review the models under CVaR
criterion that are most relevant to ours. Yang et al. [30] consider four different contracts and
show that a supply chain with a risk-averse retailer can all be coordinated. Zhao et al. [29]
extend their work by using a combined revenue sharing and buyback contract. They
also demonstrate this combined form has advantages over both component contracts.
Chen et al. [44] consider random default probability and analyze the effect of trade credit
on supply chain coordination. In the case with and without horizontal price competition,
Hsieh and Lu [31] investigate the manufacturer’s return policy in a supply chain with
two risk-averse retailers and price-dependent demand. Xie et al. [45] assume the retailer
takes mean-CVaR as their performance measure and demonstrate that three common types
of contracts can coordinate the chain under mild conditions. Wu et al. [46] consider a
commitment-option contract and analyze the impact of risk aversion on the manufacturer’s
optimal decisions. Wang et al. [47] study a supply chain under option contract where two
risk-averse retailers compete for demand.

Finally, the present paper is related to the literature on inventory models incorporating
both loss aversion and risk management. Although the inventory research with loss-averse
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or risk-averse preferences has made a lot of achievements (e.g., [48–51]), the publications
jointly considering both factors are relatively limited. Xu et al. [27] study the loss-averse
newsvendor problem under CVaR criterion and present management insights on how to
balance loss aversion and fill rate. Xu et al. [52] investigate the newsvendor problem with
backlogging and the objectives are to maximize the expected utility and CVaR of utility,
respectively. The optimal ordering policies are obtained and the impacts of backlogging on
them are analyzed. Sun and Xu [53] propose a new loss aversion utility function composed
of losses weighted by a coefficient and profit in the newsvendor model. The optimal order
quantity maximizing the CVaR of utility is decreasing in loss aversion and confidence levels.
Chan and Xu [28] extend their model by considering shortage cost and find that the order
quantity may increase when loss aversion or confidence level increases. Liu et al. [54] also
adopt this utility function to study the newsvendor problem with backlogging. Moreover,
Xu et al. [26] propose a legacy loss defined either as the loss for excess order or the shortage
penalty, and study the newsvendor problem under different objectives.

3. Model Description

The paper considers a supply chain composed of a large manufacturer and a small
retailer. The risk-neutral manufacturer is the leader and announces a supply contract
before the selling season. The loss-averse retailer facing random customer demand is the
follower and makes the ordering decisions if they accept it. Then the manufacturer begins
to produce and provides the quantity ordered. The retailer sells the products directly to the
customers and unsold units will be salvaged at the end of the period. Notations concerned
in this paper are listed in Table 1.

Table 1. Summary of notations. CVaR: Conditional Value-at-Risk.

Notation Description

p Selling price per unit,
w Wholesale price per unit,
c Production cost per unit,
s Salvage value per unit, p > w > c > s,
b Buyback price per unit,
Q Order quantity,
D Random demand,
f (x) Probability density function of D,
F(x) Cumulative distribution function of D,
λ Loss aversion level, λ ≥ 1,
α Confidence level, 0 ≤ α < 1,
β Sharing coefficient, 0 < β ≤ 1,
Q∗0 Optimal production quantity in the integrated case,
Q∗ Optimal order quantity maximizing CVaR of utility,
Q∗1 Optimal order quantity maximizing expected utility,
w∗(b, β) Coordinating wholesale price under combined contract,
w∗R(β) Coordinating wholesale price under revenue sharing contract,
w∗B(b) Coordinating wholesale price under buyback contract.

To provide a benchmark, we first take into account an integrated supply chain where
the risk-neutral manufacturer owns a retail channel and acts as a central controller. In this
case, the manufacturer faces a newsvendor problem and it is well known that the optimal
production quantity is (e.g., [18]):

Q∗0 = F−1
(

p− c
p− s

)
. (1)

In a decentralized chain, the manufacturer and retailer are independent and seek
individual performance maximization. For any given supply contract, the loss-averse
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retailer is assumed to take the CVaR of utility as the performance measure. When the
retailer’s profit is π(Q, D), their utility is:

U(π(Q, D)) =

{
π(Q, D), π(Q, D) ≥ 0,
λπ(Q, D), π(Q, D) < 0,

(2)

where λ ≥ 1 reflects the degree of the loss aversion, and the retailer is loss-neutral when
λ = 1. This function has been widely adopted in supply chain management due to its
simplicity (e.g., [18,37,48,49]).

It follows from Xu et al. [27] that the VaR and CVaR of utility U(π(Q, D)) are de-
fined as:

VaRα[U(π(Q, D))] = sup{y ∈ R : P[U(π(Q, D)) ≥ y] ≥ α}, (3)

and

CVaRα[U(π(Q, D))] = E[U(π(Q, D))|U(π(Q, D)) ≤ VaRα[U(π(Q, D))]], (4)

where α ∈ [0, 1) is the retailer’s confidence level and reflects the degree of the risk aversion.
Note that when α = 0, the CVaR of utility reduces to the expected utility, which is the
objective function in many inventory models based on loss aversion (e.g., [18,20]). When
λ = 1, the CVaR of utility reduces to the CVaR of profit, which is the objective function
in many inventory models based on risk aversion (e.g., [29,47]). Furthermore, when both
α = 0 and λ = 1, the CVaR of utility reduces to the expected profit, which is the objective
function in many inventory models based on risk neutrality. Then the loss-averse retailer’s
ordering problem when incorporating risk management can be expressed as:

max
Q≥0

CVaRα[U(π(Q, D, w, b, β))]. (5)

From Xu et al. [27] we can obtain that the optimal order quantity of the retailer facing
a newsvendor problem is less than the system-wide optimal production quantity Q∗0 due to
double marginalization, loss aversion, and risk aversion. Thus, the supply chain behaves
poorly and is inefficient. Our purpose is to design a proper contract that can eliminate
these negative effects and coordinate the chain. That is, the contract can induce the retailer
to order the system-wide optimal quantity (e.g., [29,30]).

4. Retailer’s Optimal Policy under the Combined Contract

To coordinate the supply chain, we propose a combined buyback and revenue sharing
contract with parameters (w, b, β), and its operation sequence is as follows. The manufac-
turer charges the retailer w per unit purchased, but the unsold products will be returned to
them with price b per unit at the end of the period. Then the retailer shares the fraction
1− β ∈ [0, 1) of the total revenue over the selling season to the manufacturer and retains
the remainder. For simplicity, assume all the retailer’s revenue is shared (e.g., [30]), i.e., the
revenue comes from buyback is also shared. Therefore, the retailer actually receives βp
from the customer for each unit sold and βb from the manufacturer for each unit unsold.
It is reasonable to assume βb < w < βp, since the retailer will order as much as possible
when w ≤ βb, and not order when w ≥ βp. Note that the combined contract is the buyback
one if β = 1, and is the revenue sharing one if b = s. Thus both are special cases of the
combined contract.

Under this combined contract, the retailer’s profit is:

π(Q, D, w, b, β) =

{
β[pD + b(Q− D)]− wQ, i f 0 ≤ D < Q,
βpQ− wQ, i f D ≥ Q.

(6)
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There exists a break-even quantity w−βb
β(p−b)Q of the realized demand, below which the

retailer’s profit is negative, that is, incurring a loss. Otherwise, the profit is positive, that
is, making a gain. The following theorem gives the loss-averse retailer’s optimal order
quantity under the CVaR of utility for a given contract (w, b, β).

Theorem 1. The CVaR objective of utility CVaRα[U(π(Q, D, w, b, β))] for the loss-averse retailer
is concave. Thus, there exists a unique optimal order quantity Q∗ that satisfies:

(λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗
]
+ β(p− b)F(Q∗)− (1− α)(βp− w) = 0. (7)

Proof. See Appendix A.

The impacts of loss aversion, confidence level, and contract parameters on the optimal
order quantity are as follows.

Corollary 1. The retailer’s optimal order quantity Q∗ is decreasing in λ, α, and w, whereas
increasing in b and β.

Proof. See Appendix A.

This corollary shows that the lower loss aversion or confidence level motivates the
retailer to order more products and drives the inventory up. The less loss-averse or risk-
averse the retailer is, the larger the order quantity. In particular, the loss-averse retailer’s
optimal order quantity is less than the risk-neutral one’s (λ = 1 and α = 0). Moreover, the
retailer will order fewer products when the manufacturer charges a larger wholesale price,
and order more when the buyback price or sharing coefficient increases, which is consistent
with our common sense. Note that these impacts of individual contract parameters on
the order quantity are in accordance with that in the existing research on buyback and
revenue sharing contracts. This means that comparing with single buyback or revenue
sharing contract, their combined form and the retailer’s preferences do not alter the effects
of contract parameters.

Since Q∗ reduces to the optimal order quantity maximizing expected utility Q∗1 when
α = 0, then Q∗ ≤ Q∗1 and it follows from (7) that Q∗1 satisfies:

(λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗1

]
+ β(p− b)F(Q∗1)− (βp− w) = 0. (8)

The following theorem characterizes how the retailer’s expected utility under the
optimal order quantity changes when loss aversion or confidence level increases.

Theorem 2. When the order quantity is Q∗, the retailer’s expected utility E[U(π(Q∗, D, w, b, β))]
is decreasing in α and λ.

Proof. See Appendix A.

5. Supply Chain Coordination

We next study supply chain coordination under a combined contract. That is, whether
the manufacturer can set the proper contract parameters to induce the retailer to order Q∗0 .
The following theorem shows this is possible under the certain condition.

Theorem 3. If α < c−s
p−s , then there exists a unique wholesale price w∗(b, β) ∈ (βb, βp) that can

coordinate the supply chain, where w∗ satisfies:

(λ− 1)(w∗ − βb)F
[

w∗ − βb
β(p− b)

Q∗0

]
+ β(p− b)F(Q∗0)− (1− α)(βp− w∗) = 0. (9)
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Otherwise, the wholesale price coordinating the chain does not exist.

Proof. See Appendix A.

This theorem indicates that the combined contract may coordinate the supply chain
with a loss-averse retailer who operates under CVaR. There exists a unique coordinating
wholesale price if the confidence level is less than a threshold. That is, if the retailer is
not too risk-averse (level is less than c−s

p−s ), then the combined contract can induce the
retailer to order the system-wide optimal production quantity so that the supply chain
can be coordinated. Moreover, it is shown that the coordinating wholesale price relates
to the retailer’s loss aversion level, which means that the combined contract designed
by Zhao et al. [29] does not coordinate the supply chain any more when considering the
retailer’s loss-averse preferences. Note that in the special case when λ = 1, the proposed
contract by this theorem is just the one given by Zhao et al. [29] for risk-averse setting.

We next carry out the sensitivity analysis and investigate the impacts of parameters
on the coordinating wholesale price.

Corollary 2. If α < c−s
p−s , then w∗(b, β) is decreasing in λ and α, whereas increasing in b and β.

Proof. See Appendix A.

When the retailer becomes more loss-averse or risk-averse, the manufacturer must
charge a lower wholesale price which can induce the retailer to order more products.
However, when the buyback price or sharing coefficient increases, the inventory risk
transfers from the retailer to the manufacturer. Thus, the latter must enhance the wholesale
price to hedge against the risk.

We have mentioned above that the buyback and revenue sharing contracts are special
cases of the combined contract. In particular, the combined contract reduces to the revenue
sharing one if b = s, and the coordinating wholesale price is w∗R(β) = w∗(s, β). The
combined contract reduces to the buyback one if β = 1, and the coordinating wholesale
price is w∗B(b) = w∗(b, 1). Therefore, when the buyback or revenue sharing contract can
coordinate the supply chain, the combined contract can as well. An interesting question
is whether there is the case that the coordinating combined contract exists even though
neither the coordinating buyback nor revenue sharing one exists. The following theorem
shows this may occur when the contract parameters are restricted.

Theorem 4. Suppose b ∈ [b, b] and β ∈ [β, β]. If α < c−s
p−s and w ∈ [w∗(b, β), min{w∗B(b),

w∗(b, β)}], then neither the coordinating buyback nor revenue sharing contract exists, while the
coordinating combined one exists.

Proof. See Appendix A.

6. Numerical Experiments

In this section, we proceed with several numerical experiments to illustrate how the
optimal order quantity, coordinating wholesale price, and expected profit change when
the loss aversion or confidence level increases. Let p = 11, w = 8, c = 6, and s = 1.
The demand X follows a truncated normal distribution with a mean of 200 and a standard
deviation of 100. To illustrate the impacts of loss aversion and buyback price, we fix α = 0.2,
β = 0.8, and vary λ from 1 to 3. Three different buyback prices are considered: b = 5,
b = 6, and b = 7. To illustrate the impacts of confidence level and sharing coefficient, we
fix λ = 2, b = 7, and vary α from 0 to c−s

p−s = 0.5 (from Theorem 3 that the supply chain
can not be coordinated when α > c−s

p−s ). Three different sharing coefficients are considered:
β = 0.75, β = 0.8, and β = 0.85.

Figures 1–4 shows how the parameters affect the optimal order quantity and coor-
dinating wholesale price. Figures 1 and 2 illustrate that for any given buyback price, the
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optimal order quantity and coordinating wholesale price are decreasing in the loss aversion
level. Moreover, for any given loss aversion level, both are increasing in the buyback
price. Figures 3 and 4 illustrate that for any given sharing coefficient, the optimal order
quantity and coordinating wholesale price decrease in confidence level. Moreover, for
any given confidence level, both increase in the sharing coefficient. As a whole, the more
loss-averse or risk-averse the retailer is, the less the optimal order quantity and wholesale
price are. The higher the buyback price or sharing coefficient is, the larger the optimal
order quantity and wholesale price are. These results are consistent with Corollaries 1 and
2. The retailer will decrease the order quantity when the retailer becomes more loss-averse
or risk-averse. To stimulate a larger order from the retailer, the manufacturer must charge a
lower wholesale price. On the other hand, when the buyback price or sharing coefficient
increases, the supply risk transfers from the retailer to the manufacturer. Then the retailer
will order more products, whereas the manufacturer will enhance the wholesale price to
reduce risk. Moreover, it is also apparent that when the loss aversion or confidence level
increases, the degrees of change to order quantity and coordinating wholesale price are
affected by the buyback price and sharing coefficient. For example, the curves when b = 5
are steeper than b = 7 in Figures 1 and 2, while the curves when β = 0.85 are steeper than
β = 0.75 in Figures 3 and 4. Therefore, a larger buyback price (sharing coefficient) has a
weaker (stronger) effect on reducing the order quantity and coordinating wholesale price.

Although the influences of the contract parameters, loss aversion, and confidence
levels on the manufacturer’s and retailer’s expected profits are complex in an analytic
technique, Figures 5 and 6 illustrate them and present managerial insights. It is shown
that the higher loss aversion or confidence level drives the retailer’s profit up while the
manufacturer’s profit down, which can be explained as follows. When the retailer becomes
more loss-averse or risk-averse, the order quantity is less. To stimulate the retailer to
order the system-wide optimal quantity, the manufacturer must share more profit with
the retailer. Moveover, when the sharing coefficient increases, Figure 6 shows the retailer
gains more profit while the manufacturer gains less, which is consistent with our common
sense. However, when the buyback price increases, the phenomenon shown in Figure 5
that the manufacturer gains more profit is counter-intuitive, because one may suppose that
they should prefer a lower buyback price to reduce the payment for the unsold products.
Although this supposition usually holds for a constant wholesale price, it is not always the
case when this price is affected by the buyback price. Since a higher buyback price will
make the manufacturer charge a higher coordinating wholesale price (see Figure 2), then
they can gain more.
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Figure 2. Impacts of the loss aversion level on the coordinating wholesale price for different buy-
back prices.

0 0.1 0.2 0.3 0.4 0.5
20

40

60

80

100

120

140

160

Confidence Level α

O
p
ti
m

a
l 
O

rd
e
r 

Q
u
a
n
ti
ty

 Q
*

β=0.75

β=0.8

β=0.85

Figure 3. Impacts of the confidence level on the optimal order quantity for different sharing coefficients.



Sustainability 2021, 13, 4364 10 of 18

0 0.1 0.2 0.3 0.4 0.5
5

5.5

6

6.5

7

7.5

Confidence Level α

C
o
o
rd

in
a
ti
n
g
 W

h
o
le

s
a
le

 P
ri
c
e
 w

*

β=0.75

β=0.8

β=0.85

Figure 4. Impacts of the confidence level on the coordinating wholesale price for different
sharing coefficients.
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7. Conclusions

In this paper, we investigated supply chain coordination with a loss-averse retailer.
Different from prior research where the loss-averse retailer’s objective is to maximize the
expected utility, the retailer was assumed to take the CVaR of utility as their performance
measure. A combined buyback and revenue sharing contract was proposed to study this
problem. We first characterized the retailer’s optimal ordering policy and analyzed the
impact of parameters on it. It is shown that the retailer’s optimal order quantity and
expected utility decreased as the loss aversion or confidence level increased. Then the
sufficient condition of supply chain coordination was established. If the retailer was not too
risk-averse, that is, their confidence level was less than a threshold, then the manufacturer
could set a wholesale price to coordinate the supply chain. We also conducted sensitivity
analysis of the coordinating wholesale price with respect to contract parameters, loss
aversion, and confidence levels.

Our results offer several important managerial implications. First, we found that
when the retailer’s loss aversion or confidence level increased, they will reduced the
order quantity to hedge against the potential losses or risk, and thus the corresponding
expected utility was lower. On the contrary, if the retailer had a lower loss aversion or
confidence level, they would order more products and then obtain a higher utility. This
result confirms that low return implies low risk and vice versa, thus the retailer should
strike a balance between them. Second, when the contract parameters are constrained,
there is the situation where the coordinating combined contract exists even though neither
the coordinating buyback nor revenue sharing one exists. Thus the combined contract
has an advantage over both component contracts in terms of supply chain coordination,
and has more opportunities to coordinate the chain. In addition, this combined contract
is composed of two well-known contracts and is easy to implement in practice. Third,
note that Yang et al. [30] and Zhao et al. [29] have examined the supply chain coordination
under single and this combined contracts in risk-averse setting, respectively. The models
in the above two works are special cases of ours. In contrast to them, our results indicate
that the contract designed by them does not coordinate the supply chain any more when
considering loss aversion. Therefore, loss-averse preference is a very crucial factor to set the
coordinating contract parameters and has an important effect on supply chain coordination.
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There are several possible extensions of this research. First, the reference point in
the loss aversion utility function is set to zero to facilitate the analysis. However, some
studies (e.g., [50,55]) have pointed out that the reference point has an important effect on
the ordering decisions. The model incorporating reference dependence deserves further
study. Second, the manufacturer is assumed to have prior knowledge of the retailer’s
loss aversion and confidence levels. When these two levels are asymmetric information,
that is, they are unknown by the manufacturer, and how to set the contract parameters to
coordinate the chain will be a direction for future research. Third, the supply is treated as
certain and unlimited in our model, but supply uncertainty commonly occurs in practice.
It is interesting to consider a chain with both demand and supply risks, and investigate
the effect of supply (e.g., yield or capacity) uncertainty on the coordination. Finally, future
study can also think about a supply chain composed of a risk-neutral supplier and multiple
competing loss-averse retailers.
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Appendix A

Proof of Theorem 1. It follows from Rockafellar and Uryasev [43] that:

CVaRα[U(π(Q, D, w, b, β))] = max
v∈R

{
v− 1

1− α
E[v−U(π(Q, D, w, b, β))]+

}
. (A1)

To simplify the notation, let:

H(Q, v) = v− 1
1− α

E[v−U(π(Q, D, w, b, β))]+. (A2)

Then plugging (2) and (6) into it yields:

H(Q, v) =v− 1
1− α

{∫ w−βb
β(p−b) Q

0
[v− λβ(p− b)x + λ(w− βb)Q]+dF(x)

+
∫ Q

w−βb
β(p−b) Q

[v− β(p− b)x + (w− βb)Q]+dF(x)

+
∫ +∞

Q
[v− (βp− w)Q]+dF(x)

}
.

(A3)

We first solve the problem CVaRα[U(π(Q, D, w, b, β))] = max
v∈R

H(Q, v) and let v∗ is its

optimal solution. Consider the following four cases:
Case 1: v ≤ −λ(w− βb)Q.
In this case,

H(Q, v) = v. (A4)
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Then H(Q, v) is increasing in v since ∂H(Q,v)
∂v = 1 > 0.

Case 2: −λ(w− βb)Q < v ≤ 0.
In this case,

H(Q, v) = v− 1
1− α

∫ v+λ(w−βb)Q
λβ(p−b)

0
[v− λβ(p− b)x + λ(w− βb)Q]dF(x). (A5)

Since,
∂H(Q, v)

∂v
= 1− 1

1− α
F
[

v + λ(w− βb)Q
λβ(p− b)

]
, (A6)

and ∂2 H(Q,v)
∂v2 < 0, then H(Q, v) is concave. It is apparent that ∂H(Q,v)

∂v

∣∣∣
v=−λ(w−βb)Q

= 1 > 0.

If ∂H(Q,v)
∂v

∣∣∣
v=0

= 1− 1
1−α F

[
w−βb

β(p−b)Q
]
≤ 0, that is Q ≥ β(p−b)

w−βb F−1(1− α), then the optimal

solution v∗ satisfies the first-order condition and is λβ(p− b)F−1(1− α)− λ(w− βb)Q.
Case 3: 0 < v ≤ (βp− w)Q.
In this case,

H(Q, v) =v− 1
1− α

{∫ w−βb
β(p−b) Q

0
[v− λβ(p− b)x + λ(w− βb)Q]dF(x)

+
∫ v+β(w−βb)Q

β(p−b)

w−βb
β(p−b) Q

[v− β(p− b)x + β(w− βb)Q]dF(x)

}
.

(A7)

We have:
∂H(Q, v)

∂v
= 1− 1

1− α
F
[

v + (w− βb)Q
β(p− b)

]
, (A8)

and ∂2 H(Q,v)
∂v2 < 0, then H(Q, v) is concave. If ∂H(Q,v)

∂v

∣∣∣
v=0

= 1− 1
1−α F

[
w−βb

β(p−b)Q
]
> 0 and

∂H(Q,v)
∂v

∣∣∣
v=(βp−w)Q

= 1− 1
1−α F(Q) ≤ 0, that is F−1(1− α) ≤ Q < β(p−b)

w−βb F−1(1− α), then

v∗ = β(p− b)F−1(1− α)− (w− βb)Q.
Case 4: v ≥ (βp− w)Q.
In this case,

H(Q, v) =v− 1
1− α

{∫ w−βb
β(p−b) Q

0
[v− λβ(p− b)x + λ(w− βb)Q]dF(x)+

∫ Q

w−βb
β(p−b) Q

[v− β(p− b)x + (w− βb)Q]dF(x) +
∫ +∞

Q
[v− (βp− w)Q]dF(x)

}
.

(A9)

Since,
∂H(Q, v)

∂v
= 1− 1

1− α
≤ 0, (A10)

then H(Q, v)is decreasing in v and v∗ = (βp− w)Q.
In light of the above analysis, for any given Q, the optimal solution v∗ of problem

max
v∈R

H(Q, v) is:

v∗ =


λβ(p− b)F−1(1− α)− λ(w− βb)Q, i f Q ≥ β(p−b)

w−βb F−1(1− α),

β(p− b)F−1(1− α)− (w− βb)Q, i f F−1(1− α) ≤ Q < β(p−b)
w−βb F−1(1− α),

(βp− w)Q, i f 0 ≤ Q < F−1(1− α).

(A11)

To obtain the optimal policy, we next solve problem max
Q≥0

CVaRα[U(π(Q, D, w, b, β))] =

max
Q≥0

H(Q, v∗), and the following three cases are discussed:

Case 1: Q ≥ β(p−b)
w−βb F−1(1− α).
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In this case, it follows from (A5) that:

H(Q, v∗) =λβ(p− b)F−1(1− α)− λ(w− βb)Q

− 1
1− α

{∫ F−1(1−α)

0
λβ(p− b)[F−1(1− α)− x]dF(x)

}
.

(A12)

Since,
∂H(Q, v∗)

∂Q
= −λ(w− βb) < 0, (A13)

then H(Q, v∗) is linearly decreasing in Q.
Case 2: F−1(1− α) ≤ Q < β(p−b)

w−βb F−1(1− α).
In this case, it follows from (A7) that:

H(Q, v∗) =β(p− b)F−1(1− α)− (w− βb)Q

− 1
1− α

{∫ w−βb
β(p−b) Q

0
[β(p− b)F−1(1− α)− λβ(p− b)x + (λ− 1)

(w− βb)Q]dF(x) +
∫ F−1(1−α)

w−βb
β(p−b) Q

β(p− b)[F−1(1− α)− x]dF(x)

}
.

(A14)

Then we have:

∂H(Q, v∗)
∂Q

=− (w− βb)− 1
1− α

(λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q
]
< 0, (A15)

and ∂2 H(Q,v∗)
∂Q2 < 0, which implies that H(Q, v∗) is concave and decreasing in Q.

Case 3: 0 ≤ Q < F−1(1− α).
In this case, it follows from (A9) that:

H(Q, v∗) =(βp− w)Q− 1
1− α

{∫ w−βb
β(p−b) Q

0
[(βp− w)Q− λβ(p− b)x

+λ(w− βb)Q]dF(x) +
∫ Q

w−βb
β(p−b) Q

β(p− b)(Q− x)dF(x)

}
.

(A16)

Since,

∂H(Q, v∗)
∂Q

= (βp− w)− 1
1− α

{
(λ− 1) (w− βb)F

[
w− βb

β(p− b)
Q
]
+ β(p− b)F(Q)

}
, (A17)

and ∂2 H(Q,v∗)
∂Q2 < 0, then H(Q, v∗) is concave. Moreover, we have ∂H(Q,v∗)

∂Q

∣∣∣
Q=0

= βp− w > 0

and ∂H(Q,v∗)
∂Q

∣∣∣
Q=F−1(1−α)

< 0, then the optimal order quantity Q∗ satisfies ∂H(Q,v∗)
∂Q

∣∣∣
Q=Q∗

= 0,

i.e., (7).
Summarizing the three cases above, H(Q, v∗) is concave in [0,+∞) and Q∗ is the

unique optimal solution of problem max
Q≥0

CVaRα[U(π(Q, D, w, b, β))] = max
Q≥0

H(Q, v∗).

Proof of Corollary 1. Let

K(Q∗) = (λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗
]
+ β(p− b)F(Q∗)− (1− α)(βp− w). (A18)
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By using implicit function theorem to K(Q∗) = 0, we can derive dQ∗
dλ = − ∂K(Q∗)

∂λ

/
∂K(Q∗)

∂Q∗ ,
where:

∂K(Q∗)
∂λ

= (w− βb)F
[

w− βb
β(p− b)

Q∗
]
> 0, (A19)

and

∂K(Q∗)
∂Q∗

=
(λ− 1)(w− βb)2

β(p− b)
f
[

w− βb
β(p− b)

Q∗
]
+ β(p− b) f (Q∗) > 0. (A20)

Thus Q∗ is decreasing in λ.
Similarly, we have dQ∗

dα = − ∂K(Q∗)
∂α

/
∂K(Q∗)

∂Q∗ , dQ∗
dw = − ∂K(Q∗)

∂w

/
∂K(Q∗)

∂Q∗ ,
dQ∗
db = − ∂K(Q∗)

∂b

/
∂K(Q∗)

∂Q∗ and dQ∗
dβ = − ∂K(Q∗)

∂β

/
∂K(Q∗)

∂Q∗ . Since the first-order partial deriva-
tives of K(Q∗) with respect to α, w, b, and β are:

∂K(Q∗)
∂α

= βp− w > 0, (A21)

∂K(Q∗)
∂w

= (λ− 1)F
[

w− βb
β(p− b)

Q∗
]
+

(λ− 1)(w− βb)Q∗

β(p− b)
f
[

w− βb
β(p− b)

Q∗
]
+ (1− α) > 0, (A22)

∂K(Q∗)
∂b

=− β(λ− 1)F
[

w− βb
β(p− b)

Q∗
]
− (λ− 1)(w− βb)(βp− w)Q∗

β(p− b)2

f
[

w− βb
β(p− b)

Q∗
]
− βF(Q∗) < 0,

(A23)

and

∂K(Q∗)
∂β

=− b(λ− 1)F
[

w− βb
β(p− b)

Q∗
]
− w(λ− 1)(w− βb)Q∗

β2(p− b)
f
[

w− βb
β(p− b)

Q∗
]

+ (p− b)F(Q∗)− (1− α)p < 0
(A24)

then other results can be directly obtained.

Proof of Theorem 2. It follows from (2) and (6) that the retailer’s expected utility under
order quantity Q∗ is:

E[U(π(Q∗, D, w, b, β))] =
∫ w−βb

β(p−b) Q∗

0
λ[β(p− b)x− (w− βb)Q∗]dF(x)

+
∫ Q∗

w−βb
β(p−b) Q∗

[β(p− b)x− (w− βb)Q∗]dF(x)

+
∫ +∞

Q∗
(βp− w)Q∗dF(x).

(A25)

Since Q∗ ≤ Q∗1 and Q∗1 satisfies (8), then we have:

∂E[U(π(Q∗, D, w, b, β))]

∂Q∗

=(βp− w)− (λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗
]
− β(p− b)F(Q∗)

≥(βp− w)− (λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗1

]
− β(p− b)F(Q∗1) = 0.

(A26)

Moreover, it follows from Corollary 1 that ∂Q∗
∂α < 0. Therefore, dE[U(π(Q∗ ,D,w,b,β))]

dα =
∂E[U(π(Q∗ ,D,w,b,β))]

∂Q∗ · ∂Q∗
∂α ≤ 0 and then E[U(π(Q∗, D, w, b, β))] is decreasing in α.
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Similarly, since dE[U(π(Q∗ ,D,w,b,β))]
dλ = ∂E[U(π(Q∗ ,D,w,b,β))]

∂Q∗ · ∂Q∗
∂λ +

∫ w−βb
β(p−b) Q∗

0 [β(p− b)x−
(w− βb)Q∗]dF(x) ≤ 0, then E[U(π(Q∗, D, w, b, β))] is decreasing in λ.

Proof of Theorem 3. Let,

M(w) = (λ− 1)(w− βb)F
[

w− βb
β(p− b)

Q∗0

]
+ β(p− b)F(Q∗0)− (1− α)(βp− w). (A27)

Then,

dM(w)

dw
= (λ− 1)F

[
w− βb

β(p− b)
Q∗0

]
+

(λ− 1)(w− βb)Q∗0
β(p− b)

f
[

w− βb
β(p− b)

Q∗0

]
+ (1− α) > 0, (A28)

which implies that M(w) is increasing in w. From (1) we have F(Q∗0) =
p−c
p−s , then:

M(βp) = λβ(p− b)F(Q∗0) =
λβ(p− b)(p− c)

p− s
> 0, (A29)

and

M(βb) = β(p− b)[F(Q∗0) + α− 1] = β(p− b)
(

α− c− s
p− s

)
. (A30)

If α < c−s
p−s , then M(βb) < 0 and there exists a unique w∗(b, β) ∈ (βb, βp) that satisfies

M(w∗) = 0. That is, the supply chain can be coordinated. Otherwise, M(βb) ≥ 0 and then
M(w) > 0 always holds for any w ∈ (βb, βp). Hence, the wholesale price that satisfies
M(w) = 0 does not exist and the supply chain can not be coordinated.

Proof of Corollary 2. Using implicit function theorem to M(w∗) = 0 yields dw∗
dλ = − ∂M(w∗)

∂λ /
∂M(w∗)

∂w∗ . Since:
∂M(w∗)

∂λ
= (w∗ − βb)F

[
w∗ − βb
β(p− b)

Q∗0

]
> 0, (A31)

then combining with (A28) we have dw∗
dλ < 0. That is, w∗ is decreasing in λ.

Similarly, we have dw∗
dα = − ∂M(w∗)

∂α

/
∂M(w∗)

∂w∗ , dw∗
db = − ∂M(w∗)

∂b

/
∂M(w∗)

∂w∗ and dw∗
dβ =

− ∂M(w∗)
∂β

/
∂M(w∗)

∂w∗ . The first-order partial derivatives of M(w∗) with respect to α, b, and
β are:

∂M(w∗)
∂α

= βp− w∗ > 0, (A32)

∂M(w∗)
∂b

=− β(λ− 1)F
[

w∗ − βb
β(p− b)

Q∗0

]
−

(λ− 1)(βp− w∗)(w∗ − βb)Q∗0
β(p− b)2 f

[
w∗ − βb
β(p− b)

Q∗0

]
− βF(Q∗0) < 0,

(A33)

and

∂M(w∗)
∂β

=− b(λ− 1)F
[

w∗ − βb
β(p− b)

Q∗0

]
−

w∗(λ− 1)(w∗ − βb)Q∗0
β2(p− b)

f
[

w∗ − βb
β(p− b)

Q∗0

]
+ (p− b)F(Q∗0)− (1− α)p < 0,

(A34)

then other results can be directly obtained.

Proof of Theorem 4. Since w∗B(b) = w∗(b, 1) and w∗R(β) = w∗(s, β), then it follows from
Corollary 2 that w∗B(b) and w∗R(β) are increasing in b and β, respectively. Since w∗(b, β) ≤
w∗B(b) ≤ w∗B(b) ≤ w∗B(b), there is not the coordinating buyback contract when w ∈
[w∗(b, β), w∗B(b)].
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On the other hand, since w∗R(β) ≤ w∗R(β) ≤ w∗R(β) ≤ w∗(b, β) ≤ w∗(b, β), there is
not the coordinating revenue sharing contract when w ∈ [w∗(b, β), w∗(b, β)]. In addition,
we have w∗(b, β) ≤ w∗(b, β) ≤ w∗(b, β). Thus, neither the buyback nor revenue sharing
contract can coordinate the supply chain when w ∈ [w∗(b, β), min{w∗B(b), w∗(b, β)}], while
the combined contract can.
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