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Abstract: Essential oils were proposed as natural additives to ensure food safety and quality in a more
sustainable approach. The chemical composition of Thymus vulgaris essential oil (TV-EO) collected
from Morocco, its antioxidant and antimicrobial activity against different serotypes of Salmonella
enterica subsp. enterica was investigated. A mathematical model was implemented to predict the
Salmonella behavior when exposed to TV-EO. In situ antimicrobial activity and sensory influence were
tested in minced poultry meat experimentally contaminated with Salmonella and treated with TV-EO.
Hydrodistillation was used to extract TV-EO, and gas chromatography-mass spectrometry (GC-MS)
analysis found thymol as the most representative compound. Results of the antioxidant activity
showed an IC50 of 0.29 ± 0.04 mg/mL, EC50 of 0.74 ± 0.08 mg/mL, and RC50 of 0.59 ± 0.06 mg/mL.
All the Salmonella strains were susceptible to TV-EO with performing results for the disc diffusion
method (inhibition diameters ranged between 24 ± 0.4 mm and 32 ± 0.6 mm), determination
of minimum inhibitory concentration (MIC; 0.5%) and minimum bactericidal concentration (MBC;
1%), sublethal-injured cells (7.99 ± 0.08%), in situ activity (growth inhibition after 3 days), and meat
sensory preservation (up to 1 week). The implemented mathematical model well fitted the Salmonella
growth curve. TV-EO with significant antioxidant and antibacterial activities was suitable to ensure
food safety and quality consistent with the new sustainable trends in the food field.

Keywords: Salmonella; poultry meat; thyme; antibacterial activity; food sustainability; food safety;
green additives

1. Introduction

Nowadays, economic and demographic growth involves greater exploitation of natu-
ral resources, with an inevitable environmental impact. Therefore, more sustainable food
production is needed to meet the requirements of a constantly growing world popula-
tion [1]. In this scenario, several natural compounds were more frequently used in the food
industry to ensure the safety and quality of foodstuffs [2].

The use of essential oils (EOs) of aromatic plants was proposed as natural additives
being a suitable and sustainable alternative to the synthetic ones, thanks to their benefi-
cial effects and safe status [3–5]. EOs are oily mixtures of different organic compounds
obtained by distillation or pressing from a single type of vegetable, of which they maintain
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certain characteristics such as taste and smell [6]. Several properties of EOs have been
described, including antioxidant, antimicrobial, antiparasitic, antiviral, anti-inflammatory,
anti-ulcerous, and anti-carcinogenic activity [7–11]. The antimicrobial effects of EOs were
tested in foods for spoilage organisms to extend their shelf-life and against foodborne
pathogens to ensure their safety [12–16]. However, the use of EOs is conditioned by their
influences on the organoleptic properties of foods, which are not always appreciated
by consumers [5]. Therefore, the choice of EOs should be among those obtained from
spices and plants commonly used in culinary preparation. In this regard, the essential
oil of Thymus vulgaris (Linneo, 1753; TV-EO) represented a good compromise considering
its reported antioxidant, antimicrobial, and antiparasitic effects in foods associated with
pleasant organoleptic attributes [14,17]. In particular, inhibitory effects of TV-EO were
observed against spoilage bacteria (Proteus mirabilis, Pseudomonas luteola, Enterococcus fae-
calis, and Serratia liquefaciens) [18], yeast (Saccharomyces cerevisiae and Zygosaccharomyces
bailli) [19], and mold (Aspergillus fumigatus and Candida spp.) [20] as well as foodborne
pathogens (Bacillus cereus, Yersinia spp., Pseudomonas aeruginosa; Salmonella spp., Listeria
monocytogenes, Campylobacter coli, Staphylococcus aureus, and Escherichia coli O157:H7) [21,22],
and zoonotic (Anisakis spp. and Trichinella spiralis) [14,23] and non-zoonotic parasites
(Tetranychus cinnabarinus and Trichomonas gallinae) [24].

Worldwide, an estimated number of 600 million people fall ill after eating contami-
nated food, and 420,000 die every year, resulting in the loss of 33 million lives per year [25].
In this scenario, Salmonella spp. play a key role being one of the main causes of known
foodborne outbreaks worldwide [26,27]. Salmonella is a ubiquitous gram-negative bacteria
member of the family of Enterobacteriaceae: generally motile, facultatively anaerobic, able to
infect a multitude of hosts mainly via fecal-oral route [28]. Human infection is primarily
related to the consumption of contaminated water or foods, most frequently eggs and raw
meat from pigs, turkeys, and chickens [29–32].

In order to ensure food safety, several authors proposed a predictive approach to
study the behavior of pathogen bacteria [33,34]. Predictive microbiology can be effectively
associated with new technological processes to obtain mathematical models capable of
providing a useful tool in the management of food hazards.

In this scenario, this study aimed to investigate the chemical composition of TV-EO
and evaluated its antioxidant activity and antibacterial effects against different serotypes
of Salmonella enterica. A predictive model was implemented to study the effects of TV-EO
against Salmonella based on the in vitro test results. Finally, in order to assess the in situ an-
timicrobial activity and the sensory influence, minced poultry meat was experimentally con-
taminated with Salmonella strains and then treated with different concentrations of TV-EO.

2. Materials and Methods
2.1. Extraction of the Essential Oil

Thymus vulgaris plants were collected in May 2017, from their natural habitat in the
mountainous region of Ifrane (North center of Morocco) at an altitude of approximately
1530 m (33◦38′34.0′′ N; 4◦59′03.7′′ W) and identified according to the procedure described
by Fennane et al. [35]. Then, leaves were separated from the other parts of the plants
and dried in the absence of light for one week up to 10 days. The extraction of EO was
carried out by hydrodistillation in a Clevenger-type apparatus (IsoLab Laborgäte GmbH,
Wertheim, Germany). Then, the obtained EO was dried under anhydrous sodium sulfate
(Sigma-Aldrich, Buchs, Switzerland) and stored in sealed glass vials at 4 ◦C until its use.
The yield of the TV-EO (%) was determined according to the dry matter of the plant.

2.2. Gas Chromatography-Mass Spectrometry Analysis

The chemical composition of TV-EO was determined using the Agilent 6890 N Gas
Chromatograph equipped with an HP-5MS capillary column (50 m × 0.200 mm i.d.,
film thickness: 0.33 µm). The gas chromatography (GC) oven temperature was pro-
grammed to increase from 60 to 250 ◦C at a rate of 4 ◦C/min and finally held for 15 min.
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The transfer line temperature was 250 ◦C. Helium was used as the carrier gas at a flow rate
of 1.1 mL/min, with a split ratio equal to 1/100. The quadrupole mass spectrometer was
scanned over 35–465 amu, with an ionizing voltage of 70 eV and an ionization current of
150 mA. The percentage composition of oils was computed from the GC peak areas without
correction factors. Alkane standard mixture (Sigma-Aldrich, Buchs, Switzerland) was used
as calibration standard to calculate the retention index (RI). The constituents were identified
by comparing their RI with those reported in the literature and the mass spectrometer (MS)
with corresponding data in the computer MS libraries (NIST MS SEARCH 2.0).

2.3. Antioxidant Activity

The antioxidant activity of TV-EO was performed by using three different methods, in-
cluding DPPH scavenging assay, reducing the power of iron (III) to iron (II), and β-carotene
bleaching assay according to the protocols used by Ed-Dra et al. [13]. In this study, the con-
centration providing 50% inhibition (IC50) by using DPPH scavenging assay was calculated
from the curve representing the inhibition percentage and the concentrations of TV-EO,
as well as the concentration providing 50% inhibition (RC50) by using β-carotene bleaching
assay was calculated by plotting inhibition percentage against the TV-EO concentrations.
However, EC50, which is the effective concentration of TV-EO at which the absorbance is
0.5, was determined by reducing the power of iron (III) to iron (II) assay.

2.4. Antibacterial Activity
2.4.1. Preparation of the Strains

The antibacterial activity of TV-EO was performed in vitro against eight different wild
strains of Salmonella enterica subsp. enterica (Table 1). All the strains had been previously iso-
lated from different meat products [30] and identified by genetic diagnosis techniques [36].
All the working cultures used in this study were prepared by inoculating a loopful from
the frozen stock (−80 ◦C) in Tryptone Soya Agar (TSA; Biolife, Milan, Italy) and incubated
at 37 ◦C for 24 h.

Table 1. Description of the tested strains.

Strains ID Strains Information Serotype Origin

Salmonella enterica

S1 MG869132 * Typhimurium turkey sausages
S2 KX355308 * Typhimurium turkey sausages
S3 KX355300 * Kentucky beef sausages
S4 KX355309 * Corvallis turkey sausages
S5 KX355310 * Kentucky turkey sausages
S6 KX355311 * Saintpul turkey sausages
S7 MG869130 * Kentucky turkey sausages
S8 KX355302 * Kentucky beef sausages

* Accession number.

TV-EO was mixed with Tween 80 (Biolife, Milan, Italy) at a concentration of 5% in
order to facilitate its diffusion in the culture medium.

2.4.2. Disc Diffusion Method

Disc diffusion method was performed to preliminary test the antibacterial activity
of TV-EO against the different strains of Salmonella according to a modified protocol of
Mazzarino et al. [37]. A 0.5 McFarland (108 CFU/mL; Spectrophotometer, SmartSpec
Plus, Biorad, Milan, Italy) of bacterial suspension in physiological water (0.9% NaCl) was
prepared and inoculated by swabbing on Mueller–Hinton Agar plates (Biolife, Milan, Italy).
Ten µL of TV-EO were dropped on 6 mm (diameter) sterile paper discs (Biolife, Milan,
Italy). A disc with 10 µL of Tween 80 at a concentration of 5% was used as a negative
control, while Cefotaxime (30 µg; CTX) was used as a reference test. Plates were incubated
at 37 ◦C for 24 h. The inhibition diameter was measured in millimeters (disk included)
and expressed as means ± standard deviation of three replicates. The antibacterial ac-
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tivity was classified into three levels: weak (inhibition zone ≤ 12.0 mm), intermediate
(12.1 mm ≤ inhibition zone ≤ 20.0 mm), and strong (inhibition zone ≥ 20.1 mm) [37].

2.4.3. Determination of MIC and MBC with the Broth Dilution Method

The minimum inhibitory concentration (MIC) of the TV-EO was assessed by microdi-
lution assay. In sterile microtubes containing 100 µL of Brain Heart Infusion (BHI; Biolife,
Milan, Italy), plus 5% of Tween 80 (BHI + T), decreasing concentrations of TV-EO from 4%
to 0.0625% (v/v), were prepared. Subsequently, 4 µL of 108 CFU/g bacterial suspensions
were added to each tube. All suspensions were mixed and incubated at 37 ◦C for 24 h.
The positive control consisted of liquid media (BHI + T) without TV-EO inoculated with
bacterium suspensions. Uninoculated microtubes containing liquid media (BHI + T) plus
TV-EO served as the negative control. After incubation, the microtubes with the lowest
concentration of TV-EO and without visible growth of bacteria were considered as the MIC.
The minimum bactericidal concentration (MBC) was determined by sub-culturing samples
from the microtubes on TSA incubated at 37 ◦C for 24 h. The lower concentration that did
not present any growth on media was considered as the MBC.

2.4.4. Determination of the Percentage of Sublethal-Injured Salmonella

The percentage of sublethal-injured Salmonella was calculated according to the protocol
described by Silva-Angulo et al. [38]. A Salmonella strain was inoculated in Tryptic Soy
Broth (TSB; Biolife, Milan, Italy) with a concentration of TV-EO equal to the half of MIC and
incubated at 37 ◦C for 24 h. Series of decimal dilutions were prepared in sterile peptone
water (8.5 g NaCl, 1g peptone, in 1 L of water), and 100 µL of each dilution were plated onto
TSA and TSA plus 5% of NaCl (TSA-S) and incubated at 37 ◦C for 24–48 h. The percentage
of sublethal-injured cells was estimated using the following Equation (1):

Sublethal-injured colonies (%) = [1 − (Count on TSA-S/Count on TSA)] ∗ 100 (1)

TSA, as generic media, supports the growth of both uninjured and injured bacteria,
whereas the TSA-S, as not optimal media, supports only the growth of uninjured bacteria.
Salmonella inoculated in TSB without TV-EO and plated onto TSA-S was considered as
control samples. All the experiments were performed at triplicates in different times.

2.4.5. In vitro Effect of TV-EO on the Growth of Salmonella

The Salmonella strain S2 (the least sensible strain) was inoculated in TSB with different
concentrations of TV-EO (0%, 0.25%, 0.4%, and 0.5%) and incubated both at 10 ◦C and
20 ◦C. The bacterial load was periodically evaluated until the growth curve of the control
samples (0% TV-EO) reached the stationary phase. The bacterial count was performed
by preparing a series of decimal dilutions in sterile peptone water, and 100 µL of each
dilution was pour-plated into Xylose Lysine Deoxycholate Agar (XLD; Biolife, Milan, Italy).
All the plates were incubated at 37 ◦C for 24 h. All tests were performed in triplicates at
different times.

2.5. Predictive Model

A mathematical model was implemented to predict the effects of the different concen-
trations of TV-EO on the in vitro growth of Salmonella enterica subsp. enterica. The predictive
approach herein adopted relied on the principles proposed by Giuffrida et al. [39]. Par-
ticularly, the model was based on the introduction of a variable that takes into account
the inhibiting effect of TV-EO into the primary model rather than in a secondary one.
In this way, the introduced variable reproduced the antibacterial effect without interfering
with growth rate and allowing to use a generical secondary model based on the main
environmental variables such as temperature. The predictive model was based on the
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set of differential equations of the Baranyi and Roberts’ model [40], where the bacterial
concentration N at the time t is generically expressed as follows:

dN/dt = µmax N ∗ [Q/(1 + Q)] ∗ [1 − (N/Nmax)] (2)

dQ/dt = µmax Q (3)

Here µmax is the maximum specific growth rate and Nmax the theoretically maximum
population densities of the bacterial population; Q represents the physiological state of the
species and, as expressed in Equations (2) and (3), allows to calculate the lag time duration
(hours). In order to take into account the antibacterial activity of TV-EO, the term ξ is
introduced into Equation (2), obtaining Equation (4):

dN/dt = µmax N ∗ [Q/(1 + Q)] ∗ [1 − (N/Nmax)] ∗ ξ (4)

with ξ < 1.
In this way, the term ξ reduces the concentration of N without interfering with the

calculation of µmax. The expression of the antibacterial effect is inversely proportional to
the ξ values.

The model was numerically solved by the Euler method, and the solver function
of Microsoft Excel was used for each growth curve of each data set in order to calculate
appropriate ξ values related to each data set. Furthermore, for the numerical solving of
Equation (5), the secondary model of Ratowsky, as modified by Gumudavelli et al. [41] for
Salmonella enteritidis in egg yolk, was introduced into Equation (4) to calculate the µmax
values as a function of temperature, according to the below Equation (5):

µmax = a (T − Tmin)2 {1 − exp [b (T − Tmax)]} (5)

with a = 0.0011; b = 0.27469; Tmin = 6.13; Tmax = 46.26.
For the resolution of the complete model (Equations (4) and (5)), the primary parame-

ters Q0 and Nmax were obtained as follow: Particularly, Nmax was expressed by the mean
value of the observed data, while Q0 was calculated by fitting each predicted curve to the
observed ones.

The effect of the ξ parameter on the goodness of the prediction was evaluated by the
calculation of the root-mean-squared error (RMSE). Furthermore, in order to study the rela-
tion between ξ values and the percentage of TV-EO, a linear regression test was performed.

2.6. In situ Antimicrobial Activity of TV-EO in Poultry Minced Meat

In order to evaluate the in situ inhibition of Salmonella, about 2500 g of poultry minced
meat was artificially contaminated with a mix of all the eight previously tested Salmonella
strains. Then, the samples were divided into five parts; one was considered as a negative
control without any treatment of TV-EO, whereas the other parts were mixed with TV-EO
at different concentrations (0.125%, 0.25%, 0.5%, and 1%). Three batches were prepared for
each concentration. Then all the samples were stored at 4 ◦C and analyzed periodically
(up to 13 days) for the count of Enterobacteriaceae and Salmonella. For the microbiological
analysis, 25 g of the sample were mixed with 225 mL of peptone water (PW; Biolife, Milan,
Italy), then the series of decimal dilutions were prepared, always in PW. Enterobacteriaceae
were enumerated on Violet Red Bile Glucose Agar (VRBG; Biolife, Milan, Italy) and incu-
bated at 37 ◦C for 24 h. Salmonella was counted in XLD Agar (Biolife, Milan, Italy) after
incubation at 37 ◦C for 24 h. When loads of Salmonella were lower than the detection limit
of the method (10 CFU/g), the presence of Salmonella was further checked according to
ISO 6579-1:2017 [42].
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2.7. Test on Poultry Minced Meat: Sensory Analysis

Sensory analysis was performed according to ISO guidelines [43–45]. Six experienced
panelists were chosen among the staff of the laboratory of the Inspection of Foods of
Animal Origin (Department of Veterinary Sciences, Messina, Italy). These panelists had
been previously trained to gain confidence with the sensory characteristics of raw and
cooked minced poultry meat. Each panelist performed three different assays in separate
conditions at 0, 1, 3, 6, 9, and 13 days of storage at 4 ◦C for each batch of minced meat treated
with different TV-EO concentrations (0.125%, 0.25%, 0.5%, 1%). Untreated minced meat
was used as control. Before the assessments, each sample was kept at room temperature for
20 min. Panelists were asked to score the odor and color of the raw mince samples. For taste
evaluation, each sample was cooked in a microwave (300 w) at 180 ◦C for 30 min and then
served to the panelists. The protocol proposed by Smaoui et al. [46] was modified and
used to carry out the sensory analysis based on a 10 points hedonic scale, where 10 = like
extremely, 1 = dislike extremely, and the values of 5 (neither like nor dislike) and higher
were considered acceptable. Samples with scores below 5 were considered unacceptable,
and the sensory analysis was stopped.

2.8. Statistical Analysis

All the measurements were performed in triplicate, and the results were presented as
means ± standard deviation. The differences between the effect of the TV-EO and the CTX
in the disc diffusion method were statistically analyzed using the Student’s t-test, while the
effect of the TV-EO against the different strains was compared using a one-way analysis of
variance (ANOVA). The in situ effects of the different concentrations of the TV-EO on the
inhibition of bacteria and the sensory analysis of poultry minced meat were statistically
analyzed using a one-way ANOVA test, and Fisher’s least significant difference (LSD) test
was used as post hoc analysis. A probability level of p < 0.05 was used to test the statistical
significance of all experimental data. All the statistical analyses were achieved using the
Graph Pad Prism 8 software (San Diego, CA, USA) and XLSTAT (Addinsoft, New York,
NY, USA).

3. Results
3.1. Essential Oil Content and GC-MC Analysis

The yield of TV-EO was determined on the basis of dry weight. Our results showed
that Thymus vulgaris was rich in EO with a yield of about 3.12 ± 0.14%. Additionally,
the chemical composition performed by GC-MS identified 16 different components, repre-
senting 91.56% of the total composition of TV-EO (Table 2). Thymol (38.677%), p-cymene
(15.66%), carvacrol (14.889%), and γ-terpinene (13.308%) were the most represented. More-
over, this study showed that TV-EO was rich in oxygenated monoterpenes (54.944%) and
monoterpenes hydrocarbons (33.355%).

3.2. Antioxidant Activity

TV-EO showed a good antioxidant power represented by an IC50 of 0.29± 0.04 mg/mL,
EC50 of 0.74 ± 0.08 mg/mL, and RC50 of 0.59 ± 0.06 mg/mL (Table 3). These results were
compared with those of the standards, such as ascorbic acid (IC50= 0.031 ± 0.001 mg/mL,
and EC50 = 0.095 ± 0.002 mg/mL), quercetin (IC50 = 0.012 ± 0.002 mg/mL, EC50 =
0.019 ± 0.003 mg/mL, and RC50 = 0.052 ± 0.007 mg/mL), and butylated hydroxytoluene
(BHT) (RC50 = 0.063 ± 0.004 mg/mL).
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Table 2. Chemical composition of Thymus vulgaris essential oils (TV-EO).

N◦ Component RIobs RIlit Formula Method of
Identification

Concentration
(Peak Area %)

1 α-Pinene 941 933 C10H16 RI, MSL 0.659
2 Camphene 952 953 C10H16 RI, MSL 0.318
3 β-Pinene 982 978 C10H16 RI, MSL 0.060
4 3-Carene 1012 1009 C10H16 RI, MSL 2.180
5 β-Phellandrene 1032 1023 C10H16 RI, MSL 0.080
6 O-Cymene 1024 1024 C10H14 RI, MSL 0.073
7 p-Cymene 1025 1025 C10H14 RI, MSL 15.660
8 Limonene 1029 1030 C10H16 RI, MSL 0.528
9 γ-Terpinene 1058 1058 C10H16 RI, MSL 13.308

10 cis-Sabinene hydrate 1066 1069 C10H18 RI, MSL 0.489
11 Borneol 1169 1173 C10H18O RI, MSL 0.721
12 α-Terpineol 1193 1195 C10H18O RI, MSL 0.657
13 Thymol 1302 1293 C10H14O RI, MSL 38.677
14 Carvacrol 1310 1300 C10H14O RI, MSL 14.889
15 β-Caryophyllene 1426 1424 C15H24 RI, MSL 2.728
16 Caryophyllene oxide 1575 1587 C15H24O RI, MSL 0.538

Total identified (%) 91.565
Monoterpene hydrocarbons 33.355
Sesquiterpene hydrocarbons 2.728
Oxygenated monoterpenes 54.944
Oxygenated sesquiterpenes 0.538

RIobs: retention index observed in this study; RIlit: retention index taken from the literature; MSL: Mass Spectral Library.

Table 3. Antioxidant activity of TV-EO.

Ascorbic Acid Quercetin BHT TV-EO

IC50 (mg/mL) 0.031 ± 0.001 A 0.012 ± 0.002 B - 0.29 ± 0.04 C

EC50 (mg/mL) 0.095 ± 0.002 A 0.019 ± 0.003 B - 0.74 ± 0.08 C

RC50 (mg/mL) - 0.052 ± 0.007 A 0.063 ± 0.004 A 0.59 ± 0.06 C

Results are expressed in mg/mL. Different letters in the same row represent significant differences. (-): not tested.

3.3. Antimicrobial Activity
3.3.1. Disc Diffusion Method, MIC, MBC, and Percentage of Sublethal-Injured Cells

The results obtained for the disc diffusion assay showed that all the Salmonella strains
tested were susceptible to the TV-EO activity. For all the tested strains, the antimicrobial
activity of TV-EO was considered strong since the diameters of inhibition were ≥20.1 mm;
in particular, between 24 ± 0.4 mm and 32 ± 0.6 mm (Figure 1). Despite the zones of
inhibition determined by the TV-EO were larger than those determined by the reference
antibiotic (CTX), only for S1 and S2, strains there were of significant difference (p < 0.05)
related to the resistance at the reference test; not significant differences were observed
among the susceptibility of the strains to the TV-EO (p > 0.05).
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Figure 1. Inhibition diameters (mm) of the tested EOs against the eight different strains of Salmonella
enteritidis. CTX = Cefotaxime (30 µg) as reference test; TV-EO = Thymus vulgaris essential oil (10 µL).

The results obtained by the microdilution assay confirmed the performing antimicro-
bial activity of the TV-EO observed in the agar disk diffusion test. In detail, all the tested
strains showed the same susceptibility to TV-EO that had a MIC of 0.5% and an MBC of 1%
(Table 4).

Table 4. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in
percentage (v/v) of TV-EO against Salmonella and percentage of sublethal-injured cell after exposition
to TV-EO.

% Sublethal-Injured Cell
ID Strain MIC MBC r

Control TV-EO

Salmonella 3.72 ± 0.04 7.99 ± 0.08

S1 0.5% 1% 2
S2 0.5% 1% 2
S3 0.5% 1% 2
S4 0.5% 1% 2
S5 0.5% 1% 2
S6 0.5% 1% 2
S7 0.5% 1% 2
S8 0.5% 1% 2

r: ratio MBC/MIC.

Considering that the MIC and MBC were the same for all the tested strains, the percent-
ages of sublethal-injured cells caused by TV-EO were established for only one Salmonella
strain, and the results obtained are presented in Table 4. Our findings showed that TV-EO
at the half-MIC concentration (0.25%) resulted in sublethal damage to Salmonella, which
was more susceptible to the well-known bacteriostatic activity of salt [47]. In this regard,
the percentage of sublethal-injured Salmonella was 7.99 ± 0.08%, definitely higher than
those observed in the control samples of 3.72 ± 0.04%.
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3.3.2. In Vitro Effect of TV-EO on the Growth of Salmonella

The obtained results showed that TV-EO inhibited the growth of Salmonella at all
the tested concentrations (Figure 2). However, the antibacterial efficiency was significant
only for the highest concentrations. In fact, the observed growth curves for 0.25% TV-EO
were stackable to those observed for the control samples at both storage temperatures.
On the other hand, the 0.4% and 0.5% TV-EO efficiently slowed the growth rate at both
storage temperatures. When at 10 ◦C, the control samples reached the stationary phase
(8.53± 0.37 Log CFU/g) after 144 h, the load of samples treated with 0.4% TV-EO was more
than 2 Log lower (6.38± 0.37 Log CFU/g). The 0.5% TV-EO even led to complete inhibition
of growth already after 48 h at 10 ◦C. The antimicrobial effect was also confirmed by the
results obtained at 20 ◦C. In fact, loads of 9 ± 0.39 Log CFU/g were counted after 52 h in
the control samples, while for samples treated with 0.4% and 0.5% TV-EO, lower loads of
8.15 ± 0.43 and 7.61 ± 0.44 were counted, respectively.
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Figure 2. The in vitro effect of TV-EO (v/v) on the growth of Salmonella at 20 ◦C (a) and 10 ◦C (b).

3.4. Predictive Model

The values obtained for ξ, Nmax, and Q0 for each TV-EO concentration are reported in
Table 5. Figures 3 and 4 show the predicted data obtained resolving Equations (3) and (4)
with the specific ξ values. As observed in Table 5 and Figures 3 and 4, the proposed model
allowed to obtain a good fitting with the data of Salmonella growth obtained in the in vitro
treatments, with the different concentrations of TV-EO. The goodness of the predictive
approach derived from the proposed model was confirmed by the good fitting observed
for the growth curve of the untreated samples of Salmonella.

Table 5. Primary parameters for each predicted curve.

20 ◦C 10 ◦C

% TV-EO 0% 0.5% 0.4% 0.25% 0% 0.5% 0.4% 0.25%
ξ values 1 0.4 0.55 0.7 1 −2.5 0.85 0.95

Q0 0.5 0.03 0.03 0.5 0.7 0.7 0.7 0.7
Nmax 8.6 8.6 8.6 8.6 10.6 10.6 10.6 10.6
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Figure 3. Predicted (dotted line) and observed (squares) growth curves of Salmonella at 20 ◦C. Panel (A): control se-
ries; panel (B): 0.5% TV-EO and ξ = −2.5; panel (C): 0.5% TV-EO and ξ = 0.0; panel (D): 0.4% TV-EO and ξ = 0.85;
panel (E): 0.4% TV-EO and ξ = 0.00; panel (F): 0.25% TV-EO and ξ = 0.9; panel (G): 0.25% TV-EO and ξ = 0.0.
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Figure 4. Predicted (dotted line) and observed (squares) growth curves of Salmonella at 10 ◦C. Panel (A): control series;
panel (B): 0.5% TV-EO and ξ = 0.4; panel (C): 0.5% TV-EO and ξ = 0.0; panel (D): 0.4% TV-EO and ξ = 0.55; panel (E): 0.4% TV-
EO and ξ = 0.00; panel (F): 0.25% TV-EO and ξ = 0.7; panel (G): 0.25% TV-EO and ξ = 0.0.

The linear regression observed at 20 ◦C (Figure 5A) showed a linear relationship
between the ξ values and the percentage of TV-EO, whereas the data obtained at 10 ◦C
(Figure 5B) were not linearly related to the TV-EO concentration.
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Figure 5. Panel (A): Linear regression of ξ values against the percentage of TV-EO of each trial at 20 ◦C. Panel (B): linear
regression of ξ values against the percentage of TV-EO of each trial at 10 ◦C.

The results obtained for ξ parameter by the calculation of RMSE are reported in
Table 6; the introduction of the ξ parameter was specific for each TV-EO concentration and
reproduced the antibacterial effect regardless of the prediction of growth rate; therefore,
it was not introduced into the secondary model. The numerical parametrization of ξ

was easily obtained with a simple fitting procedure and allowed to find a set of ξ values
concentration-dependent.

Table 6. The root-mean-squared error (RMSE) for each prediction.

20 ◦C 10 ◦C

ξ Included ξ Not Included ξ Included ξ Not Included

0.50% TV-EO 0.4089 1.4310 0.0683 6.5311
0.40% TV-EO 0.1615 1.1290 0.3421 0.6519
0.25% TV-EO 0.2385 0.4418 0.6474 0.5521

3.5. Antimicrobial Activity in Poultry Minced Meat

The results obtained for the in situ antimicrobial activity of TV-EO in poultry minced
meat were presented in Table 7. The 1% TV-EO showed the highest efficiency against
Salmonella growth, which was completely inhibited after 3 days of storage. The effective-
ness of 1% TV-EO was corroborated by the counts of the Enterobacteriaceae, which decreased
significantly after one day of treatment and then remained constant until after 13 days.
The 0.5% TV-EO also showed antimicrobial activity against Salmonella, while no significant
effect was observed against Enterobacteriaceae. In this regard, despite no substantial differ-
ences were observed until the 6th day of storage compared to the CTX samples, Salmonella
growth was significantly inhibited already starting from the 9th day and then completely
inhibited on the 13th day of treatment. Nevertheless, no significant antimicrobial effects
were observed against Salmonella and Enterobacteriaceae for the 0.25% and 0.125% TV-EO,
comparing the results of the control samples.
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Table 7. Variation rate of Salmonella and Enterobacteriaceae during the storage of poultry minced meat treated with different
concentrations of TV-EO.

Bacteria
Time

(Days)
Concentrations of TV-EO

0% (Control) 0.125% 0.25% 0.5% 1%

Salmonella

0 3.150 ± 0.0065 A 3.150 ± 0.0065 A 3.151 ± 0.0065 A 3.151 ± 0.0065 A 3.151 ± 0.0065 A

1 3.015 ± 0.100 A 3.067 ± 0.0368 A 2.933 ± 0.0429 A 2.951 ± 0.0685 A 0.92 ± 0.1651 C

3 3.075± 0.0362 A 3.037± 0.0169 A 2.841 ± 0.0883 A 2.806± 0.0192 A 0.000 ± 0.000 B

6 2.963± 0.0267 A 2.923± 0.0439 A 2.648 ± 0.0963 A 2.612 ± 0.0450 A 0.000 ± 0.000 B

9 - - - 0.500 ± 0.1707 B 0.000 ± 0.000 B

13 - - - 0.000 ± 0.000 B 0.000 ± 0.000 B

Enterobacteriaceae

0 4.276 ± 0.0032 D 4.276 ± 0.0032 D 4.276 ± 0.0032 D 4.276 ± 0.0032 D 4.276 ± 0.0032 D

1 4.430 ± 0.0455 D 4.576 ± 0.0154 D 4.475 ± 0.0625 D 3.782 ± 0.0708 D 2.539 ± 0.3373 G

3 5.346± 0.1386 E 4.979± 0.0354 D 4.878 ± 0.0649 D 4.396 ± 0.0123 D 2.522 ± 0.1283 G

6 6.555± 0.1079 F 6.374± 0.0977 F 5.972 ± 0.1298 EF 5.481 ± 0.0708 E 2.50 ± 0.067 G

9 - - - 6.212 ± 0.0433 F 2.00 ± 0.2814 G

13 - - - 6.539 ± 0.2003 F 1.739 ± 0.445 G

(-): not calculated. Different letters stand for statistically significant differences at p < 0.05 according to Fisher’s least significant difference
(LSD) test.

3.6. Sensorial Analysis

The results obtained for the sensory analysis are presented in Table 8. On day 0,
the flavor, color, and taste of the minced samples achieved the highest score for all tested
TV-EO concentrations. During storage, the sensory properties of the mince decreased
following the bacterial growth and oxidation processes. However, the acceptability limit of
the samples treated with TV-EO was higher than that of the control samples for all tested
concentrations. The decay of color and taste proceeded significantly slower in the samples
treated with different concentrations of TV-EO than in the control ones. Less significant
differences were observed for the flavor, although, in no analysis interval the score of the
treated samples lower than that of the control ones for all concentrations tested. At the end
of the experiment, the color, flavor, and taste were still acceptable in the mince samples
treated with 1% and 0.5% of TV-EO after 13 days. Instead, odor, color, and taste scores
of minces treated with 0.25% and 0.125% of TV-EO reached the limit of acceptability on the
6th day. After cooking, the flavor of the mice was more acceptable (data are not shown).
The 1% of TV-EO influenced the typical taste of the treated mince samples, even if it was
not considered unpleasant by any of the panelists. A lower influence on the typical taste of
the mince was perceived by the panelists for those samples treated with 0.5% of TV-EO.

Table 8. Average grade of sensory analysis of poultry minced meat treated with different concentrations of TV-EO.

Parameters
Time

(Days)
Concentrations of TV-EO

0% (Control) 0.125% 0.25% 0.5% 1%

Color

0 10 ± 0.000 L 10 ± 0.000 L 10 ± 0.000 L 10 ± 0.000 L 10 ± 0.000 L

1 8.25 ± 0.353 IJ 9 ± 0.707 K 9 ± 0.707 K 9 ± 0.000 K 9 ± 0.000 K

3 6.25 ± 0.353 DE 7.5 ± 0.707 GH 8 ± 000 HI 8.75 ± 0.353 JK 8.75 ± 0.353 JK

6 4.25 ± 0.353 A 5.25 ± 0.353 BC 5 ± 0.000 B 8 ± 0.00 HI 8.25 ± 0.353 IJ

9 - - - 6.75 ± 0.353 EF 7.25 ± 0.353 FG

13 - - - 5.5 ± 0.00 BC 5.75 ± 0.353 CD

Flavor

0 10 ± 0.000 J 10 ± 0.000 J 10 ± 0.000 J 10 ± 0.000 J 10 ± 0.000 J

1 8 ± 0.00 F 8.25 ± 0.353 FG 8.5 ± 0.353 GH 8.75 ± 0.000 HI 9.75 ± 0.353 J

3 6.75 ± 0.353 D 6.75 ± 0.353 D 6.75 ± 0.353 D 8 ± 0.000 F 9 ± 0.000 I

6 4.25 ± 0.353 A 5 ± 0.00 B 5.25 ± 0.353 B 7.25 ± 0.353 E 8.25 ± 0.353 FG

9 - - - 6.75 ± 0.353 D 7.25 ± 0.353 E

13 - - - 5.25 ± 0.353 B 6 ± 0.000 C
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Table 8. Cont.

Parameters
Time

(Days)
Concentrations of TV-EO

0% (Control) 0.125% 0.25% 0.5% 1%

Taste

0 10 ± 0.000 M 10 ± 0.000 M 10 ± 0.000 M 10 ± 0.000 M 10 ± 0.000 M

1 8.017 ± 0.206 V 8.326 ± 0.553 V 9.052 ± 0.051 W 8.706 ± 0.124 W 9.543 ± 0.395 M

3 6.331 ± 0.332 E 7.077 ± 0.329 Y 7.128 ± 0.176 Y 8.121 ± 0.164 V 8.723 ± 0.254 W

6 4.664 ± 0.487 N 5.864 ± 0.116 O 5.3 ± 0.511 O 7.293 ± 0.156 Y 8.016 ± 0.134 V

9 - - - 6.864 ± 0.320 E 6.96 ± 0.053 EY

13 - - - 5.178 ± 0.307 O 5.657 ± 0.493 O

(-): not calculated. Different letters stand for statistically significant differences at p < 0.05 according to Fisher’s LSD test.

4. Discussions

The results of our study showed that TV-EO had an extraction yield of 3.12 ± 0.14%.
These results were higher than those reported for the TV-EO collected from the National
Institute of Medicinal and Aromatic Plants in Taounate (Morocco; 1.9%) [48], those de-
scribed in TV-EO collected from Barzo Mountain Shirvan (North Khorasan Province of
Iran) at different stages of plant growth (0.83–1.39%) [49], and those collected from Caxias
do Sul (Rio Grande do Sul State, Brazil) with a yield of 0.25% [50]. On the other hand,
they were lower than those described previously in the Ash-Shoubak region in the South
of Jordan (4.7%) [50]. These discrepancies are related to different internal and external
factors that affected the yield of plant EOs, including physiological variations of plant
species, environmental conditions, growth stage, and genetic factors and evolution [51,52].
Therefore, it is not surprising that different chemical compositions for the same EO were
reported. The results obtained showed that the TV-EO tested in the present study was rich
in thymol (38.677%), followed by p-cymene (15.66%), carvacrol (14.889%), and γ-terpinene
(13.308%). These findings were consistent with those of previous studies that reported the
dominance of thymol in TV-EO [4,15,17,48]. However, linalool (76.2%), geraniol (59.8%),
and cis-sabinene hydrate (30.8%) were identified as the major components of TV-EO col-
lected from France and Serbia [53], and camphor (38.54%) in TV-EO collected from the
eastern regions of Morocco [54].

Oxidation is a chemical reaction that leads to the deterioration of food products and
the loss of organoleptic quality [55]. This reaction is under the effect of different factors such
as light, oxygen partial pressure, temperature, relative humidity, and lipid oxidation [56].
The inhibition of food oxidation is a great challenge for industrialists and scientists, taking
into consideration the increased demand for bio-preservatives and the limited use of
chemical substances [55]. The antioxidant activity of EOs corresponds to its capacity to
reduce and retard the oxidation of an oxidizable material, even when used in a very modest
amount [57]. The results of our study showed that TV-EO had good antioxidant activity and,
thanks to the antimicrobial activity, could be used to extend the shelf life of food products
and pleasantly influence their sensory characteristics [58]. Our results are comparable to
those reported previously in different studies, which classified TV-EO with moderate to
high antioxidant power [59–62]. The powerful antioxidant activity of TV-EO, compared to
other EOs [13], could be explained by its chemical composition and its richness in thymol
and carvacrol. In this regard, Aeschbach and his group showed that thymol and carvacrol
had good antioxidant activity and could be used as natural antioxidant compounds [63].
Further, γ-terpinene showed good antioxidant properties as well when used alone or in
synergy with other components [64–66]. Moreover, β-caryophyllene displayed a strong
antioxidant effect and could improve the activity of EOs even at a low concentration [67].
The performing results obtained for the antioxidant activity were also corroborated by the
sensory analysis of the in situ experiments. In fact, the color score of the treated samples
was higher than in the control ones for all the concentration tested, and at 0.5% and 1% the
color acceptability limit increased up to 7 days.
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The results of the antibacterial activity showed that TV-EO effectively inhibited the
growth of Salmonella. Different mechanisms were proposed to explain the inhibition
effect of EOs against bacteria [7,68]. In particular, EOs may determine damage to the
bacterial wall by increasing the cell membrane permeability, changing their morphology,
and decreasing the ATP synthesis [7]. These effects could increase the effectiveness of
other preservative compounds, as demonstrated for the salt during the evaluation of
the injured cells treated with a low concentration of TV-EO. The obtained percentage of
sublethal-injured cells of Salmonella exposed to TV-EO was higher than those determined
by EOs of Origanum majorana, Mentha suaveolens, Rosmarinus officinalis, Salvia officinalis, and
Mentha pulegium [13]. The antibacterial activity of TV-EO was related to the high content
of thymol and carvacrol, whose antibacterial activity is well known and was reported by
several authors [69]. Additionally, the antibacterial activity of p-cymene and γ-terpinene
was demonstrated and could also participate in improving the effectiveness of TV-EO [70].
The observed MIC of 0.5% (5 mg/mL) for all the eight tested strains was in accordance with
those reported by Bartkiene et al. [71] that ranged from 1% to 0.1% on similar Salmonella
strains; while the essential oil obtained from the Brazilian thyme plant showed more
effectiveness on Salmonella choleraesuis with a MIC of 0.6 mg/mL [72]. These differences
were related to the strong variability in the chemical composition of the EOs and to the
different susceptibility of strains [73].

Satisfactory results were obtained with the proposed predictive model that allowed to
describe the in vitro Salmonella behavior exposed to TV-EO with confidence. The growth
curves predicted for Salmonella well-fitted the results obtained during the in vitro micro-
biological analysis at both 20 ◦C and 10 ◦C of exposition. The presence and count of
a food pathogen can change during all steps of food processing based on the way the
food is handled. The implemented model might be a useful tool for food industries to
assess the effects of different storage conditions on the final Salmonella contamination of a
product at the time of consumption. Therefore, further studies are needed directly in food
matrices, in which more parameters (pH, water activity, presence of nutrients, atmosphere
conditions, etc.) must be considered to establish the applicability of the presented model.
Results of the regression analysis showed that the antimicrobial effects of the different
TV-EO concentrations against Salmonella varied on the basis of temperatures. In detail,
linear regression observed at 20 ◦C (Figure 5A) showed a linear relationship between
the percentage of TV-EO and its antimicrobial activity, whereas no linear correlation was
observed from the data obtained at 10 ◦C (Figure 5B). This result is probably related to the
fact that the antimicrobial activity of essential oils increases at lower storage temperatures
due to a greater susceptibility of the bacteria [74].

The results of the in situ antimicrobial activity and sensory evaluation showed that
TV-EO could be a suitable natural preservative to manage the Salmonella risk in foods.
In this regard, Salmonella growth in experimentally contaminated mince poultry meat
was completely inhibited (at 4 ◦C, 3 Log reduction) after 3 days of treatment with 1% TV-
EO, and the sensory properties of the meat were maintained for up to one week longer
than in the untreated samples. Our findings were in line with those reported by other
authors [14,44]. Olaimat et al. reported that the addition of TV-EO at a concentration of
0.5–1.5% to hummus reduced Salmonella by 1.0–2.9 log CFU/g after storage of 10 days at
4 ◦C [14]. Same, Boskovic et al. reported the reduction of Salmonella in minced pork by
1.69–4.05 log CFU/g after treatment with TV-EO (0.3–0.9%) packaged under vacuum or
MAP (30% O2; 50% CO2; 20% N2) and storage at 3± 1 ◦C for 15 days [44]. The antimicrobial
effect against Salmonella herein reported for TV-EO was also comparable to that observed
for other EOs such as sage, basil, and rosemary tested in chicken meat [75,76]. The literature
published so far pointed out that the use of thyme in foods was almost exclusively limited
to meat products [77], although its effects were also studied on fish [78] and cheese [79].
The main goal of using thyme in foods was to extend their shelf-life. In this regard,
several studies reported that the EO of thyme delayed the rancidity development of fat
and inhibited the growth of spoilage microorganisms in different types of foods [61,77].
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These latter considerations may underlie the slower decay of sensory properties (color,
odor, and taste) observed in the present study for the minced poultry meat treated with
TV-EO at 0.5% and 1%. However, the main limiting factor of the use of TV-EO was related
to its influences on the typical organoleptic properties of foods. Although thyme is widely
used as a food condiment, it is important that its use did not excessively mask the sensory
characteristics of the product, making it unpleasant to the consumer. In this regard, despite
the sensory influence, 1% TV-EO was not considered unpleasant by any of the panelists,
0.5% TV-EO was considered the best compromise to extend the sensory acceptability of
the meat without significantly influencing its typical taste. Interestingly, the results of our
study showed that, after cooking, the flavor and taste of the minced poultry meat were
more acceptable. In this regard, we might speculate that the high temperature influenced
the stability of the volatile compounds of the TV-EO, which were partly mixed with meat
aromas as previously reported by Boskovic et al. [80] and Van Haute et al. [81], resulting in
a pleasant flavor and taste.

5. Conclusions

The results of this study showed that thymol and p-cymene were the main constituents
of the EO of Thymus vulgaris collected from the mountainous region of Ifrane (Morocco)
and principally responsible for its beneficial effects. TV-EO revealed a good antioxidant
activity as well as relevant antibacterial effects against all the Salmonella strains tested.
Determination of the percentage of sublethal-injured cells showed that TV-EO could be
used in synergy with other compounds like salt to improve their effects. Furthermore,
TV-EO overcame the limits related to the organoleptic influences on foods which were
appreciated during the sensory analysis. This study confirmed that TV-EO could be
considered a suitable natural alternative to ensure food safety and quality according to
the new green trends in the food field for more natural, healthy, and low environmental
impact foodstuffs.

Author Contributions: Conceptualization, F.G., A.G., and F.R.F.; methodology, F.G., A.G., and F.R.F.;
software, A.G., Y.O.E.M., L.N., and B.B.; validation, A.G. and B.B.; formal analysis, L.N., N.T., A.E.-D.,
and Y.O.E.M.; investigation, A.E.-D., L.N., and N.T.; data curation, A.E.-D., L.N., A.G., and F.G.;
writing—original draft preparation, L.N. and A.E.-D.; writing—review & editing, L.N., A.E.-D.,
A.G., and F.G.; supervision, F.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the anonymous reviewers for their valuable com-
ments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cassman, K.G.; Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [CrossRef]
2. Del Nobile, M.A.; Lucera, A.; Costa, C.; Conte, A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012,

3, 287. [CrossRef]
3. Trabelsi, N.; Nalbone, L.; Marotta, S.M.; Taamali, A.; Abaza, L.; Giarratana, F. Effectiveness of five flavored Tunisian olive oils on

Anisakis larvae type 1: Application of cinnamon and rosemary oil in industrial anchovy marinating process. J. Sci. Food Agric.
2019, 99, 4808–4815. [CrossRef] [PubMed]

4. Giarratana, F.; Muscolino, D.; Ragonese, C.; Beninati, C.; Sciarrone, D.; Ziino, G.; Mondello, L.; Giuffrida, A.; Panebianco, A.
Antimicrobial activity of combined thyme and rosemary essential oils against Listeria monocytogens in Italian mortadella packaged
in modified atmosphere: Thyme & Rosemary EOs vs L. monocytogenes. J. Essent. Oil Res. 2016, 28, 467–474. [CrossRef]

http://doi.org/10.1038/s41893-020-0507-8
http://doi.org/10.3389/fmicb.2012.00287
http://doi.org/10.1002/jsfa.9736
http://www.ncbi.nlm.nih.gov/pubmed/30977130
http://doi.org/10.1080/10412905.2016.1165744


Sustainability 2021, 13, 4594 17 of 19

5. Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential oils as natural food antimicrobial agents: A review. Crit. Rev.
Food Sci. Nutr. 2015, 55, 1320–1323. [CrossRef] [PubMed]

6. Schmidt, E. Production of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications, 3rd ed.; Husnu Can
Baser, K., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 83–90.

7. Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015,
54, 111–119. [CrossRef]

8. Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [CrossRef]
9. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008,

46, 446–475. [CrossRef]
10. Elsharkawy, E.R.; Ed-Dra, A.; Alghanem, S.; Abdallah, E.M. Comparative studies of chemical compostion, antimicrobial and

antioxidant activity of essential oil of some species from genus Artemisia. J. Nat. Remedies 2018, 18, 10–20. [CrossRef]
11. Giarratana, F.; Muscolino, D.; Panebianco, F.; Patania, A.; Benianti, C.; Ziino, G.; Giuffrida, A. Activity of R (+) limonene against

Anisakis larvae. Ital. J. Food Saf. 2015, 4. [CrossRef]
12. Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as

antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966.
[CrossRef] [PubMed]

13. Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Bouymajane, A.; Trabelsi, N.; Lamberta, F.; Bentayeb, A.; Giuffrida,
A.; et al. Chemical composition, antioxidant capacity and antibacterial action of five Moroccan essential oils against Listeria
monocytogenes and different serotypes of Salmonella enterica. Microb. Pathog. 2020, 149, 104510. [CrossRef] [PubMed]

14. Giarratana, F.; Muscolino, D.; Beninati, C.; Giuffrida, A.; Panebianco, A. Activity of Thymus vulgaris essential oil against Anisakis
larvae. Exp. Parasitol. 2014, 142, 7–10. [CrossRef] [PubMed]
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