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Abstract: State of charge (SOC) of the lithium-ion battery is an important parameter of the battery
management system (BMS), which plays an important role in the safe operation of electric vehicles.
When existing unknown or inaccurate noise statistics of the system, the traditional unscented
Kalman filter (UKF) may fail to estimate SOC due to the non-positive error covariance of the state
vector, and the SOC estimation accuracy is not high. Therefore, an improved adaptive unscented
Kalman filter (IAUKF) algorithm is proposed to solve this problem. The IAUKF is composed of
the improved unscented Kalman filter (IUKF) that is able to suppress the non-positive definiteness
of error covariance and Sage–Husa adaptive filter. The IAUKF can improve the SOC estimation
stability and can improve the SOC estimation accuracy by estimating and correcting the system
noise statistics adaptively. The IAUKF is verified under the federal urban driving schedule test,
and the SOC estimation results are compared with IUKF and UKF. The experimental results show
that the IAUKF has higher estimation accuracy and stability, which verifies the effectiveness of the
proposed method.

Keywords: state of charge; battery management system; unscented Kalman filter; Sage–Husa adap-
tive filter

1. Introduction

With the increasing global energy crisis and environmental pollution, pollution-free
and zero-emission electric vehicles have been developing rapidly [1]. Lithium-ion batteries
are extensively used in power systems of electric vehicles due to their high energy density,
low self-discharge rate, and long cycle life. State of charge (SOC) of the lithium-ion battery
is an indicator that describes the remaining power of the battery [2]. It can be used
to prevent the battery from being overcharged or overdischarged, predict the driving
range of electric vehicles, and reduce the inconsistency of different cells. It is one of the
most important parameters of the electric vehicle battery management system (BMS) [3].
However, the SOC cannot be directly measured, and various factors such as ambient
temperature, battery aging levels, and charging/discharging current rate will affect the
accuracy of SOC estimation [4]. Therefore, estimating SOC precisely is a difficult subject
that restricts the rapid development of electric vehicles.

Roughly, SOC estimation methods can be divided into three categories: experiment-
based method, data-based method, and model-based method. The SOC estimation method
based on experiments such as the discharge test method [5], open-circuit voltage method [6],
and electrochemical impedance spectroscopy method [7] can obtain accurate SOC esti-
mation. However, these kinds of methods are rarely used on large scale in BMS because
of the long test time, high costs, etc. The data-based SOC estimation methods mainly
include artificial neural network method [8], support vector machine method [9], Gaussian
regression method [10], etc. Through a large amount of data training, these methods obtain
the relationship between SOC and battery external measurement variables such as battery
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terminal voltage, working current, and ambient temperature and then realize the estima-
tion of battery SOC. However, the SOC estimation accuracy of this kind of method is highly
dependent on the training data. The model-based SOC estimation method has been tremen-
dously studied because it can realize the closed-loop self-correction of the SOC estimation.
The typical representatives of this method are Kalman filter (KF) and particle filter (PF).
Compared with KF, PF [11] does not require the system noise statistics to satisfy Gaussian
distribution, but the calculation of this method is complex, which affects its practicability.
In order to solve the nonlinear of the battery model, an extended Kalman filter [12] (EKF)
is used for SOC estimation. EKF realizes the linearization of the battery model through
Taylor series expansion, which inevitably introduces the unnecessary linearization error.
Through the unscented transformation, the unscented Kalman filter (UKF) [13] directly
transmits the mean value and covariance of the state vector nonlinearly, thereby solving
the problem of linearization error of the EKF. Moreover, the UKF does not need to calculate
the Jacobian matrix, and the computational burden is much lower than EKF. However,
when UKF is used to estimate the battery SOC, the filtering failure is often caused by the
non-positive error covariance. Reference [14] uses the square root of the UKF to improve
the stability of the SOC estimation. However, due to the roundoff error of the computer, it
still cannot guarantee the positive definiteness of the error covariance.

At present, most of the battery SOC estimation methods based on UKF assume
that the system process and measurement noise are known and fixed. However, the
actual working environment of the battery is relatively complex, and the system noise
statistical characteristics are usually difficult to accurately obtain. When existing unknown
or inaccurate noise statistics of the system, the traditional unscented Kalman filter may fail
to estimate SOC due to the non-positive error covariance of the state vector, and the SOC
estimation accuracy is low. Therefore, a new SOC estimation algorithm for lithium-ion
batteries based on an improved adaptive unscented Kalman filter is proposed in this paper.
In order to realize the adaptive estimation of SOC by the improved adaptive unscented
Kalman filter (IAUKF), firstly, the second-order resistor–capacitor (RC) equivalent circuit is
selected to characterize the dynamic behaviors of the battery, and the model parameters are
identified to obtain the state–space equation and output equation required by the IAUKF
to estimate SOC. Secondly, singular value decomposition (SVD) is used to replace the
Cholesky decomposition in the traditional UKF, and an improved unscented Kalman filter
(IUKF) that can suppress the non-positive definiteness of the error covariance is proposed.
Thirdly, IAUKF is proposed by combining IUKF with Sage–Husa adaptive filter. Finally,
IAUKF is applied to SOC estimation based on the battery state–space equation and output
equation. The IAUKF method is verified by experimental data under the federal urban
driving schedule (FUDS) test [15]. The SOC estimation results are compared with IUKF
and traditional UKF.

2. Battery State–Space Model
2.1. Second-Order Thevenin Equivalent Circuit Model

When using KF to estimate battery SOC, it is necessary to establish an accurate battery
equivalent model. Usually, the selection of the battery equivalent model needs to meet the
following requirements: firstly, the model can accurately simulate the dynamic and static
characteristics of the battery in actual work conditions; secondly, the physical meaning
of the model is clear, which is convenient for parameters identification and simple for
calculation. The equivalent circuit model of the battery is widely used in battery SOC
estimation for meeting the above two requirements. The commonly used battery equivalent
circuit models include [16,17] Rint model, PNGV model, GNL model, and Thevenin model.
According to the order of series-connected RC network that is composed of the resistors and
capacitors parallel circuits, the Thevenin equivalent circuit model can be divided into the
first-order Thevenin model and n-order Thevenin model [18]. The more RC networks are in
series, the more accurate the model is, but the more complex the calculation is. Considering
the accuracy and computational costs of the model, the second-order Thevenin model is
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used to characterize the battery in this paper. The second-order Thevenin equivalent circuit
model is shown in Figure 1.
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Here, Uo(SOC) denotes the open-circuit voltage (OCV) of the battery and its value
changes with the SOC; UL denotes the terminal voltage; Ic denotes the charging/discharging
current, and it is a positive number in the discharge process in this paper; Rp and Rs denote
the polarization resistance; Cp and Cs denote the polarization capacitance; RpCp parallel
network, and RsCs parallel network that simulates the concentration polarization and the
electrochemical polarization of the battery. The polarization voltage across Cp and Cs are
Up and Us, respectively.

According to the second-order Thevenin equivalent circuit model of the battery il-
lustrated in Figure 1, the state–space equation and output equation of the battery can be
obtained by using Kirchhoff’s law as follows:

Ic =
Up
Rp

+Cp
dUp
dt

Ic =
Us
Rs
+Cs

dUs
dt

UL= Uo − RoIc −Up −Us

(1)

Combined with the Ampere-hour (AH) counting method [19], SOC of the battery,
the polarization voltage Up, and Us of the two RC networks are selected as system state
variables. Equation (1) is discretized to obtain the discrete battery state–space equation and
output equations as follows:

xk =
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Ic,k (2)

UL,k= Uo(SOCk)
− Ic,kRo −Up,k −Us,k (3)

where, x = [SOC Up Us]T; k represents the time step; xk and Ic,k denote the state variable
of the system and the charging/discharging current at time step k, respectively; τp and τs
are time parameters, τp = RpCp, τs = RsCs; ∆t denotes the time interval of discretization; η
denotes the Coulombic efficiency, which is assumed to be 1 for lithium-ion batteries; and
CN denotes the nominal capacity of the battery. It should be noted that the analogous
definition will apply throughout the paper if not otherwise stated.

Here, define

Ak =
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0 e
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(5)

uk= Ic,k (6)
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yk= UL,k (7)

where yk denotes the measurement variable, and uk denotes the input variable.
Considering the system process noise and measurement noise, the state–space equa-

tion and output equation of the battery can be further written as{
xk= Akxk−1+Bkuk+ωk
yk= Uo(SOCk)

− Rouk −Up,k −Us,k+νk
(8)

where, ωk denotes the process noise of the system, whose mean value is qk and covariance
value is Qk, and vk denotes the measurement noise of the system, whose mean value is rk
and covariance value is Rk.

2.2. Relationship between OCV and SOC

The OCV of the battery is a one-to-one correspondence with SOC, which plays an
important role in SOC estimation [20]. Taking the Samsung 18,650 power lithium battery as
the research object, the SOC–OCV relationship is obtained by OCV–SOC mapping tests [21].
In order to reduce the error of the battery model, the average value of OCV in charging and
discharging direction under the same SOC is taken, and then the SOC–OCV relationship is
fitted by the sixth-order polynomial. The fitted curve is shown in Figure 2.
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The OCV–SOC function relationship obtained by fitting is as follows:

Uo(SOC) = 3.8194SOC6 − 4.6554SOC5 − 8.9009SOC4 + 19.3256SOC3 − 11.9564SOC2 + 3.2912SOC+3.2518 (9)

2.3. Parameters Identification of Battery Model

When estimating the SOC, it is necessary to identify the relevant parameters including
Ro, Rp, Rs, Cp, and Cs in the second-order RC equivalent circuit model of the battery. As
one of the most commonly used methods in parameters identification, the least squares
method has the characteristics of small computational effort and no requirement for prior
statistical knowledge. In this paper, the offline recursive least squares method [22] is
applied to identify the model parameters Ro, Rp, Rs, Cp, and Cs under dynamic stress test
(DST) [23]. In order to reduce the error of model parameters identification, this paper takes
the average values of multiple battery parameters obtained by the offline recursive least
squares as the final identification results. The identification results are shown in Table 1.
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Table 1. Identified battery parameters.

Parameters Value

Ro/mΩ 70.6
Rp/mΩ 18

Cp/F 223.74
Rs/mΩ 44.9

Cs/F 1261.7

The sixth-order SOC–OCV fitting polynomial obtained in Section 2.2 and second-order
RC equivalent circuit model parameters Ro, Rp, Rs, Cp, and Cs identified in Section 2.3 are
substituted into Equation (8) to obtain the state–space equation and output equation of
18,650 power lithium battery. Based on the state–space equation and output equation, the
IAUKF can realize the real-time optimal estimation of the battery SOC.

3. State of Charge Estimation

When the UKF is used to estimate the SOC of the battery, the Cholesky decompo-
sition is employed to factorize the error covariance of the state vector to obtain Sigma
sampling points for nonlinear transmission. The Cholesky decomposition requires the
error covariance matrix must be positive definite. However, the operating conditions of
electric vehicles are complicated and the calculation rounding errors of the computer are
unavoidable. As a matter of fact, the error covariance cannot always be guaranteed to
be positive definite. If the error covariance is non-positive, the UKF will estimate SOC
unsuccessfully. In addition, the process noise and measurement noise of the system should
be set in advance when using UKF to estimate battery SOC. Usually, the system process
noise and measurement noise are set to a constant value. If the system noise characteristics
are known before the SOC estimation and the preset values of process noise and measure-
ment noise are consistent with the actual noise statistical characteristics, UKF can estimate
SOC accurately. However, in practical applications, the system noise statistics are usually
unknown or inaccurate, sometimes even time varying. Additionally, if the operating mode
and working environment of electric vehicles have changed, then the preset values of
the system noise will no longer match the actual noise statistics. It will cause large SOC
estimation errors and even lead to filtering failure. Therefore, for the sake of reducing
the influence of system noise on SOC estimation accuracy, it is necessary to adaptively
estimate system noise statistics in the process of SOC estimation. In order to address the
two problems mentioned above when estimating SOC, the IAUKF is proposed in this paper.
Additionally, based on the state–space equation and output equation of the lithium-ion
battery obtained from Sections 2.1–2.3, the IAUKF is applied for battery SOC estimation.

3.1. Singular Value Decomposition

The singular value decomposition (SVD), proposed by Beltrami and Jordan, is a
matrix orthogonalization decomposition method with good stability and accuracy used
on a computer. Compared with Cholesky factorization, when the matrix to be factorized
is positive definite, the two have the same decomposition results. When the matrix to be
factorized is non-positive definite, the numerical stability of SVD is better than Cholesky
factorization.

Providing P is an m× n matrix to be factorized over the real number field, where m ≥ n,
then the SVD of P is

P = UΛGT= U
(

S 0
0 0

)
GT (10)

where U denotes a square matrix of degree m and its column vector is a left singular vector
of matrix P; Λ is an m × n semidefinite diagonal matrix; G is a square matrix of degree n,
and its column vector is the right singular vector of matrix P; S = diag (s1, s2, . . . , sr) is a
diagonal matrix, which is composed of singular values of matrix P; and r is the rank of
matrix P, and s1 ≥ s2 ≥ . . . ≥ sr > 0.
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3.2. Description of the IUKF

The numerical stability of SVD is much better than Cholesky factor decomposition.
Therefore, in order to improve the stability of the UKF for SOC estimation, the Cholesky
factor decomposition in traditional UKF is replaced by SVD in this paper, and then the
IUKF is proposed.

For a discrete-time nonlinear system{
xk= f(xk−1, uk) +ωk
yk= g(xk, uk) + νk

(11)

where f and g are the nonlinear process and measurement models, respectively.
The detailed steps of IUKF can be summarized as follows:

(1) Initialize the mean value x0 of the system state variable x0, the error covariance P0,
and the weighted coefficient.{

x0= E(x0)
P0= E[(x 0 − x0)(x0 − x0)

T] (12)

where E(·) denotes the expectation mean value.
ω

(i)
m = λ

n+λ , i = 0

ω
(i)
c = λ

n+λ+(1− α2+β), i = 0

ω
(i)
m = ω

(i)
c = 1

2(n+λ)
, i = 1 ∼ 2n

(13)

whereω(i)
m andω(i)

c are mean weighted factor and covariance weighted factor, respec-
tively; n is the dimension of the state vector; β is a non-negative weighted coefficient,
which restrains the error caused by the higher-order term, and it is set to 2 for Gaus-
sian random variables; α is a scaling parameter, which determines the distribution
of Sigma sampling points around the state variable, its range is 1 × 10−4~1; λ is a
composite coefficient, which can be expressed as

λ = α2(n + κ)− n (14)

where κ is another scaling parameter that is usually set to 3 − n.
(2) Calculate Sigma sampling points of the state variable at time step k − 1 using SVD.

Pk−1= Uk−1

(
Sk−1 0

0 0

)
Gk−1

T (15)


xi,k−1= x̂k−1, i = 0
xi,k−1= x̂k−1+(

√
(n + λ)Uk−1

√
Sk−1)i, i = 1 ∼ n

xi,k−1= x̂k−1 − (
√
(n + λ)Uk−1

√
Sk−1)i, i = n + 1 ∼ 2n

(16)

where xi,k−1 denotes the Sigma sampling point; the symbol “ˆ” denotes the estimated
value and x̂k−1 is the optimal estimate of the state variable at time step k − 1; Pk−1 is
the error covariance at time step k − 1; and (·)i denotes the ith column of the matrix.

(3) Time update for the mean and covariance of the state variable: use 2n + 1 Sigma sam-
pling points obtained in step (2) to calculate the predicted mean and error covariance
of the state variable in time step k.

x̂k|k−1 =
2n

∑
i=0
ω

(i)
m f(xi,k−1, uk)+qk−1 (17)

Pk|k−1 =
2n

∑
i=0
ω

(i)
c (x̂i,k|k−1 − x̂k|k−1)(x̂i,k|k−1 − x̂k|k−1)

T+Qk−1 (18)
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where k|k − 1 denotes the predicted value of the variable at time step k calculated
based on the data at time step k − 1, and the intermediate variable x̂i,k|k−1 is defined
as follows:

x̂i,k|k−1= f(xi,k−1, uk ), i = 0 ∼ 2n (19)

(4) Use SVD again to obtain new Sigma sampling points based on the predicted mean
and error covariance of the state variable obtained in step (3).

Pk|k−1= Uk|k−1(
Sk|k−1 0

0 0
)Gk|k−1

T (20)


x−i,k|k−1= x̂k|k−1, i = 0

x−i,k|k−1= x̂k|k−1+(
√
(n + λ)Uk|k−1

√
Sk|k−1)i, i = 1 ∼ n

x−i,k|k−1= x̂k|k−1 − (
√
(n + λ)Uk|k−1

√
Sk|k−1)

i
, i = n + 1 ∼ 2n

(21)

where x−i,k|k−1 denotes the regained Sigma sampling point, and the symbol “-” is used
to distinguish the Sigma points obtained here from those obtained in step (2).

(5) Time update for the mean of the measurement variable: calculate the predicted values
of the measurement variable at time step k based on regained Sigma points in step (4).

ŷk|k−1 =
2n

∑
i=0
ω

(i)
m g(x−i,k|k−1, uk)+rk−1 (22)

(6) Calculate the IUKF gain matrix Kk.

Kk= Pxy,kP−1
y,k (23)

where 
Py,k =

2n
∑

i=0
ω

(i)
c (χ̂i,k|k−1 − ŷk|k−1)(χ̂i,k|k−1 − ŷk|k−1)

T+Rk−1

Pxy,k =
2n
∑

i=0
ω

(i)
c (x−i,k|k−1 − x̂k|k−1)(χ̂i,k|k−1 − ŷk|k−1)

T
(24)

where the intermediate variable χ̂i,k|k−1 is defined as follows:

χ̂i,k|k−1= g(x−i,k|k−1, uk) (25)

(7) Measurement correction of the state variable: calculate the corrected state variable
estimated value and the optimal covariance matrix at time step k.

x̂k= x̂k|k−1+Kk(yk − ŷk|k−1) (26)

Pk= Pk|k−1 −KkPy,kKk
T (27)

3.3. Description of Sage–Husa Adaptive Filter

The Sage–Husa adaptive filter is widely used in noise estimation due to the quality
of simple principles and good practicability. Through the time-varying noise estimator,
the Sage–Husa adaptive filter uses the measured data to realize the real-time estimation
and correction of the system process and measurement noise statistics. Therefore, it can
decrease the system model error, suppress the filter divergence and improve the filtering
accuracy [24]. The estimation steps of the system process and measurement noise using a
Sage–Husa adaptive filter can be summarized as follows [25,26]:
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(1) Calculate the estimated mean value of the system process noise.

q̂k= (1− dk)q̂k−1+dk(x̂k −
2n

∑
i=0
ω

(i)
m f(xi,k−1, uk)) (28)

where dk can be expressed as

dk =
1− b

1− bk+1 (29)

where b is the forgetting factor, and its range is usually 0.95~1.
(2) Calculate the estimated covariance value of the system process noise.

Q̂k = (1− dk)Q̂k−1+dk [KkekeT
kKT

k+Pk −
2n

∑
i=0
ω

(i)
c (x̂i,k|k−1 − x̂k|k−1)x̂i,k|k−1 − x̂k|k−1)

T] (30)

where ek is a residual, which can be expressed as

ek= yk − ŷk|k−1 (31)

(3) Calculate the estimated mean value of the system measurement noise.

r̂k = (1− dk)r̂k−1+dk(yk −
2n

∑
i=0
ω

(i)
m g(x−i,k|k−1, uk)) (32)

(4) Calculate the estimated covariance value of the system measurement noise.

R̂k= (1− dk)R̂k−1+dk[e keT
k −

2n

∑
i=0
ω

(i)
c (χ̂i,k|k−1 − ŷk|k−1)(χ̂i,k|k−1 − ŷk|k−1)

T] (33)

For a stable system, when using the Sage–Husa adaptive filter for noise estimation,
the estimated state and measurement covariance will converge to a very small value or
even zero when the filtering process begins to converge [27]. Therefore, we can attain

2n
∑

i=0
ω

(i)
c (x̂i,k|k−1 − x̂k|k−1)(x̂i,k|k−1 − x̂k|k−1)

T= 0

2n
∑

i=0
ω

(i)
c (χ̂i,k|k−1 − ŷk|k−1)(χ̂i,k|k−1 − ŷk|k−1)

T= 0
(34)

Then, the Sage–Husa adaptive filter can be further simplified as follows:

q̂k= (1− dk)q̂k−1+dk(x̂k −
2n
∑

i=0
ω

(i)
m f(xi,k−1, uk))

Q̂k= (1− dk)Q̂k−1+dk(KkekeT
kKT

k+Pk)

r̂k= (1− dk)r̂k−1+dk(yk −
2n
∑

i=0
ω

(i)
m g(x−i,k|k−1, uk))

R̂k= (1− dk)R̂k−1+dkekeT
k

(35)

3.4. Estimate SOC Using IAUKF

As a matter of fact, the adaptive unscented Kalman filter (AUKF) can be formed by
directly combining the traditional UKF with the Sage–Husa adaptive filter [28]. When the
AUKF is applied to estimate SOC, the system noise statistics can be adaptively estimated
through the Sage–Husa adaptive filter, thus reducing the influence of system noise on
SOC estimation accuracy. However, due to the intrinsic characteristic of the traditional
UKF, the error covariance is also required to be positive definite in the process of SOC
estimation with AUKF. In addition, since the AUKF adaptively updates the system noise
statistics while estimating SOC, the increase of computational complexity will further
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aggravate the uncertainty of error covariance in the calculation process, and it becomes
more difficult to guarantee the error covariance to be positive definite. In order to overcome
the shortcomings of AUKF, the IUKF is used to combine with the Sage–Husa adaptive filter,
then the IAUKF is proposed in this paper. The only difference between IAUKF and AUKF
is that the IAUKF replaces Cholesky factorization in AUKF with SVD. Depending on the
outstanding numerical decomposition characteristic of SVD, the IAUKF can improve the
stability of SOC estimation and the advantages of AUKF are retained as well. The main
steps to estimate battery SOC using IAUKF are shown in Figure 3.
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Firstly, based on the second-order RC equivalent circuit model of the battery, the state–
space equation and output equation required for IAUKF to estimate SOC are obtained. The
fitted polynomial of the OCV–SOC relationship is obtained through OCV–SOC mapping
tests. The parameters of the battery model are identified by the offline recursive least
squares method. The state–space equation and output equation are transformed into the
form of Equation (11). Secondly, some system parameters are initialized, including the
initial value x0 of the battery state variable, the initial value P0 of error covariance, the
initial mean value q̂0 and covariance value Q̂0 of process noise, the initial mean value r̂0,

and covariance value R̂0 of measurement noise. Additionally, the weighted coefficientsω(i)
m
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and ω(i)
c are also calculated. Thirdly, according to IAUKF calculation steps, the optimal

estimated value of system state variable at time step k is obtained through Equations (15)–
(27). The estimated SOC at time step k can be separated from the state variable optimal
estimated value x̂k. It should be noted that when estimating the SOC of the battery at
time step k, it is necessary to replace qk−1 in Equation (17), Qk−1 in Equation (18), rk−1

in Equation (22) and Rk−1 in Equation (24) with q̂k−1, Q̂k−1, r̂k−1 and R̂k−1, which are
calculated based on the principle of Equation (35) using the relevant parameters at time
step k − 1. Fourthly, based on the relevant parameters at the time step k, q̂k, Q̂k, r̂k and
R̂k are calculated through Equation (35) for the SOC estimation at time step k + 1; finally,
determine whether the battery discharges to the lower cutoff voltage. If the battery has
discharged to the lower cutoff voltage, then, end the SOC estimation. Otherwise, continue
the SOC estimation.

4. Experimental Simulation and Verification

In practical applications, the operating conditions of electric vehicles are complex, and
the working current of the lithium-ion battery changes dramatically. In order to verify
the effectiveness of IAUKF, based on the state–space and output equations of Samsung
18,650 power lithium-ion battery obtained from Sections 2.1–2.3, the proposed estimation
method is verified under sophisticated FUDS conditions. At the same time, the SOC
estimated by IAUKF is compared with that estimated by IUKF and traditional UKF. The
theoretical reference value of SOC is obtained by the AH counting method. The mea-
sured working current Ic and terminal voltage UL curves of the lithium-ion battery under
the FUDS test are shown in Figures 4 and 5. In Figure 4, the plus value represents the
discharging current, and the minus value represents the charging current.
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When the traditional UKF, IUKF, and IAUKF are applied to estimate SOC, the selec-
tion of initial values of the three methods will pose a great impact on estimation results.
Generally, the initial values of the UKF and its variants are tuned through a certain number
of trial-and-error experiments based on experience because the noise characteristics of the
system are difficult to accurately obtain. In order to compare the behaviors of different
battery models effectively and avoid the interference of initial values on experimental
results, particle swarm optimization is used creatively to calculate the initial values of EKF
in the literature [29]. Since the main purpose of this paper is to study how to improve the
stability of SOC estimation and reduce the influence of system noise on SOC estimation
accuracy, very accurate initial values are not required. Furthermore, for reducing the
influence of other factors on the experimental results and realizing the effective comparison
of the three algorithms for SOC estimation, the initial values of the traditional UKF, IUKF
and IAUKF are set the same in this paper. In other words, the stability and accuracy of
SOC estimation among the three methods are analyzed and compared under the same
initial conditions. Therefore, in this paper, the traditional UKF is taken as the test object
and the initial values required by the three methods are obtained through an appropriate
number of trial-and-error experiments. The preset values of the three methods are x0 = [0.8
0 0]T, P0 = 10−1 × E3×3, q̂0= 0, Q̂0 = 10−6 × E3×3, r̂0= 0, R̂0= 0.1, where E3×3 denotes the
unit matrix of degree 3.

The SOC estimation results of different methods and the SOC theoretical reference
result are shown in Figure 6. As can be seen from Figure 6, IAUKF, IUKF, and UKF can
estimate the SOC successfully, and the trend of SOC estimation curves are all consistent
with the SOC theoretical reference curve. However, compared with the other two ap-
proaches, the SOC estimation result obtained by IAUKF is much closer to the theoretical
reference curve.
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The error curves between the estimated SOC and reference SOC are shown in Figure 7.
At the early state of SOC estimation, the estimation error of IAUKF for SOC is higher than
IUKF and UKF. The reason is that during this period, the Sage–Husa adaptive filter is
dynamically estimating the actual noise statistics of the system, and the estimated system
noise statistics have not matched the actual noise statistics yet. As for the IUKF and UKF,
the parameters of the noise statistics are preset, and the preset values are consistent with
the actual noise statistical characteristics after the battery starts to work. Therefore, these
two methods can obtain accurate SOC estimation, which is superior to IAUKF. About
300 s later, as the discharge progresses, the actual noise statistics changes, and the preset
noise values cannot reflect the noise statistical characteristics any longer. As a result, the
SOC estimation error curves of the IUKF and UKF fluctuate up and down dramatically.
However, the IAUKF can estimate and correct the actual noise statistics of the system in
real time through the Sage–Husa adaptive filter; thus, IAUKF can still obtain accurate SOC
estimates, and the fluctuation of the SOC estimation error curve is significantly slighter than
IUKF and UKF. Additionally, it is not difficult to find that the difference in SOC estimation
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accuracy between IUKF and traditional UKF is very small. This indicates that replacing
the Cholesky factor decomposition in traditional UKF with SVD will not decrease the SOC
estimation accuracy. Furthermore, as illustrated in Figure 7, we can also conclude that the
estimation error of the three algorithms for SOC all exist with some certain offsets, namely,
the estimation error curves of the three algorithms for SOC do not fluctuate around “SOC
error = 0.” The reason for this phenomenon may be that when the offline least recursive
squares method is used to identify the parameters of the battery model, the input noise of
the system that can cause biased identification of the model parameters has not been taken
into consideration. Consequently, there is a certain error between the identified battery
model parameters and the real values [30]. The existence of this error reduces the accuracy
of the battery model, which, in turn, leads to a certain deviation of the SOC estimation
errors of the three methods.
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where k is the step with a sample interval; Sk denotes the theoretical value of SOC; kS
denotes the estimated value of SOC; L is the number of samples; |·| denotes the absolute 
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In order to compare the accuracy of the three algorithms for SOC estimation quan-
titatively, the maximum absolute error (MAE) and root-mean-square error (RMSE) are
employed in this paper to evaluate the three estimation methods. The smaller the MAE and
RMSE are, the higher the SOC estimation accuracy is [31]. MAE and RMSE are calculated
as follows: 

q̂k= (1− dk)q̂k−1+dk(x̂k −
2n
∑

i=0
ω

(i)
m f(xi,k−1, uk))

Q̂k= (1− dk)Q̂k−1+dk(KkekeT
kKT
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(i)
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(36)

RMSE =

√√√√ 1
L

L

∑
k=1

(Sk − Ŝk)
2 , k = 1 ∼ L (37)

where k is the step with a sample interval; Sk denotes the theoretical value of SOC; Ŝk
denotes the estimated value of SOC; L is the number of samples; |·| denotes the absolute
value; and max (·) represents the maximum value of all samples.

The comparisons of MAE, RMSE of IAUKF, IUKF, and UKF under the FUDS test are
shown in Table 2.

Table 2. Comparisons of MAE and RMSE between IAUKF, IUKF, and UKF of FUDS test.

Estimation Method MAE (%) RMSE

IAUKF 1.92 0.005
IUKF 2.4 0.0094
UKF 2.4 0.0094
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It can be inferred from Table 2 that the MAE and RMSE of the IAUKF are smaller than
IUKF and UKF, indicating that the accuracy of IAUKF for SOC estimation is better than the
other two estimation methods. Considering the character length limits of the computer, the
MAE and RMSE of the IUKF and traditional UKF are the same, which also suggests that
the IUKF and UKF can achieve almost the same SOC estimation accuracy.

To verify the suppression ability of IAUKF on the non-positive definiteness of error
covariance further, the initial value of error covariance of the IAUKF, IUKF, and UKF are
set as negative definite in this paper, namely, P0 = −10−1 × E3×3, and the other initial
parameters are unchanged. In this case, the UKF cannot carry out the Cholesky factor
decomposition due to the non-positive error covariance, which leads to the failure of SOC
estimation. However, the IUKF and IAUKF can still complete the SOC estimation. When
the error covariance is negative definite and positive definite, the SOC estimation error
comparative curves of the IUKF are shown in Figure 8, and the SOC estimation error
comparative curves of the IAUKF are shown in Figure 9.
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As can be observed from Figures 8 and 9, although the initial error covariance is
negative definite, the IUKF can still achieve the same accurate SOC estimation since its
initial error covariance is positive definite, and so does the IAUKF. It can be concluded
that compared with UKF, because of the excellent numerical stability of SVD, the IUKF can
suppress the non-positive definiteness of the error covariance and improve the stability of
SOC estimation. Additionally, this characteristic has been effectively extended in IAUKF.
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5. Conclusions

The SOC of the lithium-ion battery is the core parameter of BMS. Accurate SOC
estimation is the premise to realize the functions of BMS and ensure the safe operation of
electric vehicles. However, the traditional UKF fails to estimate SOC due to the non-positive
error covariance of the state variable and the SOC estimation accuracy is not high because of
the unknown or inaccurate system noise statistics. In this paper, a lithium-ion battery SOC
estimation method based on an improved adaptive unscented Kalman filter is proposed
to solve this problem. Experiments have been carried out to verify the effectiveness of
the IAUKF by comparing it with traditional UKF and IUKF in terms of SOC estimation
stability and accuracy. Based on the experimental results, the main concluding remarks can
be made below:

(1) Replacing the Cholesky decomposition in traditional UKF with SVD will not decrease
the SOC estimation accuracy, and the IUKF and UKF can achieve almost the same
SOC estimation results. The MAE of the traditional UKF and IUKF both are 2.4%, and
the RMSE of the two methods both are 0.0094 when the character length limits of the
computer are taken into consideration.

(2) With the fantastic numerical stability of SVD, the IUKF can suppress the non-positive
definiteness of the error covariance, so as to improve the stability of SOC estimation,
and this characteristic can also be found in IAUKF, namely, whether the initial error
covariance is positive definite or negative definite, both the IUKF and IAUKF can
still complete the SOC estimation of the battery. However, when the initial error
covariance is negative definite, the traditional UKF fails to estimate the SOC because
the Cholesky decomposition cannot be carried out any longer.

(3) The IAUKF is formed by combining IUKF with the Sage–Husa adaptive filter. With the
help of the Sage–Husa adaptive filter, the IAUKF can realize the adaptive estimation
of the system process and measurement noise during the process of SOC estimation.

(4) The influence of the unknown or inaccurate system noise statistics on SOC estimation
precision can be reduced by the IAUKF; thereby the SOC estimation accuracy can be
improved. The MAE of the IAUKF is 1.92%, and the RMSE is 0.005; the two values
are all smaller than those of IUKF and traditional UKF.

Although the IAUKF proposed in this paper improves the stability and accuracy of
SOC estimation, the IAUKF still has the following limitations when applied in practical
applications: firstly, in the actual operation of electric vehicles, the battery model parame-
ters are not fixed, and complex operating conditions may lead to the changes in battery
model parameters. Secondly, when the offline recursive least squares method is used to
identify the battery model parameters, the identified parameters will deviate from the
true values if the input noise is not compensated. Additionally, inaccurate parameters will
reduce the accuracy of the battery model, which leads to an increase in SOC estimation
error. Therefore, more attention will be focused on the method that can accurately identify
the battery model parameters in real time by the authors, then combine the method with
the IAUKF proposed in this paper to improve the estimation accuracy of SOC further.
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