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Abstract: Background: Diet impacts both human and environmental health and must be designed
to optimize the training and performance of athletes. The aim of this study was to quantify the
effect of dietary advice (DA) on the food intake of wheelchair basketball athletes (WBA) and the
environmental impact longitudinally. Methods: DA were provided to WBA of the Italian national
team (DAM-T1). Nutritional assessment and evaluation of the environmental impact of diet were
performed two months (DAM-T2) and one year later (DAM-T3), when a post-COVID-19 survey was
performed also in WBA who did not receive counselling (men: NDAM-T3, women: NDAW-T3).
Results: After DA, WBA showed a reduced percentage of energy derived from sugars and fats.
Athletes adjusted their protein intake according to the personalized recommendations. The intake of
some micronutrients improved after DA and was higher compared to NDAM-T3 and NDAW-T3.
Despite the lower impact of diet in NDAW-T3, they presented more nutritional deficiency than men.
The mean intake of vegetables was in the range of the EAT-Lancet Commission suggestion only two
months after DA. After DA, fiber intake increased and adapted to the tolerated level. Conclusions:
WBA improved their diet after DA but did not comply with the EAT-Lancet suggestion for red meat
and legumes.

Keywords: Paralympics; pain; body mass; nutritional adequacy; ecological footprints

1. Introduction

Overnutrition and high consumption of processed and animal foods have an effect on
both human and environmental health [1,2] and it has been suggested that the excess body
fat should be considered waste [3]. The coronavirus disease 19 (COVID-19) lockdown (LD)
negatively impacted both dietary habits and physical activity, and increases in intake of
energy-dense, sweet and salty foods and/or in screen use were observed in Europe, North
America, South America, Australasia, Asia and Africa [4–9].

The ultra-processed food consumption was higher during the COVID-19 pandemic
period and more prevalent in Latin America [10]. Moreover, the COVID-19 diet had
lower nutritional quality and higher energy intake and environmental impact than the
pre-COVID-19 diet in Spain [11].

On the contrary, in Italy, reported purchases of ready-made meals were reduced
by 50% [12]. Overall, 21.2% of responders increased their consumption of fresh fruit and
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vegetables, despite the increase in “comfort food” (sweets) [12]. Chocolate, fresh vegetables,
fruit and baking ingredients had the largest sales increase in Italy and 53.7% of individuals
reduced their household food waste production, leading to sustainable habits [13]. It has
been suggested that shifts toward mostly plant-based dietary patterns, with reduced
meat consumption, can be partly due to increased awareness of illnesses linked to animal
foods [14], and that increased purchasing of pulses [15] during the COVID-19 pandemic
can lead to potential health and environmental benefits in the longer term. In France, a
growing awareness of the importance of sustainable food choices has been reported [16]
and the scores of adherence to the Mediterranean diet were higher in individuals who
increased their physical activity during confinement [17].

Worldwide, higher body mass index (BMI) was associated with decreased levels of
physical activity, lower diet quality and/or a greater frequency of overeating and emo-
tional eating [6,18,19]. Paralympic athletes perceived a higher negative impact in their
training by the LD, compared to Olympic athletes [20]. Various studies, conducted before
the COVID-19 pandemic, have reported high fat intake and inadequate carbohydrate
(CHO), fiber and/or pulse intake in Paralympic [21] and in wheelchair basketball athletes
(WBA) [22–26]. Therefore, the need for dietary advice (DA) to improve the nutrition of
Paralympic athletes has been previously suggested [23]. In male elite WBA, the macronu-
trient intake improved, after DA, from 3.8 ± 1.3 g/kg to 4.2 ± 1.9 g/kg CHO and from
36 ± 5 to 32 ± 5 percent of total energy intake (%En) derived from fat [27].

During an ongoing longitudinal study, aimed at evaluating the effect of DA on the
food intake of the WBA of the Italian national team, the Italian Government imposed a
quarantine of two months, restricting the movement of the population except for necessity,
work and health circumstances, in response to the COVID-19 pandemic growing in the
country. As a result, a post-COVID-19 LD follow-up was conducted, including a web-based
survey comparing lifestyle changes during LD. Moreover, after LD, the nutritional quality
and environmental impact of the diet of WBA who received DA were compared with those
that did not.

2. Methods
2.1. Recruitment and Study Design

The study was conducted during two high-intensity training camps held in the prec-
ompetitive European championship and a follow-up was performed after one year. The
Ethics Committee of the Department of Physiology and Pharmacology “Vittorio Erspamer”,
Sapienza University of Rome (Italy) approved the study, and it was undertaken in accor-
dance with the Helsinki Declaration for research on humans. Before participating, WBA
were informed about the purpose of the study and provided their written consent.

During a training camp, before the 2019 European Championship (T1), personalized
DA and an interactive course on healthy diet were provided to 16 WBA of the Italian
national team. Adherence to DA was determined during a second training camp (T2)
held two months later, exclusively on the 12 athletes who participated in both the training
camps. One year after the dietary advice (June 2020), a post-COVID-19 LD follow-up (T3)
was conducted during a meeting that also involved other 21 WBA, who did not receive
personalized DA (12 men NDAM-T3 and 9 women NDAW-T3). These two groups were
added to evaluate the differences in the self-reported impact of the LD on lifestyle, among
WBA who did or did not receive DA.

Exclusion criteria were not applied to acquire data of top athletes (from the national
junior team and from the women’s national team) of the “Federazione Italiana Pallacanestro
in Carrozzina” (FIPIC), who agreed to participate.

2.2. Data Collection and Analysis

The health condition and the International Wheelchair Basketball Federation (IWBF)
classification of WBA were provided by the FIPIC. A web-based survey was conducted
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to evaluate the self-reported characteristics and lifestyle, including dietary and physical
activity changes during the 2 months of LD in Italy.

Due to the well-known association between sitting time and musculoskeletal symp-
toms [28], the survey included the Nordic Musculoskeletal Questionnaire (NMQ) [29],
previously used to evaluate musculoskeletal symptoms in workers [28].

Body mass (BM) was determined using a calibrated electronic scale (Tanita BWB-800
MA, Wunder SA.BI. Ltd., Milano, Italy) to the nearest 0.1 kg with athletes wearing minimal
clothing at T1, T2 and T3.

Dietary intake was assessed by means of a 3-day recall record questionnaire (two
consecutive working days, and one weekend day or holiday, as fully described by Wil-
lett [30]) before each meeting event (T1, T2 and T3). The players were asked to record the
amounts of food consumed by food weighing or with the help of visual tools to increase
the accuracy of portion size. Data were completed during a nutritional interview. Sup-
plement intake for each WBA was noted, and players provided packaging information
about protein (PRO) powders/bars and sport beverages. An internal database was used
to determine the nutrient composition of the meals according to the Italian Food Com-
position Tables (CREA-AN) and the United States Department of Agriculture (USDA)
Databases (https://ndb.nal.usda.gov/ndb/, accessed on 14 January 2021).

Compliance with the recommended macronutrient and micronutrient intakes for the
Italian population (Livelli di Assunzione di Riferimento di Nutrienti ed energia per la
popolazione italiana (LARN) Dietary reference values of nutrients and energy for the Italian
population), https://sinu.it/tabelle-larn-2014/, accessed on 14 January 2021), and with
the suggested intakes for basketball players by the Federazione Medico Sportiva Italiana
(FMSI) (https://www.nutrizioneesalute.fmsi.it/images/img/pdf/opuscolo_per_atleti_e_
famiglie.pdf, accessed on 14 January 2021) and for Paralympic athletes [31], was evaluated.
For micronutrient intake, gender-specific recommended values (LARN) were considered,
and for fiber intake, two groups were considered based on the possible neurogenic bowel
symptoms: spinal cord injury/spina bifida (SCI/SB, 15–30 g/d) [31] and amputation/other
health conditions (AMP/OHC, LARN: 25 g/d).

Adherence to the suggested dietary intakes of food-groups of the EAT-Lancet plan-
etary health diet was evaluated [1]. Moreover, the ecological footprints were assessed
using the Barilla Center for Food & Nutrition (BCFN) database (https://www.barillacfn.
com/en/double_pyramid_technical_data/, accessed on 14 January 2021). In particular,
carbon footprint (g CO2), water footprint (L) and land footprint (m2) were calculated as
previously described [3] and normalized for kg food for BM/d. Footprints reported by
Berardy et al. [32] and Bacenetti et al. [33] were used for soy and whey PRO-supplements.

2.3. Statistics

Categorical variables were expressed as percentages and significance assessed by the
χ2 test. Continuous variables were expressed as means and standard deviation (SD) for
results passing normality test (Shapiro–Wilk) and were analyzed by analysis of variance
(ANOVA) and Student–Newman–Keuls method. Otherwise, data were expressed as
median (25–75% range) and analyzed by Kruskal–Wallis one-way analysis of variance on
ranks and Dunn’s method. The level of significance was set below 5% (p < 0.05).

3. Results
3.1. Characteristics and Post-LD Survey

The IWBF class ranged between 1 and 4.5, with no differences among groups, whereas
WBA in the NDAM-T3 group were younger compared to the other groups, according to
the percentage of the senior team WBA (Table 1). Table 1 shows data regarding the health
conditions of WBA and Table 2 shows the reported symptoms of COVID-19 during the LD.
During this period, only 18% of the DAM-T3 athletes reported having received a screening
test for COVID-19 (with overall negative results), while none of the NDAM-T3 and NDAW-
T3 performed a screening test (Table 2). Despite this, 22% of the NDAW-T3 declared fatigue

https://ndb.nal.usda.gov/ndb/
https://sinu.it/tabelle-larn-2014/
https://www.nutrizioneesalute.fmsi.it/images/img/pdf/opuscolo_per_atleti_e_famiglie.pdf
https://www.nutrizioneesalute.fmsi.it/images/img/pdf/opuscolo_per_atleti_e_famiglie.pdf
https://www.barillacfn.com/en/double_pyramid_technical_data/
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and percentages between 11% and 44% in all groups declared neck, shoulders, dorsal
and/or lumbar pains during LD (Table 2).

Table 1. Characteristics of WBA.

Characteristics DAM-T1 (n = 16) DAM-T2 (n = 12) DAM-T3 (n = 12) NDAM-T3
(n = 12) NDAW-T3 (n = 9)

Age (year) 27 (24–31) a 27 (25–31) a 28 (25–30) a 19 (18–21) b 26 (19–30) a,b

National Team 100% Senior 100% Senior 100% Senior 47% Senior 100% Women

IWBF class 2.5 (1.5–4.0) 3.0 (1.6–4.0) 4.0 (2.5–4.2) 2.5 (1.7–3.2) 2.5 (1.2–3.2)

Health condition 8 SCI/SB, 5 AMP,
3 OHC

5 SCI/SB, 4 AMP,
3 OHC

3 SCI/SB, 4 AMP,
5 OHC

6 SCI/SB, 2 AMP,
4 OHC

4 SCI/SB, 1 AMP,
4 OHC

BM (kg) 74.2 ± 12.3 a 76.4 ± 11.7 a 72.8 ± 9.8 a 57.2 ± 11.7 b 61.0 ± 10.6 b

BM variation
measured

difference (kg)
T2–T1: −1.4 ± 2.5

measured
difference (kg)

T3–T2: −1.3 ± 4.8
T3–T1: −2.2 ± 3.8
reported variation

during LD
55%↔

9% ↓ (diet)
18% ↑ (training)

18% other/missing

reported variation
during LD

50%↔
25% ↓ (diet)
25% ↑ (LD)

reported variation
during LD

45%↔
22% ↓ (diet)
22% ↑ (LD)

11% missing

BM difference
between

measured and
reported

0.1 (0.0–4.7) 0.0 (−0.5–0.3) −0.8 (−2.5–0.8) −0.2 (−5.1–0.9) 1.2 (−0.3–4.1)

AMP: amputation; BM: body mass; DA: dietary advice; DAM: men who received DA; IWBF: International Wheelchair Basketball Federation
classification; LD: lockdown; NDAM: men who did not receive DA; NDAW: women who did not receive DA; OHC: other health conditions;
SB: spina bifida; SCI: spinal cord injury; T1: first camp, before DA; T2: second training camp, 2 months after DA; T3: post-COVID-19
LD follow-up; WBA: wheelchair basketball athletes; ↑: increase; ↓: decrease. Continuous variables are expressed as mean and standard
deviation, when normality (Shapiro–Wilk) test passed (ANOVA applied, followed by Student–Newman–Keuls) or as median (25%–95%),
when normality test (Shapiro–Wilk) failed (Kruskal–Wallis ANOVA on ranks, followed by Dunn’s method). a,b: different letter p < 0.05.
Categorical variables are expressed as percentages.

Table 2. Post-LD web-based survey.

Self-Reported Data DAM-T3 (n = 12) NDAM-T3 (n = 12) NDAW-T3 (n = 9)

Test-COVID LD 18% negative not tested not tested

Fever LD 18% 8% 11%

Cough LD 9% 17% 22%

Fatigue LD 9% 0% 22%

Reported pain:
neck

shoulders
dorsal
lumbar

LD–no before LD
27–0%
45–0%
18–0%
36–0%

LD–no before LD
25–0%

33–17%
33–8%
17–8%

LD–no before LD
44–0%
33–0%
11–0%
22–0%

Reported cause of
pain

training 80%
↓ physiotherapy 20%

training 44%
↑ sedentary 22%

training 17%
↓ physiotherapy 17%

Exercise LD ↓ 73%–↑ 18% ↓ 92%–↑ 8% ↓ 44%–↑ 22%

Sedentary LD ↑ 73% ↑ 83% ↑ 33%

Eating LD ↓ 36%–↑ 9% ↓ 42%–↑ 25% ↓ 11%–↑ 11%
DA: dietary advice; DAM: men who received DA; LD: lockdown; NDAM: men who did not receive DA; NDAW:
women who did not receive DA; T3: post-COVID-19 LD follow-up; ↑: increase; ↓: decrease. Categorical variables
are expressed as percentages.
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Only some WBA in the NDAM-T3 group reported that the pain was not present before
LD, whereas many athletes, especially in the DAM-T3 group, reported training as the
main cause of pain (Table 2). However, other WBA declared that the cause of pain was
the reduction in physiotherapy practice (NDAM-T3 and NDAW-T3) or the increase in
the sedentary lifestyle (NDAM-T3). Accordingly, most of the male WBA declared more
sedentary time and less exercising as consequences of LD (Table 2).

A voluntary reduction of food was performed by 36% of DAM-T3 and 42% of NDAM-
T3, to avoid weight gain, and BM remained stable in around half of the sample (Table 2).
Some WBA self-declared that they were on a diet during the LD and consequently they
lost weight, while others maintained the same eating habits, but the lower frequency of
training led to weight gain. In any case, subjects who received nutritional advice (DAM-T3)
ascribed the BM increase to the increased training, whereas the other groups indicated the
LD-induced lifestyle change as the main cause of BM increase (Table 2).

However, the comparison between measured and reported BM revealed a tendency to
overestimate and underestimate BM by women and men, respectively (Table 1). On the
other hand, the measured BM variation among the three different time points revealed a
mean BM decrease in athletes of the DAM group (Table 1).

Figure 1. Macronutrient and alcohol intake as percentages of total energy intake. (a) CHO: carbohy-
drates; suggested intakes for basket players from the FMSI: Federazione Medico Sportiva Italiana;
(b) DAM: men who received dietary advice (DA) at T1: first camp, before DA (n = 16); (c) DAM: men
who received DA at T2: second camp, 2 months after DA (n = 12); (d) DAM: men who received DA
at T3: post-COVID-19 lockdown (LD) follow-up (n = 12); (e) NDAM: men who did not receive DA at
T3 (n = 12); (f) NDAW: women who did not receive DA at T3 (n = 9).
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3.2. Dietary Intakes

The contribution to total energy intake for CHO (%En, Figure 1) was higher in the
NDAW-T3 and NDAM-T3 groups compared to the DAM group before DA (DAM-T1,
p < 0.05). The latter increased CHO %En after LD (T3) compared to the first camp (DAM-T1
versus DAM-T3: p < 0.05).

However, when compared to the recommended level of intake suggested for high-
intensity training (>5 g/kg T1 and T2) and for general training (range 3–5 g/kg T3), CHO
intake was below the requirement during a training camp for DAM-T1 and DAM-T2
groups, whereas it was above the recommendation in some WBA of the NDAW-T3 and
NDAM-T3 groups (Table 3). Moreover, %En from sugars exceeded the recommendations
in half of the athletes among the DAM group at T1, but their eating habits met specific
targets after receiving DA (T2) (Table 3, Figure 2).

Table 3. Macronutrient intake.

Energy and
Macronutrients DAM-T1 (n = 16) DAM-T2 (n = 12) DAM-T3 (n = 12) NDAM-T3

(n = 12)
NDAW-T3

(n = 9)

En (kcal/kg BM) 32.9 ± 10.4 30.1 ± 6.1 29.4 ± 4.8 32.4 ± 8.8 26.8 ± 5.1

CHO (g/kg)
T1/T2: >5 g/kg
T3: 3–5g/kg [31]

Sugars (%En)
15 %En (LARN)

Fiber (g/d)
25 g/d (LARN) for

AMP/OHC and
15–30 g/d for SCI/SB [31]

3.6 ± 1.2 3.4 ± 0.9 3.6 ± 0.7 4.5 ± 1.5 3.7 ± 0.9

<87% <92% 0% * >15% >11%

15.2 ± 4.6 a 10.2 ± 2.6 b 10.5 ± 4.3 b 8.6 ± 3.2 b 10.4 ± 4.2 b

>50% 0% * >11% 0% >22%

17 (14–22) a 18 (14–24) a,b 23 (21–25) b 19 (16–21) a,b 18 (13–20) a

<69%
(>12% SCI/SB) <67% <44% <61% <78%

FAT (g/kg)
Saturated fat (%En)

10 %En (LARN)

1.3 ± 0.4 a 1.1 ± 0.2 a,b 1.0 ± 0.2 b 1.0 ± 0.3 b 0.9 ± 0.2 b

11 (9–12) a 10 (8–11) a 12 (10–13) a,b 13 (12–14) b 14 (12–16) b

>56% >58% >67% >100% * >100% *

PRO-animal (g/kg)
PRO-vegetable (g/kg)
PRO-supplement use

PRO (g/kg)
range 1.2–1.7 g/kg BM [31]

0.9 g/kg BM (LARN)

0.9 (0.7–1.1) a 0.9 (0.9–1.0) a 0.8 (0.7–0.9) a 0.9 (0.7–1.1) a 0.5 (0.4–0.6) b

0.5 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.2 0.4 ± 0.2

37% 67% * 11% 8% 11%

1.5 (1.1–2.0) a 1.5 (1.2_1.8) (a) 1.3 (1.2_1.4) (a,b) 1.3 (1.1_1.4) (a,b) 1.0 (0.8_1.0) (b)

<37%–>37%
<12%

<33% _ > 42 %
0%

< 22 % _ > 11 %
0%

< 46 % _ > 15 %
0%

< 89 % _ > 11 %
<44% *

AMP: amputation; BM: body mass; DA: dietary advice; CHO: carbohydrates; DAM: men who received DA; En: energy intake; LARN:
Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione italiana (Dietary reference values of nutrients and energy for
the Italian population); LD: lockdown; NDAM: men who did not receive DA; NDAW: women who did not receive DA; OHC: other health
conditions; PRO: proteins; SB: spina bifida; SCI: spinal cord injury; T1: first camp, before DA; T2: second training camp, 2 months after DA;
T3: post-COVID-19 LD follow-up. Continuous variables are expressed as mean and standard deviation, when normality (Shapiro–Wilk)
test passed (ANOVA applied, followed by Student–Newman–Keuls) or as median (25–95%), when normality test (Shapiro–Wilk) failed
(Kruskal–Wallis ANOVA on ranks, followed by Dunn’s method). a,b: different letter p < 0.05. Categorical variables are expressed as
percentages, χ2: * p < 0.05.

On the other hand, fiber intake increased after DA (Figure 2), and when using
different daily intake recommendations for AMP/OHC (LARN of 25 g/d) and SCI/SB
(15–30 g/d [31]), the latter adapted their intake to the tolerated level (all < 30 g/d, Table 3).

Fat intake (Figure 1 and Table 3) was lower in all groups post-LD compared to the
DAM group at the first camp, before DA. However, both groups who did not receive DA
had higher saturated fat intake than the value recommended by LARN (Table 3).

Around half of the women did not reach the LARN for PRO and overall NDAW-T3
had lower intake of PRO derived from animal sources, whereas no differences were found
for PRO derived from vegetable sources among groups (Table 3).
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Figure 2. Variation in macronutrient and fiber intakes of athletes after dietary advice. (a) CHO:
carbohydrates; (b) Fiber; (c) Fat; (d) PRO: proteins. T1: first camp, before dietary advice (DAMT1); T2:
second camp, 2 months after DA (DAMT2); T3: post-COVID-19 lockdown (LD) follow-up (DAMT3).
Data are expressed as mean and standard deviation.

Although no differences were found in the mean PRO intake after DA (Table 3),
a high inter-subject variability after DA was observed (Figure 2) and more WBA used
PRO-supplements at the second camp (DAM-T2) (Table 3).

Among all the WBA groups who took PRO-supplements, no significant differences
were found in the dose of PRO (g/d: 26.5 ± 16.8 DAM-T1, 18.2 ± 8.6 DAM-T2, 30.0 ± 0.0
DAM-T3, NDAM-T3 and NDAW-T3).

Athletes who had a PRO intake below that recommended for the general population
(0.9 g/kg BM, LARN) increased their intake, and nobody was below the LARN, but many
of them were below the recommendation for Paralympic athletes (1.2–1.7 g/kg BM) [31]
(Table 3).

On the other hand, four out of five WBA who had intakes above the upper level
of 2.0 g/kg BM at T1 reduced their PRO consumption in the range of 1.8–2.0 g/kg BM.
Consequently, changes in the percentage of WBA with intake in the range recommended
for Paralympic athletes (1.2–1.7 g/kg BM) [31] were not observed (Table 3).

Absolute intakes of micronutrients in terms of amount/day and prevalence of the
subjects below the recommendations (LARN) are presented in Table 4. No significant
differences were found in the intake of vitamins B1, B2, C, A, beta-carotene, sodium and
calcium amongst groups (Table 4). High percentages of WBA had low intake of calcium
and no athletes complied with the vitamin D recommendation (Table 4), despite a mean
increase of 3.8 µg in the intake one year after DA (p < 0.05). Although vitamin D and
calcium were the most critical in all groups, around half of the NDAW-T3 did not cover
phosphorus intake (Table 4). Women (NDAW-T3) had a lower intake of vitamin B3 and
HEME iron than men, did not cover the recommended intake of vitamin E and had lower
intakes of most micronutrients (Table 4).
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Table 4. Micronutrient intake.

Micronutrients DAM-T1 (n = 16) DAM-T2 (n = 12) DAM-T3 (n = 12) NDAM-T3 (n = 12) NDAW-T3 (n = 9)

Vitamin B1 mg
1.2 (M) and 1.1 (W) LARN

1.1 (0.8–1.8) 1.0 (0.9–1.7) 1.1 (1.0–1.2) 1.0 (0.9–1.1) 0.9 (0.8–1.2)
<50% <58% <92% <20% <67%

Vitamin B2 mg
1.6 (M) and 1.3 (W) LARN

1.6 (1.1–2.9) 1.8 (1.4–2.4) 1.7 (1.4–1.9) 1.2 (1.1–1.4) 1.1 (0.9–1.3)
<44% <42% <22% <85% <55%

Vitamin B3 mg
18.0 LARN

23.4 ± 5.1 a 20.5 ± 4.8 a 22.3 ± 3.7 a 15.9 ± 3.9 b 10.8 ± 4.1 c

<6% <17% <3% * <15% <13%

Vitamin B6 mg
1.3 LARN

2.4 ± 0.7 a 2.4 ± 0.6 a 2.4 ± 0.3 a 1.7 ± 0.5 b 1.3 ± 0.7 b

0% 0% 0% <15% <67% *

Vitamin B12 µg
2.4 LARN

2.2 ± 0.4 a 3.0 ± 0.5 b 2.7 ± 0.1 c 2.3 ± 0.1 a 1.9 ± 0.3 a

<80% 0% 0% <61% <100% *

Folic acid µg
400.0 LARN

318.6 ± 133.2 a,b 364.2 ± 128.1 a 329.3 ± 77.5 a,b 233.1 ± 92.2 b 200.0 ± 89.3 b

<75% <75% <78% <92% <100%

Vitamin C mg
105 (M) and 85 (W) LARN

89.5 (71.7–154.3) 94.8 (49.8–164.2) 128.2 (76.4–133.3) 78.9 (44.1–96.7) 55.7 (48.5–73.1)
<62% <50% <44% <93% <89%

Vitamin A (RE) µg
700 (M) and 600 (W) LARN

664 (530–1266) 812 (673–1437) 826 (533–1211) 722 (350–832) 456 (326–693)
<56% <25% <44% <46% <67%

Beta-caroteneµg 2703 (1924–4021) 3307 (1877–6936) 3884 (2426–6343) 3484 (1348–4482) 2009 (1436–2844)

Vitamin E mg
13.0 (M) and 12.0 (W) LARN

14.9 (13.1–17.5) a 14.0 (12.7–16.3) a 11.6 (9.2–14.6) a.b 9.3 (7.6–11.0) b 8.1 (5.0–10.5) b

<25% <17% <56% <92% <100% *

Vitamin D µg
15.0 LARN

1.9 (1.7–3.5) a 1.7 (1.2–2.2) a 6.5 (2.3–11.5) b 2.1 (1.9–3.7) a,b 2.2 (1.7–2.9) a,b

<100% <100% <100% <100% <100%

Calcium g
1.00 LARN

0.77 (0.46–10) 0.61 (0.50–0.78) 0.86 (0.84-0.95) 0.85 (0. 73-0.98) 0.74 (0.62-0.83)
<75% <92% <89% <85% <100%

Phosphorus g
0.7 LARN

1.35 (1.10–1.60) a 1.30 (1.18–1.39) a 1.25 (1.12–1.34) a,b 0.91 (0.89–1.03) b 0.75 (0.60–1.09) b

0% 0% 0% 0% <44% *
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Table 4. Cont.

Micronutrients DAM-T1 (n = 16) DAM-T2 (n = 12) DAM-T3 (n = 12) NDAM-T3 (n = 12) NDAW-T3 (n = 9)
Sodium g

in the range 1.5–2.0 LARN
1.99 (0.98–2.48) 1.39 (1.01–2.63) 1.15 (0.79–1.95) 1.04 (0.74–1.69) 1.53 (1.09–1.63)

12% 17% 11% 23% 44%

Potassium g
3.9 LARN

3.05 (2.73–4.01) a 3.01 (2.51–3.63) a,b 2.98 (2.26–3.32) a,b 2.14 (1.80–2.57) b 1.58 (1.12–2.95) b

<69% <92% <100% <85% <79%

Iron mg
10.0 (M) and 18.0 (W) LARN

HEME iron
non-HEME iron

11.2 (9.9–14.6) a 11.0 (9.1–14.2) a 11.9 (9.4–13.4) a 8.0 (7.2–11.0) a,b 5.9 (5.7–8.0) b

<25% <33% <33% <69% <100%
3.6 ± 1.3 a 3.6 ± 1.1 a 3.5 ±1.0 a 3.6 ± 1.5 a 1.7 ± 0.3 b

8.6 (6.8–10.5) a 8.4 (6.1–10.8) a,b 8.1 (6.1–11.0) a,b 5.3 (4.2–6.5) b 4.4 (3.1–7.4) b

Zinc mg
12.0 (M) and 9.0 (W) LARN

13.7 ± 3.7 a 14.0 ± 2.6 a 11.9 ± 2.3 a,b 10.0 ± 3.4 b,c 8.2 ± 3.1 c

<37% <25% <44% <77% <67%
DAM: men who received dietary advice (DA); LARN: Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione italiana (Dietary reference values of nutrients and energy for the Italian
population); M: men; NDAM: men who did not receive DA; NDAW: women who did not receive DA; OHC: other health conditions; T1: first camp, before DA; T2: second training camp, 2 months after DA;
T3: post-COVID-19 lockdown (LD) follow-up; W: women. Continuous variables are expressed as mean and standard deviation, when normality (Shapiro–Wilk) test passed (ANOVA applied, followed by
Student–Newman–Keuls) or as median (25%–95%), when normality test (Shapiro–Wilk) failed (Kruskal–Wallis ANOVA on ranks, followed by Dunn’s method). a,b,c: different letter p < 0.05. Categorical variables
are expressed as percentages, χ2: * p < 0.05.
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Among men, WBA of the senior national team had higher intakes of potassium,
phosphorus, non-HEME iron, zinc and vitamins B3, B6 and E (Table 4). Folic acid intake
was significantly higher in the DAM-T2 group compared to NDAM-T3 (Table 4).

Remarkably, the intake of vitamin B12 improved significantly after DA, with a mean
increase of 0.8 µg between the first (DAM-T1) and second (DAM-T2) camp (p < 0.05).
Therefore, the percentage of WBA with inadequate intake of vitamin B12 was reduced from
80% at T1 to 0% at T2 and T3.

On the contrary, the increases in vitamin A and C were not significant, but the per-
centage of WBA who did not comply with the recommendation for vitamin C was higher
in NDAM-T3 and NDAW-T3, compared to DAM, after DA (Table 4). Moreover, after DA,
the percentage of WBA who did not cover LARN intake for vitamin A was reduced by half
(Table 4).

Only a few WBA, among those who did not receive DA, reported using vitamin
supplements (vitamin D: NDAM-T3 n = 1, NDAW-T3 n = 1; vitamin B12: NDAW n = 1;
vitamins B1, B2, B6 and C: NDAM n = 1) or iron supplements (NDAM-T3 n = 1).

3.3. Diet Sustainability

NDAW-T3 had the lower dietary impact; however, a decreasing trend was observed
in WBA of the national team after LD (DAM-T3) compared to before DA (DAM-T1)
(Figure 3). Considering the amount of food consumed (expressed as g/kg BM) by EAT-
Lancet food group categories, the higher contributors were cereals, fruits and vegetables
in each of the WBA groups (Figure 3). However, the mean intakes of vegetables were
lower before DA (DAM-T1: 2.1 ± 1.1 g/kg BM) and in WBA who did not receive DA
(NDAM-T3: 2.6 ± 1.5; NDAW-T3: 2.3 ± 1.6) than the EAT-Lancet suggested portions for
men (70 kg BM: range 2.9–8.6 g/kg BM). The mean intake of vegetables was in the range
of the EAT-Lancet recommendation two months after DA (DAM-T2: 3.7 ± 2.3). This
could account for the non-significant increase in the land footprint of diet at T2 (Figure 3).

However, red meat had the highest values in terms of CO2 emissions, land use and
water consumption (Figure 4) and its consumption was higher than the suggested EAT-
Lancet intake (0–0.4 g/kg BM) in all groups (Figure 3).

On the contrary, despite the environmental impact of fish and dairy foods (Figure 4), the
mean intakes are within the range of the EAT-Lancet diet (0–1.4 g/kg BM and 0–7.1 g/kg
BM, respectively), whereas the consumption of legumes was very low, ranging from zero
(DAM-T3 and NDAM-T3) to 0.6 ± 0.9 g/kg BM (DAM-T1).

An increasing trend was observed in the intakes of Mediterranean food dressing
(g/kg BM: DAM-T1 0.08 ± 0.10, DAM-T2 0.14 ± 0.19, DAM-T3 0.31 ± 0.39), including
onion and garlic. Although the intake of olive oil significantly increased after DA (T2
and T3 versus T1: p < 0.05), it did not reach (g/kg BM: DAM-T1 0.26 ± 0.18, DAM-T2
0.42± 0.18, DAM-T3 0.44± 0.14) the suggested EAT-Lancet intake (0.6 g/kg BM). However,
a non-significant decrease in the impact of total dietary intake of WBA in terms of carbon
and water footprints was observed after DA (Figure 3). This result could be due to food
categories not included in the EAT-Lancet suggested diet (Figure 3). Among these, other
foods group included fast foods (western-style hamburger) and “high-fat” traditional foods
(lasagne, meat tortellini and parmigiana di melanzane).

The overall environmental impact of other beverages (including sport drinks and
caffeine-containing beverages) did not differ among the groups (Figure 4).

Although women consumed less sweets than WBA of the national team before DA, the
difference did not reach statistical significance, whereas significant differences (DAM-T1
versus NDAW-T3: p < 0.05) were observed in the consumption of PRO-supplements and
foods not considered in the EAT-Lancet classification (“other foods”, Figures 3 and 4). The
former had a low environmental impact, whereas the latter, including traditional foods,
were the major contributors of the ecological footprints of the food groups not included in
the EAT-Lancet diet (Figure 4). In particular, the “other foods” footprints were significantly
lower in NDAW-T3 (carbon footprint g CO2/kg BM: 0.4 ± 1.3, water footprint L/kg BM:
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0.4 ± 1.3 and land footprint m2/kg BM: 0) compared to WBA of the national team before
DA (carbon footprint g CO2/kg BM: 6.0 ± 7.2, water footprint L/kg BM: 4.8 ± 5.6 and
land footprint m2/kg BM: 0.04 ± 0.01) (Figure 4). The latter (DAM-T1) decreased the
consumption of these foods after DA (Figure 3) and the carbon (g CO2/kg BM: 4.4 ± 5.9
DAM-T2, 2.6 ± 2.6 DAM-T3) and water (L/kg BM: 3.4 ± 5.9, DAM-T2, 1.8 ± 1.9 DAM-T3)
footprints progressively decreased accordingly (Figure 4).

Figure 3. Ecological footprints and food groups intake. (a) DAM: men who received dietary advice
(DA) at T1: first camp, before DA; at T2: second camp, 2 months after DA and at T3: post-COVID-19
lockdown follow-up; NDAM: men who did not receive DA at T3; NDAW: women who did not
receive DA at T3. Carbon footprint (kg CO2/kg body mass BM) and water footprint as L/kg BM;
(b) Land footprint (m2/kg BM). (c) Daily intake of EAT-Lancet food groups (d) Daily intake of food
groups not included in the EAT-Lancet diet.
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Figure 4. Ecological footprints of food groups. (a) Carbon (kg CO2/kg body mass BM)
footprint of EAT-Lancet food groups. DAM: men who received dietary advice (DA) at T1:
first camp, before DA; at T2: second camp, 2 months after DA and at T3: post-COVID-19
lockdown follow-up; NDAM: men who did not receive DA at T3; NDAW: women who did
not receive DA at T3. (b) Carbon footprint of food groups not included in the EAT-Lancet
diet. (c) Water (L/kg BM) footprint of EAT-Lancet food groups. (d) Water footprint of food
groups not included in the EAT-Lancet diet. (e) Land footprint (m2/kg BM) of EAT-Lancet
food groups. (f) Land footprint of food groups not included in the EAT-Lancet diet.
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4. Discussion

In this study, for the first time, an integrated evaluation of the nutritional and environ-
mental impact of DA on food intake of WBA was conducted. Athletes of the Italian national
team (DAM-T1) received DA and were followed over a year, including two evaluations:
at 2 months (DAM-T2) and after COVID-19 LD (DAM-T3). Although the low number of
WBA could limit the representativeness of Paralympic athletes, a similar group size of elite
WBA was used for the evaluation of the longitudinal effect of DA during a precompetitive
period (n = 11) [27] and was demonstrated to be adequately powered to detect statistically
significant differences in dietary intakes among male (n = 9) and female (n = 14) WBA [22].

The major limitation of the study is that follow-up included the LD period in Italy.
Therefore, in light of the reported impact of LD on the lifestyles and dietary habits of
Italians [7,8,12,34–36], including a mean self-reported weight gain of approximately 1.5 kg,
lower exercise and increased consumption of snacks, unhealthy foods and sweets [19], two
groups of WBA who did not receive DA (NDAM-T3 and NDAW-T3) were evaluated at the
post-COVID-19 LD survey.

The measured BM variation among the three different time points, in athletes of
the DAM group, revealed a mean BM decrease, and those whose BM increased after LD
(DAM-T3) ascribed it to the increased training. On the contrary, among WBA who did not
receive DA, the LD-induced lifestyle change was indicated as the main cause of weight gain.
Women (NDAW-T3) declared a BM higher than the measured one, and higher percentages
of WBA who did not reach recommended intakes of PRO and micronutrients were found
among NDAW-T3, compared to the other groups. Micronutrient deficiencies have been
previously reported in some WBA of the Turkish national wheelchair women’s basketball
team [23]. Moreover, among the female wheelchair basketball players in the Japanese
national team, those with heavy menstrual flow had lower hemoglobin and iron levels [37].
NDAW-T3 had lower intake of PRO from animal sources, probably accounting for the lower
environmental impact of their diet but also their lower intake of HEME iron. Despite this,
red meat had the highest values of ecological footprint and its consumption was higher than
the suggested EAT-Lancet intake in all groups. In this context, the EAT-Lancet Commission
on “Healthy Diets from Sustainable Food Systems” suggests supplementation with iron,
multimineral and multivitamin preparation as an alternative to increased consumption of
red meat for women at risk of iron deficiency [1], and supplementation has been suggested
for WBA with a micronutrient deficiency [26]. Only among athletes who did not receive
DA, a few WBA reported use of vitamin or iron supplements. Among men, WBA of the
senior national team had higher intakes of potassium, phosphorus, non-HEME iron, zinc
and vitamins B3, B6 and E (Table 4). Folic acid intake was significantly higher in the
DAM-T2 group compared to NDAM-T3 (Table 4).

In the present study, vitamin B12 intake improved significantly after DA. This result is
particularly relevant in individuals with SCI, considering that the deficiency with neuro-
logical symptoms can be masked by the pre-existing sensory impairment [38]. Petchkrua
et al. [38] reported improvements from cyanocobalamin replacement in some symptoms,
including reduced pain. In the post-LD survey, athletes in the DAM-T3 group reported
training as the main cause of pain (neck, shoulders, dorsal or lumbar), whereas other WBA
declared that the cause of pain was the reduction in physiotherapy practice (NDAM-T3
and NDAW-T3) or the increase in the sedentary lifestyle (NDAM-T3). In this context, the
administration of vitamin B complex (B1/B6/B12) reduced neuropathic hyperalgesia and
spinal neuron injury following temporary spinal cord ischemia in rats [39] and vitamins
C and E reduced oxidative stress in a rat model of neuropathic pain [40]. No NDAW-T3
met the recommended intake of vitamin E and had lower intakes of most micronutrients
than men. Although the increase in vitamin C intake did not reach statistical significance,
the percentage of WBA who did not comply with LARN in NDAM-T3 and NDAW-T3 was
double that of DAM after DA. On the contrary, despite the significant increase in vitamin
D intake after DA, the values remained below the recommended one. Although the serum
vitamin D level was inversely associated with nonspecific musculoskeletal pain in patients
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on acute rehabilitation unit admission [41], supplementation in patients with SCI and low
serum levels of vitamin D did not improve their “Brief Pain Inventory” score [42]. How-
ever, vitamin D was among the commonly consumed supplements by rugby wheelchair
athletes [43] and vitamin D deficiency remains an important factor associated with severe
COVID-19 and hospital admissions [44]. Despite there being little evidence for the use of
vitamin D supplements to prevent or treat COVID-19, the panel of the National Institute
for Health and Care Excellence (UK) recently agreed that vitamin D is well established for
maintaining bone and muscle health and that supplementation should be considered in
the case of deficiency and during the COVID-19 pandemic, when people may have been
indoors more than usual and do not produce enough vitamin D from sunlight [45].

The PRO intake is important for muscle health and, after DA, participants who had
lower levels than that recommended for the general population (LARN) increased their
consumption; on the other hand, those who had intake above 2.0 g/kg BM decreased
their consumption, according to the suggestions [31]. Significant differences between
DAM-T1 and NDAW-T3 were observed in the use of PRO-supplements, and after DA,
more WBA took PRO-supplements. However, low environmental impacts have been
reported for PRO from soy [32] and whey [33], whereas the five portions a day of fruits
and vegetables recommended for a healthy dietary pattern might provide high ecological
expenditure [3]. The Mediterranean diet is known to have a low environmental impact
compared to other dietary patterns [46]. In Italy, the perception of behavioral control
is among the major factors contributing to vegetable intake [47]. The mean intakes of
vegetables were lower before DA (DAM-T1) and in WBA who did not receive DA (NDAM-
T3 and NDAW-T3) than the EAT-Lancet suggested portions, but in the range of the EAT-
Lancet two months after DA (DAM-T2). On the contrary, the consumption of legumes
remained very low after DA, although it has been reported that the COVID-19 pandemic
resulted in increased purchasing of pulses partly due to human and environmental health
impacts [15]. However, researchers have suggested that some consumers are hesitant
to regularly eat pulses, due to abdominal discomfort [15]. Legumes were consumed
in minimal amounts also by WBA of the Spanish national team [26]. Similarly, and as
previously reported in other studies [22,23], fiber intake was consistently low in both
male and female WBA, but increased after DA in WBA with AMP/OHC (at least 25 g/d,
LARN), whereas WBA with SCI/SB adapted their intake to the tolerated level in the
suggested range for individuals with neurogenic bowel dysfunction (15–30 g/d [31]). A
daily CHO intake >5 g/kg for high-intensity training periods (T1 and T2) and in the range
of 3-5 g/kg for general training needs during the LD (T3) has been considered to measure
CHO compliance and it was not reached by most athletes at T1 and T2, as previously
reported in other studies in wheelchair athletes [21,22,26], but they improved the diet
composition in terms of the percentage of macronutrients after DA (increase CHO %En and
decrease fat %En). In almost all WBA, sugar intake (on a g/kg basis) was outside the global
reference diet of the EAT-Lancet Commission (EAT-Lancet) and exceeded the national
recommendations in half of the athletes at the first camp (T1), but WBA eating habits met
the specific target after they received DA (T2). Significant differences between DAM-T1 and
NDAW-T3 were observed in the consumption of foods not considered in the EAT-Lancet
classification, particularly fast foods and “high-fat” traditional foods, which were the major
contributors to the ecological footprints of this food group. In this context, the consumption
of some traditional energy-dense meals was significantly correlated with BMI [48,49] and
with endothelial dysfunction in healthy people, in Italy [50]. The consumption of “other
foods” (not included in the EAT-Lancet diet) decreased after DA. This result (Figure 3),
in association with a non-significant trend of an increase in the consumption of fish and
eggs, could account for the increase in vitamin B12 not associated with a parallel increase
in animal protein and iron due to the differences in the ratio between vitamin B12/iron
and between B12/proteins among different animal foods. On the other hand, an increasing
trend was observed in the intakes of Mediterranean food dressing, known to contain
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bioactive compounds [51], and the intake of olive oil, proposed for its anti-inflammatory
activities for both obese and frail individuals [52], significantly increased after DA.

5. Conclusions

Overall, WBA of the Italian national team improved their dietary habits after DA but
did not comply with the EAT-Lancet suggested portion sizes for some PRO-sources (high
red meat, low legumes). Although the dietary impact of some food consumed (normalized
for BM) was lower for women who did not receive DA, they presented more nutritional
deficiency than men, regardless of DA (all DAM groups and NDAM-T3). In particular,
NDAW-T3 had a lower intake of vitamin B3 and HEME iron than men and the percentages
of women who had inadequate intake of vitamin B6 (67%), vitamin B12 (100%), vitamin C
(89%), vitamin A (67%), vitamin E (100%), folic acid (100%), phosphorus (44%), iron (100%)
and zinc (67%) were higher than those of men after DA (DAM-T2, vitamins: vitamin B6
(0%), vitamin B12 (0%), vitamin C (50%), vitamin A (25%), vitamin E (17%), folic acid (75%),
minerals: phosphorus (0%), iron (33%) and zinc (25%). In this context, the EAT-Lancet
Commission stated that “multivitamin or multimineral preparation provide an alternative
that is less expensive and without adverse consequences of high red meat intake” [1]. As a
result, the nutritional evaluation of food consumption should always be included in studies
aiming to evaluate the environmental impact of diet.
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