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Abstract: In order to formulate policies to control regional air pollution and promote sustainable
human–land system development, it is crucial to study the space–time distribution of air pollution
and the population exposure risk. Existing studies are limited to individual fine particulate pollutants,
which does not fully reflect the comprehensiveness of air quality. In addition, the spatiotemporal
distribution of air quality and population exposure risk at different scales need to be further quantified.
In this study, we used air monitoring station data and population spatial distribution data to analyze
the spatiotemporal characteristics of air quality, including seasonal variations, variations before
and during heating periods, and the occurrence frequency of priority pollutants in the traditional
industrial areas of Northeast China in 2015. The population exposure–air pollution risk (PE-APR)
model was used to calculate the population exposure risk at different spatial scales. The results
suggest that GIS methods and air monitoring data help to establish a comprehensive air quality
analysis framework, revealing spring–summer differentiation and the change trend of air quality with
latitude. There are significant clustering features of air quality. A grid-scale population exposure–air
pollution risk map is not restricted by administrative boundaries, which helps to discover high-risk
areas of the main regional economic corridors and differences between inner cities and suburbs. This
study provides a reference for understanding the space–time evolution of regional air pollution and
formulating coordinated cross-regional air pollution strategies.

Keywords: human–land relationship; air quality; population exposure–air pollution risk; spatial
autocorrelation; traditional industrial areas of Northeast China

1. Introduction

Air pollution is an essential factor that affects populations in cities and industrial
regions [1]. For example, the smog in China at the beginning of 2013 affected more than
8 million people, causing global concern [2]. Affected by natural geomorphology and
economic structure [3], air pollution has a significant impact on human health, such as the
development of respiratory and cardiovascular diseases [4,5]. In the past decade, China has
successfully formulated a series of policies on energy conservation, emission reduction [6]
and atmospheric environmental governance [7]. Air quality has improved since the policies
were implemented. However, under the guidance of the Sustainable Development Goals,
the temporal and spatial distribution of regional air pollution, the temporal and spatial
variation of pollutants [8], and the threat to human health need to be further clarified [9], in
order to formulate and promote regional environmental governance policies [10].

At present, studies on the spatiotemporal distribution and visualization of air pollution
mainly focus on the concentrations of atmospheric pollutants, looking at single pollutants at
different spatial scales or multiple contaminants [11]. Some studies have also investigated
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the spatiotemporal changes of air pollution in the country [12], urban cluster [13], city [14],
and community scale in China [15]. For example, Liu et al. used spatial autocorrelation
analysis and three spatial measurement models to analyze the temporal and spatial charac-
teristics of PM2.5 in the Beijing–Tianjin–Hebei region [16]. Another study found that the air
quality in megacities such as Beijing and Shanghai has noticeable seasonal changes, and
the pollution sources are increasingly complex [14]. Since the average air quality index of a
single administrative unit cannot reveal the continuous microscopic changes in air pollution
concentrations on a region scale, remote sensing data such as aerosol optical depth, have
gradually been integrated and applied. For example, one study [17] explained the spatial
and temporal distribution characteristics of critical pollutants in China from 1999–2011
by conducting a human health risk assessment of PM2.5 based on time series of PM2.5
concentrations obtained by remote sensing. The research conclusions may have been biased
due to the uncertainty caused by spatial resolution, meteorology and topography [18].

In terms of assessing the population exposure risk of air pollution, existing studies
mainly focus on fine particle pollutants such as PM2.5 and PM10 [19,20]. However, health
risk should not be viewed simply as an individual pollutant concentration issue. On the
contrary, pollutants have a collective or synergistic effect on health risk [21]. Researchers
have focused on two air pollutant exposure assessment methods: one is to quantify expo-
sure by determining the concentration of air pollutants released into the environment, and
the other is an air pollution exposure model that takes into account the characteristics of
population distribution. The latter was proven to have higher accuracy and theoretical
reliability in estimating air pollution exposure [22].

In order to improve the accuracy of population distribution, population spatial distri-
bution data were developed from the average population density of a certain administrative
level spatial unit to high-resolution population grid data [23]. In addition, the traditional air
pollution exposure model that takes into account population distribution can theoretically
obtain relatively high-precision exposure assessment results for each spatial unit [24], but
the incomparability of the risk values among the units limits the application of this model
to larger geographic areas [25,26]. The recently proposed “population weighted exposure
risk model” is considered to be able to distinguish the severity of air pollution exposure
in a certain spatial unit relative to that within the overall spatial unit [27]. This model
has potential value for revealing the spatial distribution characteristics of exposure risk
in large geographic areas at different scales. GIS enables the visualization of human–land
elements in multi-scale geographic units [28,29] and shows certain advantages in the study
of human–land coupling relationships [30–32]. In recent years, more and more studies have
discovered the potential of GIS tools in air pollution exposure assessment research. GIS
not only converts pollution detection points into a continuous surface but also provides
a way to combine pollutant and population data on multiple scales, providing explicit
tools for assessing exposure [21–23]. Therefore, conducting a study on the spatiotemporal
distribution of regional multi-level air pollution and assessing the population exposure risk
by GIS spatial analysis methods is crucial to better understand the complexity of urban air
governance and promote refined “people-oriented” environmental governance.

Northeast China is a typical traditional industrial area in China and worldwide [33],
including 36 cities in the three provinces of Liaoning, Jilin, and Heilongjiang. The latitude
and longitude of Northeast China range from 120◦ E to 135◦ E and 38◦ N to 56◦ N. The
area has typical regional characteristics [34]. As a traditional old industrial base and an
important agricultural base, the region has diverse air pollution emission sources. The
terrain is not conducive to the diffusion and transmission of atmospheric pollutants. The
main atmospheric transmission channel is the heavy smog-polluted Beijing–Tianjin–Hebei
region, and the long-distance transmission of pollutants may affect the air quality in this
area. Most of the cities in Northeast China have a temperate monsoon climate with warm
summers and long winters [35]. Due to the cold weather in autumn and winter and the
influence of heating, air pollution incidents occur from time to time, which has attracted
great attention [36]. However, studies on air pollution in the region have been limited to
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Changchun City [37], Suihua City [38] and other cities, focusing on pollutants related to
rural straw burning, such as PM2.5 and CO [39]. Therefore, based on the air monitoring
station data and population distribution data of 36 cities in Northeast China, this study
used GIS spatial interpolation and spatial autocorrelation analysis to quantitatively reveal
the spatiotemporal characteristics of the region, in order to provide a scientific basis for
further exploration of the driving mechanisms of air pollution. In addition, we adopted
a population-weighted air pollution exposure risk assessment model to assess people’s
exposure risk at different spatial scales, and our results provide decision-making support
for the formulation of environmental governance policies in regions, cities, and central
urban areas.

2. Materials and Methods
2.1. Data Collection and Processing

The daily air quality data of 36 environmental monitoring sites in Northeast China
from 1 January to 31 December 2015, were obtained from the Data Centre of the Min-
istry of Environmental Protection (now Ministry of Ecology and Environment) (http:
//www.mee.gov.cn/, accessed on 19 September 2016). The daily air quality data in-
clude daily Air Quality Index (AQI), air quality, and priority pollutants values. When
the instrument needs maintenance or communication failure occurs, sites may have no
data for a period. For example, there were no data at all on 18 April and 24 August 2015.
When the air quality level is “excellent”, there is no priority pollutant information. The
daily air quality data were calculated according to the results of the national air quality
automatic monitoring stations in accordance with the Ambient Air Quality Index Technical
Regulations (Trial) (HJ633-2012) [40]. Among them, AQI is a dimensionless index that
quantitatively describes and comprehensively reflects air quality status. The regional AQI
takes the maximum value of the Individual Air Pollutant Index (IAQI), which is calculated
based on the measured concentrations of individual pollutants including fine particulate
matter, inhalable particulate matter, sulfur dioxide, nitrogen dioxide, ozone, and carbon
monoxide [40]. Larger AQI values indicate more serious pollution and a greater impact
on human health. The AQI is divided into six levels: level 1 (excellent, 0–50), level 2
(good, 51–100), level 3 (lightly polluted, 101–150), level 4 (moderately polluted, 151–200),
level 5 (severely polluted, 201–300), and level 6 (most severely polluted, >300) [41]. A pri-
ority pollutant is one whose IAQI is the largest when AQI > 50 [41].

The population data of the study area include total prefecture-level administrative
district population and kilometer-level grid population distribution data. The former data
were obtained from the statistical yearbooks of various administrative districts in the study
area, while the latter were obtained from the “population spatial distribution kilometer
grid data set” [42] of the Resource and Environmental Science Data Centre of the Chinese
Academy of Sciences. The latter data reflect detailed population spatial distribution. We
clipped the population distribution data using the boundary data of the study area. The
population distribution data were re-projected to the CGCS2000 coordinate system.

Our data processing steps included the following: (1) We calculated the number of
days at each air quality level in the year and then calculated the number of days at each
air quality level in each season. Here, according to the seasonal division of Northeast
China in the existing studies [43], we defined spring as March to May, summer as June
to August, autumn as September to November, and winter as December to February.
(2) We calculated the average value of the daily AQI of monitoring stations in the four
seasons, excluding periods without data. The spatial interpolation method was then used
to calculate the AQI value around the monitoring stations, and ArcGIS 10.2 was used to
draw a continuous spatial distribution map of the AQI in each season. (3) According to
the AQI spatial distribution data obtained in step 2, we used ArcGIS 10.2 to obtain the
average AQI value of each city. Taking the AQI of each city as the input variable, we carried
out spatial autocorrelation analysis. (4) We calculated the average number of days when
priority pollutants appeared at 36 monitoring sites in each month, then drew a histogram of

http://www.mee.gov.cn/
http://www.mee.gov.cn/


Sustainability 2022, 14, 96 4 of 15

their monthly changes in the entire study area. (5) According to the AQI spatial distribution
data obtained in step 2, we used ArcGIS 10.2 to obtain the average AQI of each grid of
the 1 km × 1 km -resolution population data. Then we used the population exposure–air
pollution risk assessment model to calculate the air pollution exposure risk at the city and
grid scale.

2.2. Methods
2.2.1. Spatial Interpolation Method

As the measured AQI data are in the form of discrete points, the continuous spatially
distributed data values can be estimated by a spatial interpolation method [44]. Inverse
distance weight interpolation is based on the principle of similarity: the closer the dis-
tance between two objects (such as Euclidean distance), the stronger the similarity of
their properties [45,46]. The Euclidean distance between Pi and Pj is calculated with the
following equation:

Dij =
√(

xj − xi
)2

+
(
yj − yi

)2 (1)

where xi and yi represent the coordinates of point Pi, and xj and yj represent the coordinates
of point Pj. Dij represents the Euclidean distance between points Pi and Pj.

Pj represents the interpolation point and Pi represents the known sample point; the
attribute value of the known point Pi is Zi; and the calculation formula for attribute value
Zj of point Pj is shown in Equation (2):

Zj =
n

∑
i=1

(
wijZi

)
(2)

where wij represents the weight matrix, which is inversely proportional to the distance dij
from Pj to the known points around.

2.2.2. Spatial Autocorrelation Analysis

In order to quantitatively measure the correlation of air quality between cities and
further reveal its regional characteristics, this study used the global Moran’s I spatial
autocorrelation index and local Getis-Ord G∗i to measure the spatial autocorrelation of
urban air quality.

(1) Global Moran’s I is a statistic that describes the average degree of correlation
between all spatial units and the surrounding area over the entire area [47]. The calculation
formula is as follows:

I =
k ∑k

i=1 ∑k
j=1 Wij(xi − x)

(
xj − x

)
∑k

i=1 ∑k
j=1 Wij ∑k

i=1(xi − x)2 (3)

where x is the mean value of observations at all k locations (regions), Wij is the spatial
weight matrix, xi and xj are the observations at spatial locations i and j. The range of I is
[–1, 1]. If I is −1, the observations have complete negative correlations in space; if I is 1, the
observations have complete positive correlation in space; if I is 0, the observations are not
correlated. The significance of the spatial autocorrelation of the study unit is tested using
the standardized statistic Z as follows:

Z =
I − E(I)√

VAR(I)
(4)

where E(I) is the expectation of I and VAR(I) is the variance of I. When the Z value is
positive and significant (Z > 1.96), it indicates a positive spatial autocorrelation, that is,
similar observations (high or low value) tend to be spatially clustered. When the Z value is
negative and significant (Z < −1.96), there is a negative spatial autocorrelation, and similar
observations tend to be distributed. When Z = 0, the observations are independent and
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random. Utilizing the GIS regional statistics method to calculate the average AQI for each
city, we analyzed the global spatial autocorrelation of AQI at a prefecture scale.

(2) The hot spot analysis tool (Getis-Ord G∗i ) [48] detects high-value clusters and
low-value clusters based on the local spatial autocorrelation index of the distance weight
matrix. The local spatial autocorrelation index G∗i is calculated with the following formula:

G∗i =
∑n

j=1 Wij(d)Xj

∑n
j=1 Xj

j 6= i (5)

where Xj is the element attribute value of the jth spatial unit, n is the total number of
elements, and Wij is the spatially adjacent weight matrix within distance d. If the distance
between the ith and jth spatial units is within the given critical distance d, they are consid-
ered neighbors. The element in the spatial weight matrix is 1; otherwise, the element is 0.
The local spatial autocorrelation index G∗i is standardized in Equation (6).

Z =

(
G∗i
)
− E

(
G∗i
)√

Var
(
G∗i
) (6)

where E(G∗i ) is the mathematical expectation value, and Var(G∗i ) is the variation coefficient.
When Z > 1.96 and the confidence level is greater than 90% (p < 0.1), the value around unit
i is relatively large, i.e., unit i is a significant hot spot; when Z < −1.96 and the confidence is
greater than 90% (p < 0.1), it means that unit i is a significant cold spot. In (5), if the value of
critical distance d is too high, it is difficult to reflect the hierarchical distribution of hot spots.
If the value of critical distance d is too low, it is difficult to meet the statistical conditions.
In order to highlight the urban-scale hot spots characteristics of air quality in Northeast
China, we selected 200, 400, and 600 km as critical distances for the experiment, and finally
used 400 km as the compromise fixed distance for air quality hot spot analysis.

2.2.3. Population Exposure–Air Pollution Risk Assessing Model

In order to distinguish the severity of air pollution exposure in a spatial subunit
relative to that within the overall spatial unit, Zou et al. constructed a model for assessing
the population relative risks of air pollution exposure (MAPRRAPE) [45]:

PRRAPEi =
Pi × Ci × n

∑n
i=1 Pi × Ci

(7)

where PREAPEi is the population relative risks of air pollution exposure in the ith grid, i is
the number of grids, Pi is the population density of the ith grid, Ci is the concentration of an
individual pollutant within the ith grid, and n is the total number of grids.

It is recognized that air pollution exposure risk assessment should not simply con-
sider an individual pollutant, but instead assume that pollution is caused by multiple
pollutants [21]. In order to consider the health risks caused by multiple air pollutants, we
constructed a new population exposure–air pollution risk assessment model by referring to
and improving MAPRRAPE. The new model is as follows:

PE− APRi =
Pi × AQIi × n

∑n
i=1 Pi × AQIi

(8)

where PE-APRi is the relative risks in the ith grid, i is the number of grids, Pi is the
population density of the ith grid, and the unit is person/grid. AQIi is the AQI in grid
i and n is the total number of grids in the area. When PE-APRi is between 0 and 1, it
means that the exposure level is lower than the regional average, and when PE-APRi > 1, it
indicates otherwise.



Sustainability 2022, 14, 96 6 of 15

3. Results and Discussion
3.1. Spatial and Temporal Changes of Air Quality

The air quality level with the highest frequency in Northeast China in 2015 was level 2
(good), accounting for 24% of the total days of the year, followed by level 1 (excellent) at
53%, level 3 (lightly polluted) at 15%, level 4 (moderately polluted) at 4%, level 5 (severely
polluted) at 3%, and level 6 (most severely polluted) at 1% (see Figure 1). From the
perspective of seasonal distribution, the frequency of lightly polluted or worse than slightly
polluted air quality was ranked in the order of winter, autumn, spring, summer, while the
ranking of excellent and good levels was the opposite (Figure 2).
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The air quality in Northeast China shows typical characteristics of winter–summer
differentiation. The degree of change in air quality varies with the seasons in each province.
For example, the air quality of Heilongjiang Province has an AQI in the range of 100 in
winter and summer, while the AQI in Liaoning Province fluctuates between 80 and 110.
The AQI in the northern area in spring and summer shows a gradient increasing trend with
decreasing latitude, while the AQI in autumn and winter shows characteristics of circle
diffusion and attenuation, with the provincial capital as the high-value center (Figure 3). For
example, in winter, the AQI of Harbin is the highest. From Harbin to the south, a regional
circle with the worst air quality composed of Changchun, Jilin, Siping, Liaoyuan, and
Fushun has formed. The AQI of the cities within this circle was higher than 110. The main
reason is that the provincial capitals are more densely populated, and the anthropogenic
emissions caused by gasoline and coal-fired heating devices have aggravated urban air
pollution [49]. Moreover, illegal emissions and biomass combustion in winter are the main
drivers of the formation of dense fog, which makes air pollution more serious [50].
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The Moran’s I values of urban AQI were 0.71 (spring), 0.67 (summer), 0.55 (autumn),
and 0.43 (winter), with corresponding Z-values of 13.61, 12.89, 10.72, and 8.48. The Z-values
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were greater than 1.65 with a confidence level above 90%, indicating that a significant
positive spatial autocorrelation of AQI in the four seasons with a significant spatial agglom-
eration pattern. The Getis-Ord G∗i of AQI indicates that the average urban AQI conforms to
the statistical characteristics of the hot spot analysis clustering mode. Visually expressing
the Z-value, it is concluded that significant hot spots with Z > 1.96 and p < 0.05 are mainly
distributed in Liaoning and Jilin Provinces (Figure 4). The distribution of significant AQI
hot spots in these two provinces is concentrated; they are mainly located in Liaoning in
spring and summer, and move northward in autumn and winter, covering the central area
of the two provinces. Significant hot spot cities have higher AQI values and are surrounded
by neighboring cities that also have high values, which means that they are statistically
high AQI cluster areas. In winter, Harbin City in Heilongjiang Province was shown to have
a high AQI value, but there were no significant hot spots surrounded by other cities with
high AQI.
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Seasonal changes in priority pollutants in Northeast China were significant. In autumn
and winter, PM2.5 became the priority pollutant on most days, with a cumulative occurrence
of 120 days, accounting for one-third of the year. PM10 was the priority pollutant on 77 days.
The month when the highest number of days PM10 became the primary pollutant was
April, with a total of 10 days, mainly because the wind and sand were more serious in
spring than in other seasons. Sand and dust on the ground were blown by the wind
transported from upstream to the local area, causing increased concentrations of PM10
and other atmospheric particulates [51]. O3 was the priority pollutant on 73 days of the
year. Its monthly change pattern was contrary to PM2.5, showing an inverted U-shaped
distribution pattern. The urban thermal environment in summer increases the risk of air
pollution [52]. SO2 appeared as the priority pollutant on the fewest days, only eight days
of the year (Figure 5). The changes in the frequency of primary pollutants throughout the
year indicate that the heating period (November through March) is a critical period for air
pollution control in Northeast China.
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3.2. Spatial Distribution of Population Exposure–Air Pollution Risk

The population exposure–air pollution risk was characterized by high spatial dif-
ferentiation in provincial capital cities and low in non-provincial capital cities (Figure 6).
The PE-APR in provincial capital cities was greater than 2, among which Harbin had the
highest risk (PE-APR > 3.0). The PE-APR in Dalian, Suihua, Qiqihar, Jilin, and other cities
was also relatively high (PE-APR > 1). Overall, 61% of cities had a risk level lower than
the regional average (0.5 < PE-APR ≤ 1). The lowest population exposure–air pollution
risk area (0.1 < PE-APR ≤ 0.5) was concentrated in northern Heilongjiang, especially Da
Hinggan Ling Prefecture, Qitaihe City, and Yichun City, mainly due to the good air qual-
ity throughout the year and the sparse population there. The cities with high PE-APR
(2.5 < PE-APR ≤ 3.5) were Harbin, Changchun, and Shenyang; the cities with intermediate
PE-APR (1.5 < PE-APR ≤ 2.5) were ranked as autumn/winter, summer, and spring.

PE-APR was divided into five levels on a grid scale: level 1 (0–1), level 2 (2–30), level 3
(31–100), level 4 (101–250), and level 5 (251–420). PE-APR changed significantly during the
four seasons. Level 1 indicates that air pollution exposure levels in the area are relatively
lower than or equal to the average level of the entire study area. The grid number of level 1
in descending order corresponded to summer, spring, autumn, and winter. Level 2 and
above indicate that air pollution exposure levels in the area are higher than the average
level for the entire study area. The grids of levels 2–5 are mainly located on the central
axis connecting Harbin, Changchun, Shenyang, and Dalian, forming a belt-shaped area
along the Harbin–Dalian Railway, and multiple scattered points in cities at various levels
(Figure 7). This area cuts through the central region of the three northeastern provinces,
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starting from central Heilongjiang Province and reaching southernmost Liaoning Province,
covering the four major urban clusters: the Harbin–Dalian–Qiqihaer Economic Zone, the
Changchun–Jilin–Tumen River Pilot Zone, the Liaoning Coastal Economic Belt, and the
Shenyang Economic Zone. Figure 6 shows that areas with PE-APR greater than 1 are not
significantly distributed around the Harbin–Dalian Railway and do not reflect the scattered
points of prefectural cities. Figure 7 shows that the PE-APR of provincial capital cities is
above level 3, and the central urban area within a 10 km radius is characterized by circles
of decreasing levels. Therefore, the grid-scale map can show the temporal and spatial
characteristics of PE-APR between and within cities in a more detailed manner.
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4. Conclusions

This study constructed an integration method consisting of multiscale population
data, GIS spatial interpolation methods, spatial autocorrelation analysis, and a population
exposure–air pollution risk assessment model to analyze multi-scale air quality space-time
characterization and population exposure risk. This method supplements the method-
ological system of air quality research. Compared with city-scale population data, the
1 km × 1 km resolution grid-scale population data are not restricted by administrative
boundaries, which helps to detect spatial heterogeneity characteristics of air pollution
exposure risk in small areas within a city [53]. The global spatial autocorrelation and hot
spot analysis of urban AQIs help to discover regional commonalities and aggregations
of AQI, providing a reference for further exploration of the formation mechanism of air
pollution and formulation of coordinated regional measures.

Unlike previous studies that selected a few industrial, agricultural, and provincial
capital cities of Northeast China as case areas [54,55], this study, selected the whole area of
Northeast China as the study area, which supplements the empirical studies on regional air
quality. Besides, compared with previous studies that only considered air quality changes
from a single perspective (such as pollutant concentration), this study investigated the
space–time characteristics of air quality from multiple perspectives, including throughout
a year and a season, and the monthly change characteristics of priority pollutants.
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This study found gradually decreasing air quality in Northeast China in autumn and
winter, with the provincial capital city showing the highest values. The urban cluster along
the Harbin–Changchun axis was found to be a key air pollution area. The results of spatial
autocorrelation analysis indicate that the air quality of cities in Liaoning and Jilin Provinces
had spatial correlation characteristics. The above results indicate that air pollution in
Northeast China has regional characteristics. It was found that the main emission sources
in Northeast China are seasonal, with contributions from crop residue combustion in
autumn and winter, coal combustion in winter, and dust in spring. Therefore, in order
to solve the air pollution problem in the northeast, it is urgent to formulate policies to
comprehensively control coal combustion, fuel consumption, and crop residue combustion
in autumn and winter. Recent “coal-to-gas” projects, clean energy substitution projects,
and energy-saving measures in related industries will have a positive effect on air pollution
in Northeast China. Joint air pollution prevention and control policies must be combined
across regions [43]. It is necessary to establish a coordinated control mechanism for straw-
burning pollution. By using a unified meteorological diffusion model and deduction
method, the entire region is expected to realize information exchange, share analysis and
judgment results, and carry out joint prevention and control strategies to ensure continuous
improvement of regional air quality.

The exposure risk of air pollutants shows that the central area of a city is a high-risk
area at the city scale, and the area along the Harbin–Dalian Economic Axis is a high exposure
risk area within the region. According to Equation (8), the value of PE-APR is related to two
parameters, AQIi (AQI in the i-th grid) and Pi (population density of the i-th grid). PE-APR
is positively correlated with both AQIi and Pi, its value depends on which parameter is
more dominant. The population density of the grids and cities along the Harbin–Dalian
Economic Axis is much higher than that of other areas, and its impact is far stronger than
AQI, making these grids and cities high-value areas of population exposure–air pollution
risk. However, this does not mean that areas with high PE-APR necessarily have more
severe air pollution. For example, Shenyang City has better air quality throughout the
year, but it has a higher risk of air pollution exposure due to higher population density.
The situation is the same in Changsha [53], where there is also a mismatch between the air
pollutant concentration and population spatial distribution characteristics. However, there
is a study showing that areas with severe air pollution are also areas with high population
density in Lanzhou [23]. In addition, downtown areas are prone to becoming high air
pollution population exposure risk areas, which was confirmed in a study in Dallas, Texas,
USA [45].

The area along the Harbin–Dalian Economic Axis has a relatively high level of social
and economic development, and the terrain is conducive to population gathering. In
addition, a relatively complete level of social infrastructure has become the main driving
factor for population migration [56]. Higher population density means that the emission
potential of transportation, industry, and residents, other important causes of air pollution,
is high. Therefore, central urban areas and areas such as the regional economic axis
should speed up high-quality economic development with fewer resources, lower energy
consumption, and less environmental damage.

Finally, we would like to note that, in our study, we used the AQI data of 36 monitoring
sites to transform fixed-point data into continuous surfaces through GIS interpolation
technology. There are unavoidable errors in the AQI values of areas without observational
data. Using more monitoring points and an air pollution model that simulates pollutant
concentrations would be effective means to reduce this deviation [57]. Moreover, different
spatial interpolation methods will affect the accuracy of the AQI. In the future, a cross-
validation scheme for interpolation accuracy based on sampling data should be designed
for different spatial interpolation methods, to determine the method most suitable for air
quality simulation in the study area. The European ATMOSPHERE project addresses the
issue of exposure model selection [23]. Furthermore, it is difficult for one year of AQI
data to reflect the long-term trend of air quality, thus collecting panel data of long-term
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AQI series will be a key task in the next phase of our study. Moreover, it is necessary to
use multi-source spatiotemporal big data to mine the natural/human driving factors and
internal/external regional factors of air quality spatial distribution [11]. With multi-scale
population data, this study distinguishes the air pollution exposure risks throughout the
study area. However, the impact of human activity patterns (e.g., inhalation rate, duration
of exposure) on exposure risk has not been considered. With the support of GIS, a more
realistic exposure model that takes into account people’s time–activity patterns can be
developed in the future to assess the exposure risks of different groups.
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