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Abstract: Urban climates are highly influenced by the ability of built surfaces to reflect solar radiation,
and the use of high-albedo materials has been widely investigated as an effective option to mitigate
urban overheating. While diffusely solar reflective walls have attracted concerns in the architectural
and thermal comfort community, the potential of concave and polished surfaces, such as glass and
metal panels, to cause extreme glare and localized thermal stress has been underinvestigated. Fur-
thermore, there is the need for a systematic comparison of the solar concentration at the pedestrian
level in front of tall buildings. Herein, we show the findings of an experimental campaign measuring
the magnitude of the sunlight reflected by scale models reproducing archetypical tall buildings.
Three 1:100 scaled prototypes with different shapes (classic vertical façade, 10% tilted façade, curved
concave façade) and different finishing materials (representative of extremes in reflectance properties
of building materials) were assessed. A specular surface was assumed as representative of a glazed
façade under high-incidence solar angles, while selected light-diffusing materials were considered
sufficient proxies for plaster finishing. With a diffusely reflective façade, the incident radiation at the
pedestrian level in front of the building did not increase by more than 30% for any geometry. How-
ever, with a specular reflective (i.e., mirror-like) flat façade, the incident radiation at the pedestrian
level increased by more than 100% and even by more than 300% with curved solar-concentrating
geometries. In addition, a tool for the preliminary evaluation of the solar reflectance risk potential of
a generic complex building shape is developed and presented. Our findings demonstrate that the
solar concentration risk due to mirror-like surfaces in the built environment should be a primary
concern in design and urban microclimatology.

Keywords: reflective materials; mitigation; urban heat island; outdoor comfort; visual comfort; heat
stress; optimization; skyscrapers

1. Introduction and State of the Art

The accelerating city climate change in combination with local and global climate
change heightens the need for decarbonization of the built environment through energy
efficiency and mitigation of urban overheating [1]. In particular, solar reflective roofs
and walls have been largely investigated to reduce the solar absorption by the urban
envelope and thus reduce the release of turbulent sensible heat that increases the ambient
temperature [2,3]. Cool surfaces have high reflectance and emissivity and are capable
of reducing both solar gains and surface temperatures, positively affecting the energy
use of the building and helping to mitigate heat island effects at the mesoscale and local
level [4–8]. Heat mitigation technologies can reduce the ambient temperature by 2–2.5 ◦C
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when combined with building positive synergies, with the reduction of the solar gains
being one of the main pathways to minimize urban overheating [9]. Cool walls in Los
Angeles, for instance, may reduce the peak temperature by approximately 0.60 ◦C [2].
Furthermore, increasing the albedo of walls by 0.10 reduces the cooling energy needs of
residential buildings in Mediterranean climates by 2.9 kWh/m2 and reduces the indoor
operative temperature of unconditioned buildings by 1.1 ◦C [10]. While the use of solar-
reflective walls has been common in the Mediterranean and other vernacular architecture,
there is an increasing concern among architects and urban designers about the potential
increased solar reflection towards pedestrians [11,12]. While there are some limitations in
current outdoor thermal comfort models, the need to limit the downward reflection of solar
radiation towards the bottom of street canyons has received considerable attention in the
literature [13–15]. This led to the identification and testing of retro-reflective surfaces as an
option to minimize the shortwave radiation entrapment within the urban canopy layer [16].
Retro-reflective materials reflect the direct component of the solar radiation back towards
the sun, thus upwards and not directed towards other urban surfaces. However, the
proliferation in the use of specular reflective (i.e., mirror-like) materials in architecture has
been underinvestigated with respect to their impact on outdoor visual and thermal comfort.

The research of eye-catching shapes for tall buildings, without considering its impact
on the urban context [17,18], sometimes leads to increased incident solar radiation on other
buildings and at street level due to unwanted reflections [19]. This phenomenon is due to
the geometry being able to concentrate increasing solar radiation and the materials used
in façade applications, especially high-reflectance glass or polish metal. Considering the
transparent part of the building envelope, reflecting glazing systems with a reflectivity of
more than 30–40% are chosen to reduce the cooling load of office and commercial buildings
with large, exposed curtain walls. Reflectance properties of glazing are angular-dependent
and influenced by the direction of the light source falling on their surface. The more the
rays strike toward a direction parallel to the surface, the more the reflectance of the surface
rapidly increases [20]. This is the case, for example, in temperate climates, particularly
during the winter months, for surfaces facing south and during the early and late hours of
the day, or in tropical climates for the same orientation and during the central hours of the
day. High-reflectance surface treatment increases the possibility of external reflections for
lower incidence angles as well.

Most unwanted reflections affect the vision and the visual comfort of pedestrians,
users of concurrent buildings, car drivers, train conductors, and plane pilots [21]. The
temporary visual disabilities resulting from these phenomena can also raise security issues
by potentially causing an accident due to visual impairment, risking people’s lives. Glare
has also been reported as a critical issue in an urban environment, concerning angular
reflective surfaces such as Photovoltaic panels [22] or concentrating solar collector plants
with small and large highly reflective surfaces [23].

More disturbing effects have been reported when concentrated solar energy led to
direct damage of properties, plants, and people caused by increased and focused solar
radiation. The consequences of these effects can be temporary or repeated cyclically during
the day/year, depending on the location, orientation, and urban context. Among the most
significant cases are the “20 Fenchurch Street” building in London (Figure 1a, Table 1) and
the “Vdara” building in Las Vegas (Table 1), which obliged the owners to either modify
the façade or change the previously programmed use of the surrounding area in order to
provide for costly subsequent mitigation and unplanned mitigation measures [24].
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a maximum exposure of 30 s [28]. The presence of clothing can contribute to mitigating 
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Figure 1. (a) “Walkie-Talkie” Building, London, UK [25]. (b) Walt Disney Concert Hall,
Los Angeles, USA [25].

Table 1. Comparative analysis of the cited buildings.

Name of the Building Façade
Material

Building
Geometry

Effects on the
Surroundings

Mitigation Strategies
Applied

20 Fenchurch
Street-London, UK

(Figure 1a)
Laminated glazing Concave, single

curvature

Reported focused solar
radiation spot at pedestrian
level six times higher than

direct sunlight

External fins and
shading systems

Vdara Building-
LasVegas, USA Reflective glazing Concave, single

curvature

Reported raised
temperatures in the

surrounding areas and
sunburns on

pedestrian bystanders

Application of
nonreflective solar
films on the façade

Walt Disney Concert
Hall-Los Angeles, USA

(Figure 1b)
Stainless steel panels Multiple double

curvature surfaces

Multiple disabling glare
sources, melted asphalt
pavements due to the
concentrated sunlight

Diffuse and
satin-finishing of

surfaces

A further representative example is the Walt Disney Concert Hall in Los Angeles
(Figure 1b, Table 1), in which the freeform façade cladding in polished metal was responsible
for glare and concentrated solar radiation phenomena. The latter caused the asphalt-
covered pavement around the building to melt. A measurement campaign for temperature
monitoring around the building recorded a 150 ◦C temperature over a piece of painted
black foam core blackboard used as a reference absorber [19].

Concentrated irradiance is reported as a source of possible damage for all plastic or
temperature-sensitive surfaces, which may experience localized melting or burns [26]. As
a reference, we report that a minimum value of 8000 W/m2 and 10 min of continuous
exposure is needed to ignite common combustible materials, although autoignition is
possible, depending on the material, only for values between 16,000 and 25,000 W/m2 [27].
User comfort boundaries are included under lower values of the irradiance threshold. For
short term exposures, but longer than the safe exposure time limit, which is 10 min, a
radiation exposure of 1500 W/m2 is considered a source of strong thermal discomfort. On
the other hand, 2500 W/m2 is considered the maximum value for people’s safety [28] with
a maximum exposure of 30 s [28]. The presence of clothing can contribute to mitigating
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this effect by allowing higher exposures times. A secondary effect related to the user’s
experience of the space, the risk of accidental damage due to direct contact with individual
urban surfaces increases as their general or localized temperature increases.

Only a few cities have implemented measures that are prescriptive for the reflectance
properties of the building surfaces. The city of Sydney applies a limit of 20% maximum
reflectance for all the façade materials [29], and the same limit is implemented by the city
of Hong Kong [30]. The planning strategies [31] mainly focus on reducing glazing areas or
reshaping the texture of building surfaces to avoid any interference with the surroundings.
In the literature, different approaches were tested to provide an adequate assessment of
the effect of the solar radiation at the local and urban scale, but at present, there are no
universally accepted criteria for the assessment of the maximum tolerance for reflected
solar radiation affecting urban areas [28]. An experimental campaign aiming at testing the
response of users exposed to glare found that users tend to be more tolerant to visually
uncomfortable scenes while resting in an outdoor environment and performing no task
or simple tasks, such as reading. Under these conditions, the subjects evaluated the glare
conditions between perceptible and disturbing [32].

Reflected sunlight is in some ways unexpected due to its dependency on a scenario
that is generally complex and the additional strict dependency on building geometry [33].
The definition of the right-angular optical properties of the involved surfaces [32] is also
critical. The general approach leads to simulations created with dedicated software, but
the results are unreliable when the accuracy of the surroundings, or of the building model
itself, is not adequate.

Typically, simulations are performed during the early design stages, considering only
the building masses and overlooking the presence of some façade details. Simplifications of
the model are generally performed to retain simulation times within a limit of acceptability.
How the building and its surroundings are simplified can strongly affect the results [34].

Raytracing methods can be used for caustics evaluation and identification of the
Reflection Glare Area (RGA) [35]. The main limitation of the computational approach
lies in the computing power and the level of detail requested for the model [36]. Custom-
made tools are a solution to effectively include the geometry of the buildings and the
optical reflectance properties of the material through the use of bidirectional reflectance
distribution functions (BRDF) [22].

Experimental procedures refer to direct analysis of the scenario with High Dynamic
Range (HDR) imaging of samples of exterior glare and a post-process digital analysis
through a bespoke MATLAB tool [32] to identify glare sources within the context. Some
other researchers have tested scale models of buildings with standardized geometries
and surface materials able to redirect or concentrate the solar radiation. This is the case
in [37], which tested cylindrical, concave, and triangular glass curtain walls, assessing
the peak shift and the intensity of the solar radiation on their surroundings due to the
building geometry.

The Boundary Reflection Area (BRA) was already proposed as a performance index
for the reflection glare [38]. This approach neglects the reflectance of the building surfaces
but identifies the type and the possible dimension of the region over which the reflected
radiation impacts. This region, as an example of a standard test cubic building, presents
a characteristic butterfly shape. All the reflections occur with the movement of the sun
at the horizon. A forward-sloping façade between 10◦ and 20◦ can reduce the BRA, but
determines an increase in the possible sun positions that can cause glare.

Other experiments were conducted with pure reflective surfaces resembling concave
building geometries, trying to understand the effect of different parameters on the caustics.
The variables considered in this study were building height, width, the radius of curvature,
orientation, sun elevation, and azimuth angles [39]. The research aimed to test mathematical
correlations, derived from optics, with simulations using precision software [40,41] and
scale models [39].
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However, as the critical review by Danks et al. evidenced [28], most of the literature
focused on glare issues and general visual comfort [32,42,43], with limited investigation
of the solar irradiance levels at the pedestrian level in front of tall buildings. While
measurements have been performed for some case studies, these were usually carried
out for a single building, without comparison between different design scenarios. A
comprehensive raytracing modelling campaign by Wong assessed different buildings, but
did not consider some of the geometries that lead to solar concentration [44].

Additionally, numerical modelling techniques are still in need of improvement [27],
probably due to issues in the representation of the diffuse fraction of solar radiation in
raytracing models, angular properties of materials, or a combination of these factors.

Yet, no systematic study compares the influence of building shape and material beyond
some modelling attempts that require validation.

It is therefore important to provide the designers with a clear overview of the problem
and its intensity in a way that prevents general errors during the early design stages and
guides a detailed analysis that will reduce the risk of future local environmental problems
that can lead to extra costs after the construction [45]. Therefore, the objectives of this
research are to:

(i) quantify the solar concentration (expressed in units of sun or suns) at the pedestrian level
in front of archetypes of tall buildings with diffuse and specular reflective facades;

(ii) identify the archetypes at risk of causing excessive solar concentration and harming
pedestrians; and

(iii) devise a measurement protocol that can be used to quantify shortwave radiative
impacts (and solar concentrations) in real buildings, to assist in the identification of
the need for façade retrofits and dispute resolution.

2. Methodology

This paper presents the measurement process and the results obtained during the
experimental campaign carried out in order to investigate the effects of reflections due
to sunlight for three standardized types of skyscrapers’ geometries with two different
façade finishings. The cases studied have been defined based on the preliminary review
carried out.

The three geometries identified as representative typologies are:

• Vertical planar façade;
• Planar façade with 10% of vertical tilt;
• Curved concave façade (with a curvature radius of 60 meters, rescaled then at model scale).

In addition to the geometries, two façade finishings were analyzed which represented
two possible extreme (worst- and best-case scenario) behaviors (detailed description in
Section 3.1): specular and scattering.

2.1. The On-Site Measurements
2.1.1. Experimental Scenario

The experimental tests were carried out in Milan, Italy (45◦28′45.713′′North–9◦13′47.937′′ East,
121 m above mean sea level) on an unobstructed rooftop of a university building, equipped with a
complete weather and radiometric station.

The experimental set-up consisted of a 6 m × 1.5 m (Figure 2) grey coated work plane
placed at 1 m height (over the building roof). The dimension of the plane and optimal
measurement grid was defined using preliminary hourly simulations (with Rhinoceros
5.0 [46] and Grasshopper [47]), considering forward raytracing algorithms and Fresnel
geometrical reflections. The grey matte base (albedo = 0.36) was selected for the plane as a
representative mean reflectance of urban albedo.
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Figure 2. (a) 6 H × 1.5 H measurement plane (H is the height of the Skyscraper model that in the
presented experiment is equal to 1 m) with measurement positions. (b) Moveable albedometer
(CMA11) with Datalogger. (c) Pyranometer CM21 and CM22 are part of the weather station that
provides undisturbed reference values. (d) Pyranometer CM6 with shadow-band that provides
undisturbed reference values.

Based on the results obtained from the preliminary analysis, the positions of the
measurement points were defined with a double construction: the points were placed
in the intersection between a radial subdivision (relatively 20◦ and 22◦ in the external
part and 24◦ in the central part) over a circumferential construction (relatively with a
radius of 100 cm, 75 cm, 50 cm, 33.6 cm, 22.5 cm), as shown in Figure 2. This approach
allowed the identification of the behavior of both diffuse and specular reflectors for the
three geometries. Furthermore, this configuration allowed the evaluation of the impact of
the façade on possible relevant context areas close to the building model, such as squares,
streets, and adjacent buildings.

2.1.2. Scale Models

In order to assess the increment of solar radiation generated by tall building solar
reflection, three skyscraper scale models were built based on a review of contemporary
skyscraper dimensions and shapes [35,41,45,48].

The 1:100 scale models were 20 × 50 × 100 cm parallelepiped-shaped wood structures
with white diffusive finishing, except for the front façade surface which could be replaced
according to the required analysis. Other authors have proposed another similar reference
model in a virtual scenario [35], where four buildings (with concave, convex, angular, and
planar geometries) with a façade dimension of 100 × 40 m were considered representative
(Figure 3).
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Figure 3. (a) Three skyscraper scale models with reflective film as a finishing surface. (b) Concave
skyscraper scale model with white scattered film as a finishing surface.

Two finishing materials were selected for the front changeable façade: a white scat-
tering diffusing surface and a specular reflective material, which are representative of the
extreme cases in façade applications.

These case study geometries permitted the investigation of the reflection phenomenon,
during a clear summer day, for three characteristic tall building shapes.

2.2. Experimental Sample Material Properties

To identify the adequate façade diffusive and specular materials for the tests, differ-
ent white finishing paints and mirror films were measured to find their relative spectral
reflectance values. Two of them with similar solar reflectance values were selected for the
experiment to ensure the differences were due to variations in their optical angular behavior
and not in their total reflectance. A Perkin Elmer Lambda 950 Spectrometer was used (for
wavelengths between 250 and 2500 nm) according to UNI 14500 [49], and the values were
post-processed following the ASTM E903 [50] procedure. Figure 4 shows the results of the
measurement procedure for the selected materials used during the experimental campaign.
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White Grey Reflective 

Figure 4. Spectral and computed solar (sol), UV, visible (vis), and near-infrared (nir) reflectance
of the diffusive materials and specular film. The measurements are repeated for total (R tot) and
specularity-excluded (R Spex) reflectance.

As a scattering diffuse surface (Figure 4, blue line), a typical white painting with a solar
reflectance equal to 0.86 was chosen. It showed a typical spectral curve of light-diffusive
materials. The specular surface selected was a metallized mirror-like (especially for high-
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reflectance angles) polyester film (Figure 4, red line) that had a mean of 0.85 as its solar
reflectance value. From a preliminary qualitative analysis, not having the possibility to
perform complete BRDF for the material under analysis through the comparison of the
reflectance curves (total and specular excluded), we can say that the specular component
remains predominant regardless of the angle of incidence, although we cannot state this
with certainty.

With the aim of preliminarily evaluating if the mirror film is perfectly reflective, the
specular excluded reflectance was measured. Analyzing the obtained results, it is possible
to highlight that 95% of solar reflectance is due to a specular component. Both finishing
materials presented almost the same integral value of solar reflectance, and the choice was
intentional to compare the results of solar radiation insisting on the surroundings under
different reflective behavior of the building models.

Figure 4 also shows both total and specular excluded reflectance of the background
plane used. This grey surface was selected because it represents the standard urban surface
with an albedo of 0.35 [51–53].

Instruments and Measurements Procedure

Three different sets of instruments (some of which were from the weather station
placed next to the measurement site) were used:

• An albedometer (CMA11 by Kipp & Zonen), with data recorded by an M-Log logger
(by LSI) placed over a specific plastic support, was used to measure solar irradiance in
different positions over the test plane (Figure 2b). The CMA11 is a secondary standard
albedometer with a maximum solar irradiance value equal to 4000 W/m2 and 5 s of
response time.

• CM21 and CM22 pyranometers (by Kipp Zonen) were used to measure the undis-
turbed solar irradiance and calibrate the albedometer.

• A CM6 pyranometer with a shadow-band was used to measure the diffuse component
of solar radiation.

• A thermal infrared camera was used to verify the temperature increase on the plane
due to reflections.

All the measurements were carried out in one week in order to have similar sun
position and radiation values. The survey was performed during a typical Italian summer
clear-sky day, from the 19 to the 25 of September, during the daylight hours from 9 a.m.
to 6 p.m. with a maximum solar elevation of 46.04◦. The measurements were taken
under equal solar diffuse fraction, namely with the same diffuse/global ratio during the
same hour.

The Unit of Sun (UoS) was defined as a normalized value describing the ratio of the
reflected irradiance over the ambient solar irradiance measured on the horizontal surface
on the top of the scaled building mock-up, as defined in [34].

A total of 54 scenarios were measured, combining the three building geometries with
the two previously described alternatives for the façade finishing material.

During each measurement session, the solar irradiance values in the 14 points over
the plane were measured, moving the albedometer every minute (so that the measure-
ment readings could be considered as stable) and over each position. Data acquisition
time depended on the instrument response time lag and sky conditions. Tmeasurement
sequence, namede with with progressive letters; start from the acquisition of undisturbed
solar radiation (above the skyscraper), passing through the points over the measurement
plane and concluding with a vertical solar irradiance. All the geometries and materials
have been analyzed with the same procedure, as previously explained. All the recorded
values were compared with the ones gathered from a reference weather station located on
the same floor of the measurement plane.
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2.3. The Simulations Workflow
2.3.1. The Façade Material Benchmark

The optical performance of glass is typically angular; namely, it depends on the
angle of incidence of radiation that hits the surface. In general, and for incidence angles
α < 60–70◦, the visible solar transmittance of a single or double glass is close to the value
measured for a normal incidence (α = 0◦). For angles of incidence above this threshold, the
transmittance value decreases, while the reflectance increases exponentially.

In order to understand how representative the choice of a highly reflective finishing
was for our building model, the yearly high solar reflectance behavior of a typical glazing
façade made with a Double-Glazed Unit (DGU) was evaluated.

Two types of glass were selected to describe two common DGUs that could be installed
in a new skyscraper building in accordance with its optical and energy needs (Table 2). The
two selected materials also allowed us to evaluate the extreme behaviors that could include
all the possible causes related to intermediate properties of systems and components. The
selected DGUs included one with high reflectance and solar control properties, penalizing
light transmission properties, and a second DGU with good solar control values and a high
selectivity index.

Table 2. Solar and visual properties of the Double-Glazed Units (DGUs) selected as a reference for
our analysis, considering solar transmission (τs), solar reflectance (ρs), and visual transmittance (τv).

Description Code τs [%] ρs [%] τv [%]

High Reflective Sun Control_DGU HR_SunC 9.9 53.3 15.1
Selective_DGU SEL 31.6 23.9 66.5

In Figure 5, the angular solar transmittance and reflectance properties are reported
for the DGUs listed in Table 2. The values were computed using LBNL WINDOW 7.7 [54].
The normal reflectance value of the HR_SunC case was approximately twice that measured
for the Selective (SEL) DGU. For high incidence angle of solar radiation (i.e., >70◦), the
percentage increases of the reflectance of the two analyzed DGU types are comparable,
regardless of whether the two measured reflectance values at normal incidence (ρs) are
very different.
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Figure 5. Angular solar transmittance—τs (a) and angular solar reflectance properties—ρs (b) of a
selective (SEL) and High Reflective Sun control (HR_SunC) double glass unit. On the x-axis, the
incidence angle α is reported.

2.3.2. A Parametric Analysis Script for Unwanted Reflections of a Glazed Façade

Regarding the above considerations (Section 2.3.1) on the variation of the optical
performance of transparent systems, a parametric script was developed in Rhinoceros



Sustainability 2022, 14, 5781 10 of 30

5 [46] within the Grasshopper [47] environment to evaluate the probability of occurrences
of unwanted solar reflection phenomena for a generic curtain wall surface. The script
considered: the variability of the site (latitude/longitude); the orientation of the building
masses; and the slope of the surfaces [55].

The script considered the solar rays as vectors to reduce calculation time, allowing
a comprehension of the number of rays that hit the surface. The script was based on the
following hypotheses:

• Every “solar ray” represents the sun’s position in the middle of each sun hour of radiation;
• A quad mesh subdivision of the building mass surface was used in order to replicate a

realistic building façade panelization, made through the use of discrete glazed elements.

The working flow proposed (Figure 6) lists the incident solar rays coupled with the
related normal vector of every mesh tile. This approach allowed the script to correlate the
initial vector list with the angular degree, excluding (by the use of filters) the portion of
rays not required, based on the designer criteria.
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The parametric model defined is capable of parsing sunrays incidence angles based
on their inclination for each surface normal vector. The system creates a virtual circular
radiation cone (Figure 7a), with its vertex on the surface’s central point and a perpendicular
orientation to the face.
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Figure 7. (a) The extent of the radiation cone that has a lower probability of creating unwanted solar
reflections. (b) The model for evaluating the incidence solar radiation angle. (c) Representation with,
highlighted in red, the hourly annual solar positions that have the maximum probability of creating
unwanted reflections.

Such geometry allows the control of the cone angle by increasing or reducing the
number of rays hitting the surface beyond a certain degree. As shown in Figure 5, an angle
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between 70◦ and 90◦ could generate reflected radiation on the surroundings. Considering
this, the scripts can directly provide the number of hours over the entire year in which a
mesh tile has this behavior (Figure 7c).

For every mesh tile, a virtual circular cone of a certain amplitude, based on the glass
properties, was created in its center. The cone represents the solar rays filter; in this way, it
is possible to visualize the number of vectors between 90◦ (the tile plane) and the angle α

of the cone.
The generic incidence angle of the solar radiation over the surface was evaluated in

accordance with [56], using the following equation (based on Figure 7b):

tan(α) =
tan(αs)

cos(∆γ)

where:

• (α) is the incidence angle;
• (αs) is the hourly solar altitude; and
• (∆γ) is the difference between the hourly solar azimuth (γs) and the azimuth of the

surface normal (γ), both measured from the South.

Based on the geographical location and orientation of each mesh, the script can
evaluate the entire spatial distribution of solar rays hitting the interested surfaces over
a year. Complex façade geometries and double-curved envelopes can potentially create
over-shadowing effects, hiding a façade portion from solar rays, because of the coverage of
part of the sky vault.

The parametric script (Figure 8) provides a double filter level which excludes from
the analysis all the rays screened by the obstructions and the ones out of the portion of
the skydome seen by each analyzed surface. Once the filtering has been performed, it is
possible to retrieve the amount of the reflected radiation by using the radiation cone.
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3. Results
3.1. Experimental Measurements

The experimental measurement presented in the following section is a part of the
entire measurement campaign carried out and completely reported in Appendices A–F. In
order to present the recorded value in a comparable way the undisturbed values recorded
by the weather station will be taken as reference.

The 25th of September had almost a completely clear sky condition; during the other
two days, some atmospheric turbidity was present in the central part of the day (Figure 9b).

Tables 3 and 4 and Appendices A–F include all the irradiance values recorded for the
registered interval and for the points that were selected as representatives to describe the
magnitude of the solar radiation over the surroundings of each model.
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Figure 9. (a) Test site plan view (Politecnico di Milano, Nave Building) with September sun path.
(b) Global horizontal radiation during test days (19, 21 and 25 September).

Table 3. Reflection for flat façade models: preliminary analysis and measurement results for 10:00,
13:00, and 16:00. For each point and in bold: the measured value (Meas.), the non-disturbed measure
(N.d.Meas), the Unit of Sun (UoS), and the time (Time) of the measure. All the measurements are
shown in Appendix B. In grey the measurements points within the solar reflection area.

Flat Reflective Façade

Meas.
[W/m2]

N.d.Meas UoS Time

[W/m2] [-] [hh:mm]

A 406 410 0.99 10:00

B 422 413 1.02 10:01
C 754 416 1.81 10:02
D 431 420 1.03 10:03
E 467 422 1.11 10:04

F 445 424 1.05 10:05

G 444 424 1.05 10:05

H 450 428 1.05 10:06

I 458 428 1.07 10:06

L 439 431 1.02 10:07
M 870 434 2.00 10:09
N 441 439 1.01 10:10

O 438 442 0.99 10:11

h. 10:00
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Concave Reflective Façade 

h. 10:00 

 Meas. 

[W/m2] 

N.d.Meas UoS Time 

[W/m2] [-] [hh:mm] 

A 341 350 0.98 9:35 

B 370 365 1.01 9:40 

B_2 375 367 1.02 9:41 

C 394 367 1.07 9:41 

D 450 371 1.21 9:42 

Meas.
[W/m2]

N.d.Meas UoS Time

[W/m2] [-] [hh:mm]

A 693 686 1.01 13:06
B 1321 687 1.92 13:07
C 705 685 1.03 13:08

D 698 685 1.02 13:09

E 694 685 1.01 13:10

F 708 684 1.03 13:11

G 711 684 1.04 13:12

H 691 685 1.01 13:13

I 697 686 1.02 13:14

L 686 681 1.01 13:15

M 685 676 1.01 13:16

N 704 676 1.04 13:17
O 1327 683 1.94 13:18
P 1374 684 2.01 13:19
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Table 3. Cont.

Flat Reflective Façade

h. 16:00
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Table 4. Reflection for curved façade models: preliminary analysis and measurement results at 10:00,
13:00, and 16:00. For each point and in bold: the measured value (Meas.), the non-disturbed measure
(N.d.Meas), the Unit of Sun (UoS), and the time (Time) of the measure. B_2 was introduced to better
characterize the reflection next to the façade. All the values are shown in Appendix F. In grey the
measurements points within the solar reflection area.

Concave Reflective Façade

h. 10:00

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 30 
 

 

E 419 374 1.12 9:43 

F 396 377 1.05 9:44 

G 395 377 1.05 9:44 

H 404 379 1.07 9:45 

I 409 381 1.07 9:46 

L 422 383 1.10 9:47 

M 464 386 1.20 9:48 

N 389 388 1.00 9:49 

O 386 390 0.99 9:50 

P 384 390 0.99 9:50 

h. 13:00 

 

 Meas. 

[W/m2] 

N.d.Meas UoS Time 

[W/m2] [-] [hh:mm] 

A 689 678 1.02 12:42 

B 1286 677 1.90 12:43 

B_2 1521 678 2.24 12:44 

C 696 678 1.03 0:00 

D 680 677 1.00 12:45 

E 694 679 1.02 12:46 

F 701 683 1.03 12:48 

G 702 684 1.03 12:49 

H 696 686 1.01 12:50 

I 713 689 1.03 12:51 

L 701 688 1.02 12:52 

M 687 684 1.00 12:53 

N 718 684 1.05 12:54 

O 1103 683 1.62 12:55 

P 812 683 1.19 12:56 

h. 16:00 

 

  
Meas. 

[W/m2] 

N.d.Meas UoS Time 

[W/m2] [-] [hh:mm] 

A 547 533 1.03 15:37 

B 554 530 1.05 15:38 

B_2 557 530 1.05 15:38 

C 540 524 1.03 15:39 

D 557 524 1.06 15:39 

E 719 524 1.37 15:40 

F 1237 524 2.36 15:40 

G 522 523 1.00 15:41 

H 653 523 1.25 15:41 

I 571 522 1.09 15:42 

L 534 522 1.02 15:42 

M 531 519 1.02 15:43 

N 531 519 1.02 15:43 

O 533 518 1.03 15:44 

P 527 517 1.02 15:45 

The analysis of the specular reflective surface showed a completely different pattern. 

Indeed, outside the reflection area, all the geometries show values equal to the undis-

turbed one, while inside the reflected area the values recorded are up to five times greater 

Meas. [W/m2]
N.d.Meas UoS Time

[W/m2] [-] [hh:mm]

A 341 350 0.98 9:35

B 370 365 1.01 9:40

B_2 375 367 1.02 9:41

C 394 367 1.07 9:41
D 450 371 1.21 9:42
E 419 374 1.12 9:43

F 396 377 1.05 9:44

G 395 377 1.05 9:44

H 404 379 1.07 9:45

I 409 381 1.07 9:46
L 422 383 1.10 9:47
M 464 386 1.20 9:48
N 389 388 1.00 9:49

O 386 390 0.99 9:50

P 384 390 0.99 9:50

h. 13:00

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 30 
 

 

E 419 374 1.12 9:43 

F 396 377 1.05 9:44 

G 395 377 1.05 9:44 

H 404 379 1.07 9:45 

I 409 381 1.07 9:46 

L 422 383 1.10 9:47 

M 464 386 1.20 9:48 

N 389 388 1.00 9:49 

O 386 390 0.99 9:50 

P 384 390 0.99 9:50 

h. 13:00 

 

 Meas. 

[W/m2] 

N.d.Meas UoS Time 

[W/m2] [-] [hh:mm] 

A 689 678 1.02 12:42 

B 1286 677 1.90 12:43 

B_2 1521 678 2.24 12:44 

C 696 678 1.03 0:00 

D 680 677 1.00 12:45 

E 694 679 1.02 12:46 

F 701 683 1.03 12:48 

G 702 684 1.03 12:49 

H 696 686 1.01 12:50 

I 713 689 1.03 12:51 

L 701 688 1.02 12:52 

M 687 684 1.00 12:53 

N 718 684 1.05 12:54 

O 1103 683 1.62 12:55 

P 812 683 1.19 12:56 

h. 16:00 

 

  
Meas. 

[W/m2] 

N.d.Meas UoS Time 

[W/m2] [-] [hh:mm] 

A 547 533 1.03 15:37 

B 554 530 1.05 15:38 

B_2 557 530 1.05 15:38 

C 540 524 1.03 15:39 

D 557 524 1.06 15:39 

E 719 524 1.37 15:40 

F 1237 524 2.36 15:40 

G 522 523 1.00 15:41 

H 653 523 1.25 15:41 

I 571 522 1.09 15:42 

L 534 522 1.02 15:42 

M 531 519 1.02 15:43 

N 531 519 1.02 15:43 

O 533 518 1.03 15:44 

P 527 517 1.02 15:45 

The analysis of the specular reflective surface showed a completely different pattern. 

Indeed, outside the reflection area, all the geometries show values equal to the undis-

turbed one, while inside the reflected area the values recorded are up to five times greater 

Meas. [W/m2]
N.d.Meas UoS Time

[W/m2] [-] [hh:mm]

A 689 678 1.02 12:42
B 1286 677 1.90 12:43

B_2 1521 678 2.24 12:44
C 696 678 1.03 0:00

D 680 677 1.00 12:45

E 694 679 1.02 12:46

F 701 683 1.03 12:48

G 702 684 1.03 12:49

H 696 686 1.01 12:50

I 713 689 1.03 12:51

L 701 688 1.02 12:52

M 687 684 1.00 12:53

N 718 684 1.05 12:54
O 1103 683 1.62 12:55
P 812 683 1.19 12:56



Sustainability 2022, 14, 5781 14 of 30

Table 4. Cont.

Concave Reflective Façade

h. 16:00
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Experimental measurements showed a significant increase in solar irradiance values
due to solar reflection, both for specular and scattered materials. For all the geometries,
the irradiance values were strictly connected with the façade shape and measurement
position. With the white scattering surface, it is possible to notice an overall increase in
solar irradiance depending on the distance between the measurement point and the scale
models. No significant variations were observed with a change in the geometries of the
building models, meaning that for the scattering material, the only significant variable is
the distance from the façade.

The analysis of the specular reflective surface showed a completely different pattern.
Indeed, outside the reflection area, all the geometries show values equal to the undisturbed
one, while inside the reflected area the values recorded are up to five times greater than
the solar radiation on the horizontal plane (façade with a concave geometry presented in
Table 4).

Considering the concave surface, this unique building geometry concentrates the
reflected sunlight in a small focal point characterized by a strong increase of perceived
light (Table 4) and of surface temperature intensity, which can only be estimated due to the
nature of the urban environment that is also influenced by the surface’s thermal mass, solar
absorbance, and emissivity, such as transient local parameters (such as wind velocity and
water presence, as in [28,34]).

Indeed, for the flat and 10% tilted façade, the values doubled the undisturbed solar
irradiance for the concave shape. This was due to the Fresnel effect on light reflections,
which is greater than five times in the focal point (no precise value has been measured, as it
was higher than the full scale of the Table 4. For this reason, Tables 3 and 4 show the results
obtained for the flat reflective and the concave reflective façades in three parts of the day.

Compared to scattering material, where the solar irradiance curves at ground level
and presents a flat upward shift with respect to horizontal irradiance, for high specular
material, it is possible to notice peaks depending on the measurement points and solar
position. For the flat reflective façade and in every analyzed position (Figure 2a), a peak
value between 1200–1350 W/m2 was reached during different hours of the day, and a result
was obtained that is two times more than the measured horizontal irradiance (Table 3).

Curved façades behave like a solar concentrator, generating reflection tracks and high
irradiance values on the ground. Inside the reflection path, the irradiance values exceed
40–60% of the undisturbed radiation values, while on the shape edges it is possible to reach
100–130% higher irradiance values. The critical area for collector shapes is the focus; near
the focus the irradiance value can reach 1800–2200 W/m2 compared to the global horizontal
irradiance of 650–700 W/m2. Inside the focus, values higher than 3000 W/m2 have been
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reached, and at noon, the instrument limit (4000 W/m2) was overtaken, implying that it
reached values far above this threshold. Table 4 shows different light-track geometries and
the respective recorded values for each measurement position.

Figure 10 shows a comparison, assuming the same type of façade (flat) and same mea-
surement position, between the scattered and the specular façade materials. In Figure 10a,
it is possible to see that during the day, the increase of reflectance of the scattering material
is affected by the distance from the façade. However, in Figure 10b, it is possible to see
that regarding the specular material, when the measurement point is inside the reflected
area there is twice the irradiance. When outside, the values are the same as those of the
undisturbed one.
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Figure 10. Time-dependency value of solar radiation for five measurement points (A, B, C, M, N) for
scattering (a) and specular (b) planar façade geometry (21 September).

The use of the selected light-diffusing material shows radiation values constantly
increasing in all the directions around the building model with an intensity that changes
only in relation to the distance from the façade (the measured peak is ~133% at 15 cm
distance from the façade, equivalent to a H/D ratio of 6.66 in a real building scenario and
in which D is the Distance from the façade and H the Height).

Regarding the reflective materials, the behavior of the three geometries is completely
different. For the flat geometry, the value of solar irradiance in the reflected area reached
a peak of ~200%; while outside of the “reflection zone”, the values were almost similar
to the irradiance measured on the horizontal plane. The curved façade can have an easy
prediction of the caustic shape. The curvature of the façade itself must be adequately large
to reduce the intensity of the solar radiation in the focal point, otherwise, the extent of the
reflective or specularly reflective façade material should be reduced. The behavior of the
10% tilted flat geometry is similar to that of the flat vertical one, with a similar shape of the
reflected area, but with less extension from the building façade (due to its 10% inclination)
and radiation values inside that are slightly higher. The convex curved geometry produced
a focal point in which the solar irradiance reached values higher than ~300%.

Some authors [57] suggest the use of alternate finishings on the façade, or different
materials to avoid reflections problems over the pedestrians. A standard geometry building
facing an urban canyon was considered as the reference example. In this case, the use of
reflective materials under the fourth floor was discouraged, while the use of retro-reflective
or purely diffuse materials was suggested.

A further measurement carried out was thermography. Thanks to these measurements,
it was possible to indirectly identify the temperature reached by the surface (with the grey
coating shown in Figure 4) due to reflection. With this approach, it is also possible to
identify the behavior of the concave façade from a quantitative point of view, as shown in
Figure 11. In the focus of the parabola, describing the geometry of the parabolic façade,
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a severe concentration of solar radiation is present, but on a very limited portion of the
surrounding plane. A zone in which the surface temperature considerably exceeds the
reference of the temperature scale, set at 100 ◦C, is clearly identifiable. The distribution of
temperatures in the other cases examined is uniform over a larger area of reflection and
with values between 60 and 80 ◦C. The surface temperature results for the curved vertical
façade are comparable with the literature findings.
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Figure 11. (a) The reflection shapes (photo on the top and thermography on the bottom) of the
skyscraper scale model with a flat vertical façade coated by the reflective film. (b) The reflection
shapes (photo on the top and thermography on the bottom) of the skyscraper scale model with a
flat 10% tilted façade coated by the reflective film. (c) The reflection shapes (photo on the top and
thermography on the bottom) of the skyscraper scale model with a curved vertical façade coated by
the reflective film.

3.2. Simulated Frequency Distribution of Solar Reflection Occurrences: Hourly Annual Distribution

Among the results of the preliminary assessment of the building masses, and ob-
tainable through the developed script, it is possible to derive a temporal evaluation of
the hours and days during the year in which a generic façade glazed tile and part of the
façade meshes are likely to be subject to phenomena of reflection and/or concentration
of solar radiation. This can be considered a preliminary risk assessment that depends on
geometry, latitude, longitude, and orientation. The following results are exemplificative of
the potential risk of a glazed vertical façade module.

The analysis was carried out to determine all the possible angles of incidence of solar
radiation that annually can insist on a building with a flat vertical façade facing South (S),
East (E), or West (W), in addition to the two intermediate positions, South-East (SE) and
South-West (SW). This model is representative of one of the test cases analyzed during the
experimental campaign. This hourly analysis was developed considering the latitude and
longitude of Milan.

A representative hourly annual distribution of the solar reflection occurrences is
presented in Figure 12 for the South-exposed façade.
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Figure 12. Annual hourly distribution of the incidence angles of the solar radiation over the façade of
the classical vertical South-oriented skyscraper model.

In the following carpet graph, the different days of the month are reported on the
x-Axis and the different hours of the day on the y-Axis. It is then possible to highlight that
the first and the last hours of the day during the winter months are critical, and particular
attention must be paid to the central hours of the day during the summer months when the
incidence angles distributions are greater than 80◦.

In general, we considered the 70◦ angle of radiation incidence as a threshold that
could generate negative phenomena of concentrated reflection of solar radiation on the
surrounding context. Since the facade of the building model considered is planar and
vertical, it is possible to assume that each module of the facade, i.e., each portion of it, has a
uniform and homogeneous behavior, respecting the previously identified rules for possible
unwanted reflections.

Table 5 shows the incidence angle frequencies compared to the total number of hours
of light during the year. The results show that the phenomenon is not negligible, since it
afflicts the façade of the building between 22% and 28% of the time, in the same way. We
note that the most critical exposure for this type of façade geometry is South, followed by
the East (or West), and finally the couple SE/SW. Other façade geometries and alternative
locations could lead to different distributions of the angles of incidence, increasing or
decreasing the number of critical hours.

Table 5. Percentage of solar radiation incidence angles per orientation over the flat façade of the
vertical building. The percentages are related only to sunlight hours.

Incidence Angle α of the Solar Radiation Per Orientation—Flat Vertical Façade

α E/W SE/SW S

α < 50◦ 51% 42% 34%
50◦ < α < 60◦ 15% 22% 16%
60◦ < α < 70◦ 11% 15% 21%
70◦ < α < 80◦ 8% 11% 16%
80◦ < α < 85◦ 10% 5% 7%
85◦ < α < 90◦ 5% 5% 6%

Total > 70◦ 23% 21% 29%

3.3. Simulated Frequency Distribution of Solar Reflection Occurrences: Spatial Surface Distribution

In case of any complex façade surfaces, and for every single mesh, which describes
the panelized surface of the generic building mass, the number of hours per year, or the
possible occurrences of unwanted reflection, they can be represented using a false color
scale. The model is simplified, not considering the solar deflection of the glass, which could
modify or amplify the occurrence of the phenomenon.

Unlike the analysis presented in the previous section, it is not possible to know which
hours and periods of the year unwanted reflections phenomena occur. However, it is
possible to identify which portions of the building mass surface are characterized by the
highest number of negative occurrences. The script, in this case, was therefore used as a
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pre-assessment of the proposed geometry, favoring the designer’s activity in suggesting
possible variations to provide effective proposals for the modification of the geometry
during the design phase or to provide local treatments to mitigate the effects.

Therefore, it is possible to make qualitative deductions comparable to the following:

• In the southern-exposed facades with parabolic sections, the possibility of negative
effects becomes greater while moving away from the geometric focus of the parabola
that describes the surface (Figure 13a);

• In the case of east-facing exposed parabolic surfaces, the area that is close to the focus
of the parabola seems more critical (Figure 13b).
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façade facing East. Both buildings are located in Milan.

Further developments will be the subject of analysis in future publications, in which
the script will be expanded in its possibilities of use.

4. Discussion

Our results quantify the risk of solar concentration posed by buildings with specularly
reflective facades, especially with a concave façade geometry facing the equator. A single
high rise building with a flat diffusive façade with an albedo of 0.86 (i.e., an unsoiled white)
causes an increase of the incident solar irradiance on the ground by a maximum of 20%
(i.e., 1.2 suns at pedestrian level). This is still a significant increase, although the hardware
model represents a worst-case scenario, without windows or overhangs.

As in [16], if we consider a building of indefinite length, we can compute the fraction
of incident radiation that returns to the sky, which is 36% for a Lambertian wall and
pavement with albedo equal to 0.60 and 0.20, respectively. In our case, the fraction of solar
radiation returning to the sky was 58% [computed as 0.86 wall albedo × (0.5 sky view
factor + 0.5 ground view factor × 0.36 ground albedo)]. Levinson et al. computed that a
retro-reflective wall with albedo of 0.60 increases the solar radiation escaping the city to
55% (with a Lambertian street pavement with albedo = 0.20) [16].

Instead, the mirror-like finish, both in the flat and concave configuration, leads to peak
irradiances reaching the ground, even three times the incoming irradiance (i.e., 3 suns).
This does not approach the degree of solar concentration achieved by Fresnel reflectors
designed for high concentration photovoltaics [58], which can exceed 1000 suns. However,
local effects and some polished metal cladding might achieve higher values than those
we measured, possibly approaching the 25–50 suns of the early developments in solar
concentration PV [59]. Indeed, the façades of buildings might perform as modular Fresnel
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lenses. Therefore, our results do not constitute a worst-case scenario, but rather a realistic
scenario of downward reflection of solar radiation with a specularly reflective façade.

Some authors [57] suggest the use of alternate finishings on the façade, or different
materials to avoid reflection problems for pedestrians. A standard geometry building
facing an urban canyon was considered as the reference example. In this case, the use of
reflective materials under the fourth floor was discouraged, while the use of retro-reflective
or purely diffuse materials was suggested.

Retro-reflective materials have been proposed as a solution. However, like high-albedo
materials [60], they are subject to ageing problems, which decrease their reflectance and
retro-reflection over time. Their performance is almost fully recovered after cleaning only
by prism-type retro-reflectors [61]. However, only a limited number of studies have been
performed on the durability of retro-reflectors. Furthermore, retro-reflectors display the
maximum upward to downward reflection ratios for low angles of incidence [62]. This may
provide a positive performance at sunrise and sunset, but the retro-reflection ratio is limited
to 30–50% during peak hours. Therefore, the application of retro-reflective materials cannot
be a panacea for solving careless design. Much attention has been paid in the literature to
the potential negative effects on thermal comfort of pedestrians that would be produced by
high-albedo diffusely reflecting walls [11,12], while the solar concentration produced by
specular reflective materials is of an order of magnitude greater, as demonstrated in this
paper and by the empirical evidence from relevant case studies listed in Table 1.

Herein, we argue that outdoor thermal comfort models should be enhanced to repre-
sent the directional components of the reflection of solar radiation. Furthermore, develop-
ment control plans and building codes should include a threshold on solar concentration by
buildings in order to avert a radiatively induced urban heat island. In fact, a review of more
than 220 projects reports a peak ambient temperature reduction by approximately 2 ◦C
when the albedo of an urban area is increased by 0.3 [9]. This also means that decreasing the
amount of solar radiation that escapes the urban canopy layer due to downward reflection
increases the ambient temperature. The ambient temperature increase caused by specular
reflective (glazed) facades is to be determined, but the canyon albedo with specular reflec-
tors and glazed facades is known [63]. If the façade is fully glazed, with a high window
to wall ratio, the canyon albedo is lower than 0.05 with high solar elevations [63], while
it is more than 0.15 with wall albedos of 0.50 (as also documented experimentally [64]).
Additionally, values lower than 0.10 for the canyon albedo are computed when walls are
covered by purely specular reflectors [65]. Therefore, fully glazed facades may decrease the
urban albedo by approximately 0.10–0.15, thus leading to ambient temperature increases
of the order of magnitude of 0.6–0.7 ◦C, based on the mitigation reported in the literature
with increases in urban albedo [9].

5. Conclusions

We analyzed the impact of building geometries and reflection behavior of finishing
materials (i.e., diffuse or specular) on the irradiance values measured at street level. The
three selected representative geometries (curved convex, vertical flat, and 10% tilted flat)
coupled with two different façade materials suggested avoiding caustic curve formation
and that the effect of highly reflective surfaces is perceived differently in accordance with
the distance from the building.

The measurements taken were an example of the two extreme possible behaviors for
approximately Lambertian and specular reflective materials. In a real scenario, the glazing
facade material has a behavior that is not perfectly matching both of the boundaries, but
rather is in the middle. For a high angle of solar incident radiation, its behavior became
almost similar to that of the specular one.

For all these reasons, it is recommended that designers perform a detailed study
of the consequences of the materials used for the building envelope during the design
phase in accordance with the building context to avoid severe comfort and visual issues
in the surroundings of the buildings. In the case of severe impairment, any kind of
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post-construction mitigation strategy could be impossible, inadequately expensive, or
incompatible with the building architecture. All the façades can be critical, and the coupled
effect of the wrong geometry and material choices can magnify glare and solar concentration
problems. For these reasons, all the surrounding areas particularly sensitive to the reflected
light must be carefully identified to understand the impact that reflected sunlight can have
on safety and comfort issues.

Among the alternatives, a speditive evaluation (both in the preliminary and construc-
tion phase) can be performed by using a parametric script to evaluate any surface under
a general orientation only by changing the cone amplitude, as described in Section 2.3.2.
This approach can enhance the design of complex envelopes, providing the possibility to
evaluate the amount of reflected radiation and, indirectly, to know how much energy is
passing through the surface in case of a glazed façade.

The proposed method helps to understand which glazed units can be problematic and
for hour many hours, enhancing the design by developing shading strategies.

Future developments of the test and procedure presented can facilitate the analysis of
other geometries and materials and be applied to shading strategies such as local overhangs,
fins, and external shading systems that can mitigate or exclude critical sunlight reflections,
considering sensitive areas as local constraints.

The relevance of this study concerns two aspects. We evaluated the impact of tall
buildings and their geometry, with the quantification of solar concentration by archetypical
combinations of façade geometry and materials and the identification of a measurement
protocol. This research also sheds light on the need for considering solar concentration in
research on urban overheating. With an increasing use of specularly reflective materials
in the built environment, urban climate models need to embed this capability beyond
what has already been reported in studies supporting the performance analysis of retro-
reflective materials.
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Figure A1. Flat diffusive façade—Experimental setup and measurement points position (Figure 2).

Table A1. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 19 of September with the exception of the underlined
number that refers to the 21 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:00 9:15 254 294
267 323 310 292 339 337 333 328 333 316 321 338 346 336

1.27 1.21 1.11 1.27 1.24 1.21 1.16 1.17 1.09 1.09 1.13 1.13 1.09

10:00 10:16 420 458
430 521 495 458 504 517 506 490 495 478 483 505 509 492

1.24 1.16 1.06 1.16 1.18 1.15 1.10 1.10 1.06 1.06 1.10 1.10 1.05

11:00 11:17 549 578
556 673 628 585 627 657 640 614 620 600 597 625 625 602

1.23 1.14 1.06 1.13 1.18 1.14 1.09 1.10 1.06 1.05 1.09 1.09 1.05

12:03 12:20 654 676
647 799 753 695 717 748 743 723 732 710 650 711 739 703

1.22 1.15 1.06 1.09 1.13 1.12 1.09 1.10 1.06 0.97 1.06 1.10 1.04

13:02 13:18 546 734
732 895 832 761 773 830 798 754 760 747 749 784 790 755

1.64 1.45 1.27 1.18 1.22 1.13 1.03 1.04 1.02 1.02 1.07 1.08 1.04

14:00 14:16 690 712
695 852 789 727 713 766 732 706 720 713 721 754 761 727

1.20 1.11 1.03 1.01 1.09 1.05 1.01 1.04 1.03 1.04 1.09 1.10 1.05

15:00 15:15 631 656
648 782 720 680 655 696 671 649 667 656 655 684 691 672

1.19 1.10 1.04 1.01 1.07 1.04 1.01 1.04 1.03 1.03 1.08 1.09 1.06

16:00 16:18 510 570
550 656 591 575 527 550 525 512 530 520 535 553 560 540

1.15 1.05 1.03 0.97 1.02 0.99 0.97 1.01 1.00 1.03 1.07 1.09 1.05

17:00 17:17 347 398
374 461 421 420 364 376 356 344 360 361 365 374 378 361

1.16 1.07 1.08 0.94 0.98 0.94 0.91 0.96 0.98 1.00 1.05 1.07 1.03
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Figure A2. Flat reflective façade—Experimental setup and measurement points position (Figure 2).

Table A2. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 25 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:00 9:11 256 279
248 255 263 467 304 282 285 294 297 403 281 281 280 278

1.00 1.02 1.80 1.15 1.06 1.06 1.08 1.09 1.47 1.01 1.00 0.99 0.98

10:00 10:10 416 439
406 422 754 431 467 445 444 450 458 439 870 441 438 437

1.02 1.81 1.03 1.11 1.05 1.04 1.05 1.06 1.02 2.00 1.01 0.99 0.98

11:00 11:11 550 563
540 905 987 557 590 575 575 580 592 572 1099 1075 564 557

1.65 1.79 1.01 1.06 1.04 1.03 1.03 1.05 1.02 1.95 1.91 0.99 0.97

12:05 12:16 653 662
661 1179 1201 657 680 677 676 673 688 675 663 1294 1190 662

1.81 1.84 1.01 1.04 1.03 1.02 1.02 1.04 1.02 1.00 1.96 1.80 1.00

13:06 13:17 676 686
693 1321 705 698 694 708 711 691 697 686 685 704 1327 1374

1.92 1.03 1.02 1.01 1.03 1.04 1.01 1.02 1.01 1.01 1.04 1.94 2.01

14:01 14:1 660 669
672 1290 680 682 667 1242 1259 665 688 677 671 675 684 667

1.92 1.02 1.02 1.00 1.86 1.90 1.01 1.04 1.03 1.02 1.02 1.03 1.01

15:18 15:24 558 565
569 602 576 585 558 1075 565 1309 582 578 573 573 571 563

1.05 1.02 1.04 1.00 1.93 1.01 2.33 1.03 1.02 1.02 1.02 1.02 1.01

16:14 16:23 428 449
462 481 468 486 455 782 428 635 453 445 442 440 440 435

1.06 1.04 1.08 1.02 1.75 0.97 1.45 1.03 1.02 1.02 1.03 1.03 1.02

16:57 17:08 308 334
334 347 339 359 525 314 296 297 462 314 313 310 311 308

1.03 1.01 1.09 1.60 0.97 0.92 0.93 1.46 1.00 1.00 1.01 1.02 1.02
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Figure A3. Flat 10% tilted diffusive façade—Experimental setup and measurement points position
(Figure 2).

Table A3. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 21 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:03 9:19 257 302
268 329 311 289 342 340 343 333 329 316 311 328 329 318

1.28 1.20 1.10 1.29 1.26 1.25 1.20 1.16 1.10 1.07 1.12 1.11 1.05

10:00 10:21 426 474
430 534 500 457 500 516 518 499 498 485 482 509 513 490

1.28 1.17 1.07 1.15 1.18 1.18 1.13 1.12 1.08 1.06 1.11 1.11 1.05

11:18 11:33 590 605
595 744 687 614 652 685 674 639 656 638 642 671 678 636

1.27 1.16 1.04 1.10 1.15 1.13 1.07 1.10 1.06 1.07 1.12 1.12 1.05

12:23 12:39 685 702
692 848 798 715 725 795 775 735 745 727 728 771 774 733

1.24 1.16 1.04 1.05 1.14 1.11 1.06 1.07 1.04 1.04 1.10 1.10 1.04

13:00 - - -
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

14:06 14:51 554 690
686 850 790 735 713 775 735 702 710 699 694 726 730 690

1.23 1.15 1.07 1.04 1.13 1.33 1.24 1.20 1.16 1.12 1.15 1.14 1.08

15:01 15:16 620 630
632 686 720 673 652 702 673 641 648 642 643 675 683 651

1.09 1.15 1.07 1.04 1.12 1.07 1.02 1.03 1.02 1.03 1.08 1.10 1.05

16:01 16:32 425 498
516 646 587 566 524 557 530 443 456 453 468 487 498 463

1.30 1.19 1.16 1.09 1.17 1.14 1.04 1.06 1.05 1.07 1.10 1.14 1.07

17:00 17:13 333 356
340 426 392 395 343 369 351 339 348 348 349 358 363 349

1.16 1.10 1.11 0.97 1.05 1.00 0.97 1.01 1.01 1.02 1.05 1.07 1.04
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Figure A4. Flat 10% tilted diffusive façade—Experimental setup and measurement points position
(Figure 2).

Table A4. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 25 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:17 9:28 302 328
292 312 509 487 363 337 337 344 346 437 331 332 331 329

1.05 1.68 1.59 1.18 1.08 1.07 1.08 1.08 1.36 1.02 1.01 1.00 0.98

10:20 10:31 469 490
455 494 846 488 526 503 504 508 518 500 906 512 498 492

1.06 1.80 1.04 1.11 1.05 1.05 1.06 1.08 1.03 1.86 1.04 1.01 0.99

11:20 11:31 588 603
581 1155 1113 596 628 616 614 615 627 613 1002 1146 616 605

1.97 1.89 1.01 1.06 1.05 1.04 1.03 1.05 1.02 1.67 1.90 1.02 0.99

12:20 12:31 663 675
654 1292 1337 669 680 696 699 687 697 685 677 1313 1288 680

1.95 2.02 1.00 1.02 1.04 1.05 1.03 1.05 1.03 1.00 1.95 1.91 1.01

13:21 13:32 642 685
685 1229 696 682 686 722 1299 686 702 695 688 708 1314 694

1.79 1.02 1.03 1.06 1.08 1.95 1.01 1.03 1.01 1.03 1.10 1.93 1.02

14:20 14:31 650 657
656 1219 675 675 658 1249 1232 663 676 667 662 669 679 659

1.85 1.03 1.03 1.00 1.91 1.89 1.01 1.04 1.02 1.01 1.03 1.04 1.01

15:27 15:35 540 549
546 976 563 579 551 1159 515 1063 560 554 552 553 558 547

1.77 1.03 1.06 1.01 2.12 0.95 1.95 1.03 1.02 1.02 1.02 1.03 1.02

16:27 16:38 390 411
420 435 421 443 414 709 388 394 411 406 401 399 401 398

1.05 1.02 1.08 1.02 1.75 0.96 0.99 1.04 1.04 1.03 1.02 1.04 1.03

17:20 17:31 248 270
270 288 280 304 456 263 244 244 604 262 263 259 261 257

1.05 1.04 1.14 1.74 1.01 0.95 0.95 2.39 1.05 1.05 1.04 1.05 1.05
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Figure A5. Concave diffusive façade—Experimental setup and measurement points position
(Figure 2).

Table A5. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 19 of September with the exception of the underlined
number that refers to the 21 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B B_2 C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:28 9:47 335 384
351 413 - 402 373 417 416 412 405 410 395 397 417 419 407

1.23 - 1.18 1.09 1.19 1.18 1.15 1.12 1.12 1.06 1.06 1.10 1.10 1.06

10:26 10:49 494 530
511 604 625 574 530 573 586 575 559 564 543 545 571 573 550

1.23 1.26 1.16 1.06 1.14 1.15 1.13 1.09 1.09 1.04 1.04 1.09 1.09 1.04

11:41 11:57 623 645
618 744 798 725 664 693 731 715 686 693 658 665 694 708 677

1.20 1.28 1.16 1.06 1.10 1.16 1.13 1.08 1.09 1.03 1.04 1.08 1.10 1.05

12:45 13:01 694 708
713 815 841 792 729 754 801 779 734 751 726 720 762 760 692

1.17 1.21 1.14 1.05 1.09 1.15 1.12 1.05 1.07 1.03 1.02 1.08 1.07 0.98

13:30 13:44 716 720
733 865 898 809 741 740 795 773 740 751 739 740 775 780 746

1.20 1.25 1.12 1.03 1.03 1.11 1.08 1.03 1.05 1.03 1.03 1.08 1.09 1.04

14:31 14:46 663 668
669 800 831 746 701 682 734 711 682 690 683 690 720 730 701

1.20 1.24 1.12 1.05 1.02 1.10 1.07 1.03 1.04 1.03 1.04 1.09 1.10 1.06

16:28 16:44 441 476
480 572 576 506 498 447 472 447 432 447 449 456 470 476 458

1.18 1.20 1.06 1.05 0.95 1.01 0.97 0.95 0.99 1.00 1.02 1.06 1.08 1.04

17:30 17:44 262 296
295 341 345 304 314 258 274 256 251 264 273 275 279 282 270

1.13 1.15 1.03 1.07 0.90 0.97 0.92 0.91 0.97 1.01 1.03 1.05 1.08 1.04
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Figure A6. Concave reflective façade—Experimental setup and measurement points position
(Figure 2).

Table A6. Irradiance and Unit of sun per each measurement point over the sample plane. All the
measurements have been performed on the 25 September.

Start
Time

End
Time

MIN
N.d.

MAX
N.d. A B B_2 C D E F G H I L M N O P

[hh:mm] [hh:mm] [W/m2] [W/m2] The Upper Value Refers to the Measure in Each Point [W/m2] While the Lower
Is the Ratio [-] with the Undisturbed Measure (Unit of Sun)

9:35 9:53 350 397
341 370 375 394 450 419 396 395 404 409 422 464 389 386 384

1.01 1.0207 1.07 1.21 1.12 1.05 1.05 1.07 1.07 1.1 1.2 1 0.99 0.99

10:42 10:55 512 539
517 526 533 1402 865 562 545 544 549 560 608 668 553 536 529

1.02 1.03 2.71 1.67 1.08 1.05 1.04 1.05 1.07 1.15 1.26 1.04 1.00 0.99

11:41 11:56 620 634
631 651 667 690 631 657 650 649 648 663 649 853 1022 647 637

1.04 1.07 1.10 1.00 1.04 1.03 1.03 1.03 1.05 1.03 1.35 1.62 1.02 1.00

12:42 12:56 678 689
689 1286 1521 696 680 694 701 702 696 713 701 687 718 1103 812

1.90 2.24 1.03 1.00 1.02 0.00 1.03 1.03 1.01 1.03 1.02 1.00 1.05 1.62

13:40 13:48 674 682
692 1055 1823 695 689 686 702 1492 686 704 694 687 693 752 1089

1.55 2.68 1.02 1.01 1.01 1.03 2.18 1.00 1.03 1.02 1.01 1.02 1.11 1.61

15:07 15:17 573 601
611 620 627 606 617 602 1095 607 681 623 590 - - 592 -

1.03 1.05 1.01 1.04 1.01 1.85 1.04 1.17 1.07 1.02 - - 1.04 -

15:37 15:44 518 533
547 554 557 540 557 719 1237 522 653 571 534 531 531 533 527

1.05 1.06 1.03 1.06 1.37 2.37 1.00 1.25 1.09 1.03 1.02 1.02 1.03 1.02

16:45 16:55 346 372
379 383 384 376 396 380 363 340 569 433 360 358 354 355 351

1.04 1.05 1.03 1.09 1.04 1.00 0.95 1.60 1.23 1.02 1.03 1.02 1.03 1.02

17:37 17:47 197 228
237 237 231 251 238 203 192 196 225 214 213 208 210 208

1.04 1.04 1.03 1.14 1.10 0.94 0.91 0.94 1.09 1.05 1.05 1.04 1.07 1.06
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