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Abstract: Since the industrial revolution, the geopolitics of energy has been a driver of global
prosperity and security, and determines the survival of life on our planet. This study examines
the nonlinear structure and multifractal behavior of the cross-correlation between geopolitical risk
and energy markets (West Texas Intermediate (WTI), Brent, natural gas and heating oil), using the
multifractal detrended cross-correlation analysis. Furthermore, an in-depth analysis reveals different
associations of the indices of overall geopolitical risk, geopolitical acts, and geopolitical threats
against the four energy products. Based on daily data ranging from 1 January 1985 to 30 August 2021,
the findings confirm the presence of nonlinear dependencies, suggesting that geopolitical risk and
energy markets are interlinked. Furthermore, significant multifractal characteristics are found and the
degree of multifractality is stronger between the overall geopolitical risk and WTI while the lowest
degree of multifractality is with Brent. Overall, for the WTI and heating-oil markets, the influence of
geopolitical threats is more pronounced rather than their fulfilment. Contrarily, the Brent and natural
gas are more correlated to geopolitical acts. Energy products exhibit heterogeneous persistence levels
of cross-correlation with all the indicators of geopolitical risk, being more persistent in the case of
small fluctuations compared to large fluctuations.

Keywords: geopolitical risk; acts and threats; energy markets; crude oil; natural gas; heating oil;
multifractal detrended cross-correlation analysis

1. Introduction

Geopolitical risk (GPR), according to Caldara and Iacoviello [1], is defined as the risk
associated with terror threats, war threats, nuclear threats and military build-ups between
states or countries that disrupt the usual, peaceful conduct of international affairs. For
instance, Russia’s recent invasion of Ukraine on 24 February 2022 has rattled human capital,
physical infrastructure, financial markets, international peace and the security system [2].
It is producing a major humanitarian crisis and running amok on an already frail global
economy, which was recently hit by the COVID-19 pandemic [3]. GPR has been on the
rise in recent decades, with extreme events such as the US bombing of Libya (April 1986),
invasion of Kuwait (August 1990), Iraq airstrikes (January 1993), Bosnian war (February
1994), 9/11 attacks (September 2001), Iraq war (March 2003), London bombing (July 2005),
the global financial crisis (GFC 2007–2008), Paris attacks (November 2015), US–North
Korea (2017–2018), US–Iran tensions (2020), and the current COVID-19 pandemic (2019) [1].
GPR is now ranked even higher than economic uncertainty [4] and is emphasized as a
key driver of the state of the economy [5]. Carney [6] includes GPR with economic and
policy uncertainty as the “uncertainty trinity” with major financial and economic impacts.
“Uncertainty” and “risk” are different, as “uncertainty” cannot be quantified while “risk” is
measurable using probabilities, either subjective or physical. Since 1921, economists have
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debated and modeled this issue. However, the macroeconomics literature muddles this
distinction, and explicitly measures “uncertainty” by developing indices described in the
text, which most likely also capture some parts of “risk” [7].

Asset prices reflect investors’ hopes and fears for the future and generate a tidal wave
of activity. In an uncertain and risky environment, investors search for other safe heavens
and withdraw their investments, thereby adversely affecting markets. GPR immediately
affects the financial and commodity markets by increasing the risk aversion of investors,
consumers and firms, which leads to lower consumption and investments, triggering
economic slowdown and spilling over to other alternative markets. Furthermore, due to
psychological fear, ambiguity, and the desire to avoid future loss, individual investors
become reluctant to trade, which negatively affects financial markets [7]. Despite this, there
is a lack of literature on the impact of GPR on financial markets because of the difficulty
in measuring GPR. Some studies examined the impact of GPR on stock markets [8–10],
cryptocurrencies [11,12], metals [13,14], energies [15,16], and oil markets [4,17–19].

Despite the development of electric cars, renewable-energy production, and ambi-
tious climate goals, the oil market is still regarded as the lifeblood of the world’s eco-
nomic engine [20], meeting around two-thirds of the global energy demand [21]. For
this reason, a large body of literature has investigated oil markets from various per-
spectives, such as the pricing formation [22–24], the relationship with the macroecon-
omy [25–27], interlinkages with stock markets [28,29], financialization [30,31], forecast-
ing [32,33] or multifractal characteristics [34,35], among others. The crude-oil market is
extraordinarily large and complicated. According to the Crude Oil Global Market Report
2020 (https://www.thebusinessresearchcompany.com/report/crude-oil-global-market-
report#:~:text=Crude%20Oil%20Market%20Size,1.2%25%20during%20the%20forecast%20
period (accessed on 19 April 2022)) and Natural Gas Global Market Report 2020 (https://
www.thebusinessresearchcompany.com/report/natural-gas-global-market-report#:~:text=
Natural%20Gas%20Market%20Size,7.7%25%20during%20the%20forecast%20period (ac-
cessed on 19 April 2022)), the crude-oil and natural-gas markets are expected to reach
market values of about $1407.65 billion and $1031.55 billion by 2022, respectively. It is the
geopolitical aspect which distinguishes crude-oil markets from other energies, commodities,
and financial assets. Heating oil, on the other hand, commonly known as No. 2 fuel oil,
accounts for around 25% of a barrel’s yield and had a market value of $163.3 billion in
2019 (https://www.verifiedmarketresearch.com/product/fuel-oil-market/ (accessed on
19 April 2022)).

The consumption of oil, natural gas and coal increases carbon emissions, which
represents a barrier to sustainable economic development and contributes to the creation of
new geopolitical conditions. For example, GPR can reduce carbon emissions by limiting
economic growth and energy consumption. On other hand, it may deter innovation and
clean energy and result in increased carbon emissions [36]. Therefore, oil-related issues
should be widely investigated from a geopolitical perspective, as governments frequently
regard crude oil as a political weapon [37]. Even though oil prices have recovered from
historic lows in 2014 and 2015, recent volatility fueled by the Russians, Iran sanctions,
United States (US) and China conflicts, and the recent shale revolution has left many
concerned, and it shows no signs of easing. This means that GPR has an impact on
economic aspects including oil price, production, resource mobility, demand and supply,
extraction costs, exchange rates and other alternative investments. A large imbalance could
occur if supply channels are blocked or demand collapses due to economic shutdowns
triggered by unrest, as happened during the recent COVID-19 pandemic.

Other major energy markets such as natural gas are also prone to geopolitical risk.
Russia is one of the world’s main producers of primary energy resources, with a particularly
strong position in global gas markets [38]. It has the world’s largest gas reserves and is
the world’s second-largest gas producer, trailing only the US, which recently overtook
Russia due to the shale revolution [39]. Most Russian gas exports go to European and
Commonwealth of Independent States (CIS) countries, while Asian exports are likely to
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grow significantly in the future (https://scholarship.rice.edu/bitstream/handle/1911/9
1291/CES-pub-GeoGasRussiax-022114.pdf?sequence=1 (accessed on 19 April 2022)). As
a result, Russia wields huge influence over prices and geopolitical leverage as well as on
the “rules of the game”. Along with oil, natural gas is also being used as a key geopolitical
weapon. Therefore, the importance of the natural-gas industry for the current and future
political and economic situation should not be overlooked. However, the relationship
between geopolitical-risk indicators and natural gas has been largely ignored in previous
studies. Natural gas is not only the energy sector’s backbone, but also one of the most
important national and foreign policy tools, being greatly influenced by domestic economic
and political events.

GPR’s connection with other commodity markets has been studied via numerous
analytical methods. These include the fixed-effect regression model [40], random-effect
regression model [41], quantile regression [42,43], linear and non-linear probabilistic models
and feasible generalized least-square estimator [44,45], time–frequency-based wavelet
analysis [46], decomposition and the STVAR model [47] or Bayesian graphical structural
VAR [48], among others. However, multifractal aspects of GPR with energies as well as
other financial markets have been largely ignored in these studies.

Since their popularization by the Polish-born mathematician Mandelbrot [49], the idea
of fractals has roused curiosity and has now been applied in various fields to examine the
self-similarity and Hausdorff dimension of an object [50]. Mandelbrot [51] used fractals
to study the behavior of cotton prices and discovered that commodity prices follow self-
similar complicated patterns rather than being random. Primarily, there are two types of
fractal-based methodologies, i.e., mono-fractal and multifractality. The anti-persistent or
persistent behavior, also known as long-memory features, were mainly studied by mono-
fractals. However, scholars later found that financial markets have complex multi-scale
properties, which present a challenge for mono-fractality. Multifractality, according to Man-
delbrot [52], may quantify the complexity of financial time series better than mono-fractality
and it has a wider use in empirical studies such as physics [53,54], chemistry [55,56] (10–11),
biology [57,58], hydrology [59], environment [60], linguistics [61], physiology [62], psychol-
ogy [63,64], behavioral sciences [65] economics [66] and even in music [67].

At the same time, several researchers recognize multifractality in energy markets as a
stylized fact [68]. Multifractal dynamics, for example, give us a new model with appealing
stochastic qualities that can reproduce some stylized facts including volatility clustering,
fat tails, multi-scaling, and long-term dependence [69]. However, the combinatorial char-
acter of older versions of multifractal models, as well as their non-stationarity due to the
constraint to a finite interval, limit their practical application. The pioneer methodologies
involved rescaled range analysis (R/S) [70] and detrended fluctuation analysis (DFA) [71]
for mono-fractality. However, R/S is prone to causing the bias error because of its vul-
nerability to short-range dependence (Lo, [72]). Hence, DFA compared to R/S and other
above-mentioned methodologies has the benefit of long-range correlation detection in
non-stationary time series. Furthermore, it eliminates the spurious analysis of long-range
correlations, which is a non-stationary artifact [73].

Later, an extension of the DFA, i.e., multifractal detrended fluctuation analysis (MFDFA)
by Kantelhardt, et al. [74] was derived, and this has been employed to examine the mul-
tifractality of various financial time series such as crude oil [75], stock markets [76–78],
cryptocurrencies [79], and even sin markets [80]. Meanwhile, based on the concept of the
DFA, Podobnik, et al. [81] developed the detrended cross-correlation analysis (DCCA) to
examine the long-range cross-correlations between two non-stationary time series, which
has been applied to various analyses [82,83]. However, it is easy to obtain λ as a scaling
exponent in the case of the DCCA, but it lacks complete interpretation and severely distorts
or even spuriously amplifies multifractal cross-correlation measures. To overcome this
issue, Zhou [84] proposed the multifractal detrended cross-correlation analysis (MF-DCCA)
by combining the DCCA and MFDFA, which has lately become popular [85–87]. The MF-
DCCA approach can detect and quantify subtle features of multifractal cross-correlations

https://scholarship.rice.edu/bitstream/handle/1911/91291/CES-pub-GeoGasRussiax-022114.pdf?sequence=1
https://scholarship.rice.edu/bitstream/handle/1911/91291/CES-pub-GeoGasRussiax-022114.pdf?sequence=1


Sustainability 2022, 14, 5828 4 of 23

between two financial time series. Furthermore, the multifractal spectrum analysis in the
MF-DCCA quantifies the multifractal intensity of cross-correlations and explains the time
series’ internal complexity and local properties.

Understanding the relationship and the role of geopolitical risk in asset prices is
important for investors, companies, and government policymakers, in order to incorporate
the magnitude of geopolitical risk into the valuation of asset prices and risk insurance, as
well as to support markets in effectively absorbing the impacts of such risks. Our purpose is
thus to use the robust econophysics-based MF-DCCA to investigate the multifractal aspects
of the cross-correlation between geopolitical-risk indicators and four major energy markets,
i.e., West Texas Intermediate (WTI), Brent, natural gas and heating oil, from 1 January 1985
to 30 August 2021. Our study is different from others in three major aspects. Firstly, to the
best of our knowledge, this paper is the first to investigate multifractal features in terms
of cross-correlations. Only Bouoiyour, Selmi, Hammoudeh and Wohar [5] examined the
effect of geopolitical risk on the informational efficiency of the oil market by employing
MFDFA. Secondly, the interactions among oil prices and geopolitical risk and uncertainties
have been a focal point of research in academia and policy circles [88], and have largely
ignored the other major energy markets such as natural gas and heating oil. This study
includes natural-gas and heating-oil markets as the major variables. Thirdly, we use the
large daily data sets of about 36 years to reach conclusive results for market participants
and government policy makers.

This study is crucial since it contributes to the literature in several ways. Firstly, we
use Caldara and Iacoviello [1]’s recently constructed daily GPR indices (overall, acts and
threats), instead of monthly GPR which has been used in most previous studies [5,17,89].
Daily GPR indices are noisier than monthly GPR indices, but they capture better the
multifractal characteristics. Hence, they provide a detailed view of a bigger range of
incidents that the monthly counterpart may appear to overlook. For example, the ethnic
violence in former Yugoslavia and attempted overthrow in the Soviet Union in August 1991
and The North Atlantic Treaty Organization (NATO) air strikes in Kosovo in March 1999
have little bearing on monthly GPR indices [1]. Secondly, to capture the inner dynamics of
energy markets better, the impact of geopolitical threats is distinguished from geopolitical
acts. This is because threats of future attacks may increase as a result of terrorist attacks
or war. This underlines the need to identify risk-inducing shocks by searching for actual
events rather than threats. Furthermore, distinguishing between acts and threats could
be an effective learning mechanism for risk managers and investors. Thirdly, we employ
MF-DCCA, which is flexible enough to capture the complexity and multifractality in
the cross-correlations of energies and geopolitical risk. We believe that the strengths of
multifractality between GPRs and energy markets varies, which can be used as a measure
of how closely the two are linked.

Our study is laid out as follows. We provide a brief assessment of the literature in the
Section 2, concerning the relationship of GPR with energy markets. The data and method-
ology are described in Section 3. The empirical results are provided in Section 4, while
Section 5 deals with the discussion and presents some conclusions and policy implications.

2. Literature Review

The pioneering literature on GPR was based on individual geopolitical events [90–92].
However, after the recent development of the novel GPR index, a new stream of literature
has investigated its impact on stock markets, exchange rates, renewable energy markets
and energy markets. For instance, Yang and Yang [9] employed the monthly GPR index for
stock markets and found that GPR is significant enough to capture the long and medium-
term trends of stock markets. Similarly, Yang, et al. [93] employed the GARCH-MIDAS and
found that global and regional monthly GPR indices have a significant impact on Chinese
stock markets. The monthly GPR index is also found to be the best predictor of Kuwaiti
and Omani stock markets [45]. However, Das, et al. [94] and Kannadhasan and Das [95]
found that GPR has a less negative impact than Economic Policy Uncertainty (EPU) on
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the stock markets of emerging countries. Likewise, GPR is a major long run driver for the
exchange rate of ASEAN countries [96] as well as the exchange rates of the UK, Republic of
Korea, Japan, China and Canada [97]. Yang, Wei, Li and He [15] employed delta conditional
Value-at-Risk techniques and found that the geopolitical-risk spillover to renewable energy
markets is much smaller than that from equity and oil markets. The major shortcoming
in previous literature is that most of it focused either on individual geopolitical events
or the monthly frequency of the GPR indices, where major geopolitical events could be
missed [1]. Hence, this study fills this gap and employs the daily frequency of the GPR
index to provide the multifractal dynamics for energy markets in a more robust way.

The literature on GPR in energy markets deals mostly with the crude-oil market rather
than other energy markets. For instance, Antonakakis, et al. [98] employ the VAR-BEKK-
GARCH model and find that GPR has a severe impact on the mean return and variability
of oil markets compared to stock markets. Similarly, using nonlinear Granger causality
tests and a DCC-MVGARCH model, Huang, et al. [99] find that the impact of GPR on the
volatility of oil through the jump component is higher than its returns. While the correlation
between volatility jumps and GPR seems to be positive, Mei, Ma, Liao and Wang [89] report
that GPR is positively linked with the realized volatility of oil and can be used to predict the
short-term volatility of oil futures. Liu, Ma, Tang and Zhang [17] proposed a new model,
GARCH-MIDAS-GPR, which uses GPR and serious GPR to forecast the volatility of oil
futures in order to gain higher economic gains. Despite a great number of empirical studies
on the relationship between GPR and energy markets, the multifractal dimension of GPR
with energies is mostly overlooked. Therefore, this study employs MF-DCCA to uncover
the inner dynamics of multifractality for GPR and major energy markets.

In addition, for better policy making, it is important for policy makers, and market
participants to have extensive knowledge about the different impact of geopolitical acts and
threats on financial markets. However, only a few studies have examined this. For instance,
Bouoiyour, Selmi, Hammoudeh and Wohar [5] separate the shocks and find that the impact
of geopolitical threats on oil price dynamics is moderate or non-significant while the impact
of geopolitical acts is stronger and positive. Geopolitical acts, as opposed to threats, help
to forecast the long-term volatility of oil markets [89]. Likewise, Salisu, Pierdzioch and
Gupta [4] report that geopolitical acts decrease tail risk at longer forecasting horizons in oil
markets, while threats increase tail risk. Hence, geopolitical threats are the major predictors
of oil markets’ tail risk.

Society’s survival and advancement depends on energy, which can be seen as a key
driver of global economic expansion [100,101]. Energy plays an important role in any
country’s development [102]. There has been a rise in the amount of energy consumed as
a percentage of world consumption. Energy price stability has become a major concern
for many countries because of the importance of energy for economic growth. However,
because of its scarcity, vital strategy, the geographical dispersion of supply and demand, and
low price elasticity of demand, the price of energy is particularly susceptible to geopolitical
risk [18]. Consequently, it is important to study the impact of geopolitical risk on the
energy market.

The current literature has focused primarily on the relationship between GPR and
oil markets and ignored other energy markets such as natural gas and heating oil. We
could only find the study by Qin, et al. [103], who examined the relationship between GPR
indices and energy markets of crude oil as well as natural gas and heating oil by using
the quantile regression approach. These authors found no significant impact of GPR on
natural gas, while the impact of GPR on heating oil and crude oil seems to be negatively
significant. Geopolitical threats, compared to acts, have a statistically negative impact on
the volatility of heating oil and natural gas in various quantiles. In a recent study, Aloui
and Hamida [104] demonstrate the relevance of geopolitical risk in the oil-stock nexus in a
time-frequency domain. The authors applied the wavelet coherence method to show that
geopolitical risk weakens oil-stock connectedness in the short term and lowers the oil-stock
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magnitude and volatility correlation. Similarly, Bouri, et al. [105] used logistic regressions
to conclude that Bitcoin jumps are dependent on jumps in the geopolitical-risk index.

Other studies on the relationship of GPR focus on precious metals [13,14], gold [106],
corporate cash holdings [107], corporate investments [108], financial constraints [109],
insurance [110], merger and acquisition [111], natural resource rents [112], tourism [113]
and others.

3. Materials and Methods
3.1. Data Description

In this paper, we use daily data of four major energy markets, i.e., WTI, Brent, natural
gas and heating oil, as well as three geopolitical-risk indicators, namely geopolitical-risk
index (GPR), geopolitical-act index (GPRAct) and geopolitical-threat index (GPRThreat).
The period extends from 1 January 1985 to 30 August 2021 for geopolitical-risk indicators,
WTI, and heating oil, while the initial date for Brent and natural gas differs, as shown in
Table 1. The data range and number of observations after data cleaning and matching
with GPR Pindices for energy commodities are also documented in Table 1. The daily
data for energy markets are collected from Datastream while the data for geopolitical-
risk indicators are extracted from Caldara and Iacoviello [1]’s website of GPRs (https:
//www.matteoiacoviello.com/gpr.htm (accessed on 19 April 2022)). For further analysis,
the daily changes in the price of each energy j are estimated as:

rt,j =
pt,j − pt−1,j

pt−1,j
(1)

Daily changes in the three geopolitical-risk indicators are calculated as follows:

rGPR =
GPRt − GPRt−1

GPRt−1
(2)

rGPRThreat =
GPRThreatt − GPRThreatt−1

GPRThreatt−1
(3)

rGPRAct =
GPRActt − GPRActt−1

GPRActt−1
(4)

Table 1. List of variables and summary statistics of daily changes *.

GPR GPRAct GPRThreat WTI Crude Brent Oil Natural Gas Heating Oil

Data Range
1 January
1985–30

August 2021

1 January
1985–30

August 2021

1 January
1985–30

August 2021

1 January
1985–30

August 2021

28 June
1988–30

August 2021

5 April
1990–30

August 2021

1 January
1985–30

August 2021
N 13,336 13,336 13,336 9174 8377 7883 9277

Mean 0.1018 0.1888 0.1590 0.0004 0.0005 0.0007 0.0004
Median −0.0071 −0.0045 −0.0108 0.0009 0.0003 −0.0004 0.0007

Min −0.9511 −0.9273 −0.9001 −0.3300 −0.3477 −0.3132 −0.3236
Max 15.4331 13.8347 15.0303 0.2510 0.2102 0.3831 0.1502
S.D. 0.5660 0.8719 0.7754 0.0255 0.0230 0.0344 0.0233

Kurtosis 67.1510 37.2597 51.9419 14.5694 16.3020 8.1301 −0.8772
Skewness 4.5892 4.4100 4.8600 −0.1225 −0.6401 0.6870 0.4738

* The MF-DCCA procedure requires time series of the same length. So, the number of observations for GPR
indices changes according to the length of energy indices.

Caldara and Iacoviello [1]’s newly developed geopolitical-risk index (GPR) is based
on computerized text searches from the archives of ten newspapers (Chicago Tribune, The
Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, The Los Angeles
Times, The New York Times, USA Today, The Wall Street Journal, and The Washington
Post). GPR is based on the number of articles in each newspaper for each month that
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were linked to adverse geopolitical events. The text searches are structured in eight main
categories, i.e., war threats, peace threats, military buildups, nuclear threats, terror threats,
beginning of war, escalation of war, and terror acts.

More importantly, Caldara and Iacoviello [1] further divide the GPR index into two
indices, i.e., geopolitical acts (GPRAct) and geopolitical threats (GPRThreat). As seen in
the past, geopolitical acts of war have frequently fueled panic and threats about future
adverse events. Terrorist attacks, for example, may heighten the possibility of future
attacks or a conflict. Hence, GPRThreat comprises articles based on threats and military
(categories 1–5), while GPRAct corresponds to the occurrence or escalation of negative
events (categories 6–8).

Figure 1 plots the daily index values as well as the daily returns in GPR, GPRThreat
and GPRAct. Interestingly, even if the spikes of GPRThreat and GPRAct overlap, there is
still independent variation. For example, GPRThreat rises in 1990 at the beginning of the
Gulf war and in response to the threat from Iraq to the US embassy. GPRAct on the other
hand, spikes at the Gulf War, 9/11 terrorist attacks in New York and the Iraqi war in 2003.
GPRThreat also seems to be high during the recent conflicts between the US and North
Korea in 2018 and the US with Iran in 2020.
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Figures 2 and 3 present the evolution of daily prices and returns over time in the
energy markets. Interestingly, the graphical evidence suggests that energies appear to be
positively correlated with significant geopolitical events. For instance, a significant increase
in the prices of crude oil and heating oil during the 1990–1991 Gulf War is observed. This
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is because Iraqi forces burned down over 700 oil wells and dumped around 400 million
gallons of oil in the Persian Gulf [114]. This led to a decrease of 2 million barrels per
day in Iraqi crude-oil production [115]. The next rise in oil markets occurred after the
September 11 attacks (9/11) and the Afghanistan war in 2001. Moreover, the Iraqi War,
US occupation of Iraq, and the following Iraqi resistance to occupation in 2003 appear
to have influenced oil markets. Finally, the Great Financial Crisis (GFC) of 2008–2009
and the Arab Spring, which saw the removal of Ben Ali (Tunisia), Muammar Gaddafi
(Libya) and Hosni Mubarak (Egypt), also affected oil prices. However, we see a huge
drop in oil prices between 2014 and 2016, which corresponds to the great oil-price bust.
In addition, all energies have shown a downward tendency during the recent COVID-19
pandemic. WTI on the other hand, crashed and even fell to a negative value by the end
of April 2020 (see Figures 2 and 3). This is due to the sharp decline in demand and
the price war between Saudi Arabia and Russia in March 2020 (https://www.cnbc.com/
2020/06/16/how-negative-oil-prices-revealed-the-dangers-of-futures-trading.html (ac-
cessed on 19 April 2022)). On the other hand, natural-gas prices have followed a dif-
ferent path from oil prices, which have been relatively stable from 2009 to 2019. This
substantial disconnection from oil prices is due to the increase in shale gas produc-
tion (https://www.api.org/-/media/Files/Oil-and-Natural-Gas/Natural-Gas-primer/
Understanding-Natural-Gas-Markets-Primer-High.pdf (accessed on 19 April 2022)). How-
ever, for specific periods (9/11, hurricanes of 2005, GFC, and COVID-19), an increase in the
natural-gas price is accompanied by an increase in geopolitical risk.

Table 1 reports the descriptive statistics for the returns of geopolitical-risk indica-
tors and energy markets. The mean values for geopolitical-risk indices are high, with a
maximum of 0.19 for acts (GPRAct) and a minimum of 0.10 for the overall index (GPR).
Similarly, the highest maximum return of 0.38 in a day is observed for natural gas, and
the highest loss of 0.35 is observed for Brent. Moreover, geopolitical acts are seen to be
more volatile than threats, while natural gas is found to be more volatile among energy
markets. The skewness values are positive for all return series, except WTI and Brent crude
oil. Likewise, all series except heating oil have kurtosis values above three, meaning that
all series are peaked and have fat tails. The presence of fat tails in energies could be related
to multifractality, which supports the fractal-market hypothesis [116] in contrast to the
efficient-market hypothesis of [117].

Besides the advantage of being used with non-stationary data, multifractal approaches
could also be used with stationary data. However, it is desirable that variables do not
have structural breaks, due to the possible sensitivity of the results. The use of returns
usually solves the possible problems of non-stationarity and structural breaks. Aiming to
confirm these results, we used the one-break tests proposed by Perron and Vogelsang [118],
which model both additive-outlier (AO) and innovational-outlier (IO) approaches. We
use the tests with the possibility of structural breaks since their occurrence could result in
misleading results (see, for example, Perron [119]). The results in Table 2 confirm that none
of the series suffers from a structural break and that in all cases, the variables are stationary,
using both AO and IO approaches.

Table 2. Unit root tests (RU) in the presence of structural breaks for the variables under analysis.

Asset
IO Test AO Test

SB Test UR t-Test SB Test UR t-Test

WTI −0.149 −33.697 ** −0.123 −37.319 **
Brent −1.267 −38.988 ** −1.035 −28.526 **

Natural gas −1.03 −34.781 ** −0.785 −24.152 **
Heating oil −0.173 −36.464 ** −0.214 −27.508 **

The first column of each test (IO and AO) shows the result of the existence of a structural break in the series under
analysis. The second column presents the Perron and Vogelsang [118] unit root test. ** denotes significance at the
1% level.

https://www.cnbc.com/2020/06/16/how-negative-oil-prices-revealed-the-dangers-of-futures-trading.html
https://www.cnbc.com/2020/06/16/how-negative-oil-prices-revealed-the-dangers-of-futures-trading.html
https://www.api.org/-/media/Files/Oil-and-Natural-Gas/Natural-Gas-primer/Understanding-Natural-Gas-Markets-Primer-High.pdf
https://www.api.org/-/media/Files/Oil-and-Natural-Gas/Natural-Gas-primer/Understanding-Natural-Gas-Markets-Primer-High.pdf
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3.2. Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

Combining both MF-DFA and DCCA, Zhou [84] developed the multifractal detrended
cross-correlation (MF-DCCA/MF-DXA) to deal with multifractal aspects of two cross-
correlated, possibly non-stationary signals. Calculating the cross-correlation of the daily
data of three geopolitical-risk indices (GPR, GPRAct, GPRThreat) with four major energy
markets (WTI, Brent, natural gas, heating oil), applying the MF-DCCA technique, makes
this study more detailed, robust, and more in-depth.

The five steps of the MF-DCCA method are represented as follows.
Let {(Xi)} and {(Yi)} be two possible equal-length time series, in our case the energy-

market returns and daily changes in three geopolitical-risk indices, with N indicating
the length of the series. In the first step, the new corresponding time-series profile is
constructed as follows:

X(j) = ∑j
t=1(xt − x), Y(j) = ∑j

t=1(yt − y), t = 1, 2, 3 . . . . . . , N (5)

Being,

x =
1
N ∑N

t=1 x(t) and y =
1
N ∑N

t=1 y(t)

The second step consists of dividing the profile {(Xi)} and {(Yi)} into Ms= [N/s]
non-overlapping boxes of length s. For each box ν, the assumed trend is estimated by
fitting a polynomial of order m (P(m)

X,v for X and P(m)
Y,v for Y). Considering the possibility

of N being a non-multiple of s, with the objective of considering all existing information,
the same procedure is repeated starting from the reverse end of each series, as proposed
by [120], resulting in 2Ns segments.

The third step consists of estimating the local trend Xv(i) and Yv(i) of each segment,
through ordinary least squares, for each v = 1, 2, . . . , 2Ns, from which the variance is
determined, given by

F2(s, v) =
1
s

s

∑
i=1
|X[(v− 1)s + i]− Xv(i) | · |Y[(v− 1)s + i]−Yv(i) | (6)

or each segment v = 1, 2, . . . , Ns, and

F2(s, v) =
1
s

s

∑
j=1
|X[N − (v− Ns)s + i]− Xv(i)| · |Y[N − (v− Ns)s + i]− Yv(i)| (7)

for v = Ns+1, . . ., 2Ns.
In the fourth step, the qth-order fluctuation function is obtained as follows

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[
F2(s, v)

]q/2
}1/q

(8)

for any q 6= 0, while for q = 0 it is given by

F0(s) = exp

{
1

4Ns

2Ns

∑
v=1

ln
[

F2(s, v)
]}

(9)

The q parameter is used to distinguish between small and large fluctuations, with q < 0
representing small and q > 0 large fluctuations. The standard DCCA procedure is retrieved
at q = 2 and with Fq(s) being an increasing function of s.

Finally, in step 5, the scaling behavior of the fluctuations is obtained from the log–log
regression between Fq(s) and s, for the different values of q, which could be defined as a
power law given by



Sustainability 2022, 14, 5828 12 of 23

Fq(s) ∼ sHxy(q) (10)

The scaling exponent Hxy(q) describes the power-law relationship between two differ-
ent time series, showing how fast Fq(s) of local fluctuations grows with an increase in the s
scale. When two time series y1 and y2 are identical, MF-DCCA is a special case of MFDFA.

Just like the univariate Hurst exponent, the bivariate Hurst exponent Hxy(2) exhibits
similar properties [121]. The scaling component Hxy(q) ranges from 0 to 1, and remains
constant for different values of q, in the case of mono-fractal cross-correlation. If the scaling
exponent Hxy(q) is dependent on q, then the cross-correlations between two time series
are multifractal. Furthermore, for q > 0 and q < 0, Hxy(q) describes the scaling behavior
of the segments with large and small fluctuations. The range of the Hurst exponent
0.5 < Hxy(q) < 1 indicates the presence of long-term memory, and the series display
persistent (positive) cross-correlation. On the contrary, the range 0 < Hxy(q) < 0. 5
indicates an anti-persistent (negative) cross-correlation, and an increase (decrease) in a
time series is most probably followed by another decrease (increase). Finally, in the case of
Hxy(q) = 0.5, the two series are not cross-correlated.

The strength of the multifractality can be estimated with the ∆H proposed by [122]
and given by

∆H = Hmax(q)− Hmin(q) (11)

Using the respective values of Hxy(q), we can identify the degree of multifractality of
the respective cross-correlations.

From the Legendre transform, we obtain the following:

αxy = Hxy(q) + q· H′xy (q) (12)

Hence, the spectrum of singularity f (α) can be identified as:

f (α) = q
(
α− Hxy(q)

)
+ 1 (13)

Whereas the multifractal spectrum width is estimated to examine the multifractality
level and can be shown as:

∆αxy = maxαxy −minαxy (14)

Therefore, higher levels of multifractality are related to the higher variability of h(q), the
usual generalized Hurst exponent, being possible to compute it as ∆h = h(qmin) − h(qmax),
with a decreasing relationship between Hxy(q) and q [123].

For the MF-DCCA analysis, the R package “MFDFA” developed by [124,125] was used.
(The detailed documentation is available at https://www.rdocumentation.org/packages/
MFDFA/versions/1.1/topics/MFDFA. (accessed on 19 April 2022)).

4. Empirical Results

To reveal multifractal behavior and to measure the degree of cross-correlation, we
adopted the MF-DCCA method to further analyze the role of three geopolitical-risk indi-
cators, i.e., overall (GPR), acts (GPRAct) and threats (GPRThreat), in the cross-correlation
with energy markets of WTI, Brent, natural gas and heating oil. Figures 4–6 graphically
represent the multifractal detrended cross-correlation analysis in the four energy markets
with the three geopolitical-risk indices. As suggested by [126], we calculated the fluctuation
function Fxyq(S) from −10 to + 10 scaling order and the scales are selected according to
the series length N while the maximum scale is taken as Smax < N/5. Figure 4 shows
the relationship between log(s) and log(Fxyq(S)) for q = −10 (blue), q = 0 (red) and
q = 10 (black), changing with time length s for all the pairs of geopolitical risks (GPR,
GPRThreat, GPRAct) with energy markets (WTI, Brent, natural gas, heating oil). The log–log
plots are well shaped and grow linearly with the scale s, which indicates that the power-law
behavior and long-range cross-correlations exist between all pairs of geopolitical risks and

https://www.rdocumentation.org/packages/MFDFA/versions/1.1/topics/MFDFA
https://www.rdocumentation.org/packages/MFDFA/versions/1.1/topics/MFDFA
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energy markets. The power-law cross-correlation behavior reveals that large fluctuations
in the prices of energy markets tend to be accompanied by considerable fluctuations in
geopolitical risk, and vice versa.
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Figure 5 shows the generalized Hurst exponent Hxy(q) for all the pairs, which are
not constant and show a declining trend with q ranging from −10 to 10. The dependence
of the generalized Hurst exponent Hxy(q) on the increasing value of q shows that the
cross-correlations between different geopolitical-risk indices and energy markets have
multifractal properties. For example, in Table 3, the highest value of Hxy(q) for the pair
WTI/GPR (overall geopolitical risk) for q = −10 is 0.57, dropping to 0.54 at q = 0 and
with the lowest value of 0.29 for q = 10. Similarly, the Hxy(q) for the pairs WTI/GPRAct
(geopolitical acts), and WTI/GPRThreat (geopolitical threats) achieves a maximum of
0.68 and 0.61 when q = −10, declining to 0.61 and 0.54 at q = 0 and dropping to its lowest
values of, respectively, 0.42 and 0.24 at q = 10. The declining trend of Hxy(q) verifies its
dependency on q, suggesting that all the pairs of geopolitical risks and energy markets
have multifractal properties.
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The strength of the multifractal behavior differs among the different pairs under study,
and this can be measured through the width/range of the generalized Hurst exponent (∆H),
as expressed in Table 3. The strength of multifractality between these pairs can be analyzed
in several ways. For instance, the overall geopolitical risk (GPR) has the highest multi-
fractal pattern with WTI (∆H = 0.28) followed by heating oil (∆H = 0.26) and natural gas
(∆H = 0.25). Brent, on other hand, has the lowest level of multifractality (∆H = 0.19) with
GPR. Similar findings are observed for multifractality in the cross-correlations of geopoliti-
cal threats (GPRThreat) with energy markets. The highest multifractality is found in WTI
(∆H = 0.36), while heating oil (∆H = 0.32) is the second highest. On other hand, Brent
(∆H = 0.20) and natural gas (∆H = 0.25) reveal the lowest level of multifractality with
GPRThreat. However, we find different results in terms of the relationship with geopolitical
acts (GPRAct), where natural gas and WTI show the highest ∆H of 0.28 and 0.26, respec-
tively. Heating oil (∆H = 0.24) and Brent (∆H = 0.25) exhibit the lowest multifractality in
the cross-correlations with GPRAct. Furthermore, for the markets of WTI and heating oil,
the influence of geopolitical threats is more pronounced than their occurrence. Contrarily,
Brent and natural gas are more correlated with geopolitical acts. The width of multiple
spectra shown in Figure 6 further confirms these findings.
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Table 3. Generalized Hurst exponents for the energy markets ranging from q = −10 to q = 10.

Q GPR/
WTI

GPRAct/
WTI

GPRThreat/
WTI

GPR/
Brent

GPRAct/
Brent

GPRThreat
/ Brent

GPR/
Natural

Gas

GPRAct/
Natural

Gas

GPRThreat/
Natural

Gas

GPR/
Heating

Oil

GPRAct/
Heating

Oil

GPRThreat/
Heating

Oil

−10 0.5671 0.6849 0.6062 0.5984 0.7284 0.6226 0.5441 0.6559 0.6056 0.5801 0.6858 0.6167
−9 0.5641 0.6793 0.6023 0.5935 0.7216 0.6185 0.5401 0.649 0.5994 0.5769 0.6807 0.6128
−8 0.5612 0.6731 0.5983 0.5883 0.7137 0.6141 0.5359 0.6412 0.5925 0.5737 0.6752 0.6087
−7 0.5584 0.6662 0.5941 0.5827 0.7047 0.6095 0.5316 0.6325 0.5851 0.5705 0.6692 0.6044
−6 0.5559 0.6586 0.5897 0.5768 0.6944 0.6047 0.5274 0.6229 0.577 0.5675 0.6627 0.5998
−5 0.5538 0.6506 0.5851 0.5707 0.6825 0.5996 0.5233 0.6125 0.5683 0.5648 0.6558 0.595
−4 0.5521 0.6424 0.5802 0.5645 0.6692 0.5943 0.5195 0.6014 0.5591 0.5625 0.6486 0.5898
−3 0.5508 0.6346 0.5744 0.5581 0.6548 0.5883 0.5163 0.5898 0.5492 0.5606 0.6412 0.5839
−2 0.5495 0.6276 0.5671 0.5515 0.6401 0.5813 0.5136 0.578 0.5384 0.5589 0.6337 0.5766
−1 0.5469 0.6213 0.5568 0.5445 0.6262 0.5726 0.5113 0.5664 0.5265 0.5566 0.6262 0.5671
0 0.5364 0.6122 0.5369 0.5359 0.6146 0.5594 0.5066 0.5544 0.5118 0.5489 0.6166 0.5505
1 0.527 0.6042 0.5188 0.5281 0.6044 0.5473 0.5022 0.5437 0.4981 0.542 0.6083 0.5354
2 0.5015 0.5876 0.4853 0.517 0.5943 0.5305 0.4883 0.5297 0.4813 0.5225 0.5947 0.5097
3 0.464 0.5635 0.4417 0.5028 0.5814 0.5119 0.4624 0.5108 0.4628 0.4916 0.5757 0.4763
4 0.4218 0.5349 0.3954 0.4863 0.5648 0.4932 0.4275 0.4866 0.4434 0.4539 0.5522 0.4388
5 0.384 0.5069 0.3542 0.4692 0.5462 0.4756 0.3925 0.4606 0.4242 0.4181 0.5278 0.4029
6 0.3538 0.4829 0.3209 0.4533 0.528 0.4602 0.363 0.4367 0.4065 0.3888 0.5055 0.3721
7 0.3306 0.4632 0.2947 0.4396 0.5117 0.447 0.3397 0.4162 0.3911 0.3659 0.4866 0.3468
8 0.3126 0.4474 0.274 0.428 0.4977 0.436 0.3215 0.3994 0.3779 0.3481 0.471 0.3264
9 0.2985 0.4345 0.2576 0.4182 0.4858 0.4267 0.3071 0.3855 0.3669 0.334 0.4581 0.31

10 0.2872 0.4239 0.2444 0.41 0.4758 0.419 0.2954 0.374 0.3576 0.3227 0.4474 0.2966

∆H 0.2799 0.261 0.3618 0.1884 0.2526 0.2036 0.2487 0.2819 0.248 0.2574 0.2384 0.3201
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The multiple spectra with greater widths exhibit higher variations in the form of
various types of fluctuation distributions. These asymmetrical and varying shapes are to be
expected because of the fluctuating nature of energy prices. All the pairs have significant
non-zero widths, which indicates a deviation from the random walk process. The presence
of multifractality in the cross-correlations indicates that the variables under study behave
according to the adaptive-market hypothesis (AMH) of Lo [127], which is supported by
others [128–130]. According to the efficient-market hypothesis (EMH) of Fama [117], market
prices randomly fluctuate and there are no long-memory properties. Hence, investors are
unable to beat the efficient market (no multifractal markets). However, in the real world, as
confirmed by our results, these efficient markets are not observed and there are multifractal
patterns. Therefore, Lo [126] called this phenomenon the AMH, where achieving perfect
market efficiency is not possible.

The scaling cross-correlation exponents Hxy(q = 2) are reported in Table 3 and show
the persistent behavior of the cross-correlation between geopolitical-risk indicators and
energy markets. The findings show that the value of Hxy(q = 2) for the pairs of overall
geopolitical risk (GPR) with energy markets is greater than 0.5 except for natural gas. This
indicates that WTI, Brent, and heating oil have a persistent cross-correlation with GPR
while natural gas has an anti-persistent cross-correlation. On the other hand, all the pairs of
geopolitical acts (GPRAct) show persistent cross-correlation behavior with energy markets.
Regarding the connection with geopolitical threats (GPRThreat), WTI and natural gas show
anti-persistence while Brent and heating oil show persistent cross-correlation behavior.

Kristoufek [121] specifies that a cross-persistent series has an Hxy(q = 2) greater than
0.5, which indicates that a positive or negative value of a relationship between two variables
has a higher probability of another positive or negative value of that relationship at the
following moment [131]. A long-range cross-correlation indicates that both time series have
long-memory properties in their own lags [132,133]. The presence of cross-correlations,
according to Podobnik and Stanley [132], further suggests that an increase or decrease in
one variable is more likely to be followed by an increase or decrease in another variable.

Accordingly, all pairs except for GPRThreat/WTI, GPR/natural gas and GPRThreat/
natural gas are found to be cross-persistent. For these exceptions, this implies that an
increase (decrease) in GPR and GPRThreat is more likely to be accompanied by a decrease
(increase) in the returns of those energies, while for the other pairs, an increase (decrease)
in geopolitical-risk indicators is likely to be accompanied by an increase (decrease) in the
returns of energy markets.

5. Conclusions and Discussion

Geopolitical risk is regarded as one of the critical factors in determining the prices of
energy markets, especially crude oil. Over the past decades, many political events have
occurred, often changing price dynamics and causing large fluctuations in oil markets.
Hence, it is critical to determine whether energies can be a useful insurance option for
investors seeking protection during times of escalating global tension. Similarly, whether
the impact of increasing GPR on energy-price dynamics is more sensitive to threats or their
occurrence (i.e., geopolitical acts) is an interesting subject. In this context, we examine
the multifractal characteristics of the cross-correlation between major energy markets, i.e.,
WTI, Brent, natural gas and heating oil, and three geopolitical-risk indices (overall, threats
and acts). In order to understand these connections, we applied MF-DCCA to daily data
covering the period from 1 January 1985 to 30 August 2021. However, the initial dates vary
for Brent and natural gas. The data span around 35 years, which is long enough to contain
key historical geopolitical events and evaluate multifractality.

The findings of this study suggest that all the pairs of geopolitical risks with energy
markets have long-range correlations, indicating the presence of multifractality. However,
the strength of multifractality in the cross-correlation varies across all pairs. The pairs
of WTI with GPR and GPRThreat have the highest multifractal behavior, whereas natural
gas has the highest multifractal patterns with GPRAct. Contrarily, we found the lowest
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multifractal levels for the pairs of Brent with GPR and GPRThreat, while heating oil shows
the lowest multifractality with GPRAct. Furthermore, WTI and heating oil are more
influenced by GPRThreat than GPRAct, while the impact of GPRAct is higher in Brent and
natural gas. Only Brent and heating oil showed persistent cross-correlation behavior for all
geopolitical-risk indices, while GPRThreat has anti-persistent cross-correlation with WTI
and natural gas.

An interesting finding is that the impact of geopolitical threat is more related with
WTI and heating oil, while the impact of acts is more connected with Brent oil and natural
gas, which is not an unsurprising result, being consistent with previous studies [5,98,115].
Compared to geopolitical threats, Noguera-Santaella [115] finds a positive and stronger
correlation of geopolitical acts with Brent. Furthermore, the association between Brent and
geopolitical acts is highly persistent when compared to the association with geopolitical
threats. Nonetheless, the finding that geopolitical threats have a less significant impact on
Brent defies common intuition and expectations. This could be justified by the underlying
complexity and multifractality in Brent prices. As Brent is used to price around 65% of the
world’s crude-oil market, it is more globally representative than WTI [134,135]. WTI, on
other hand, is a higher-quality crude oil than Brent and hence has historically benefitted
from a higher price (being traded at a premium over Brent) [136]. However, this is not
always the case. Because of the asymmetry of demand and supply at Cushing, the price of
WTI has been much lower than Brent since 2011, due to the sudden surge in production in
the US. Other considerations include the Libyan war’s rapid disruption of oil exports and
the market forecasts of optimistic Brent prices being pushed higher due to escalation of
the conflict in Syria and the Egyptian revolution of 2011. Hence, Brent prices have risen as
a result of these more frequent geopolitical threats in North African and Middle Eastern
regions [136]. Furthermore, the degree of global crude-oil-market integration appears
to have changed. Even though Brent and WTI are widely regarded as global crude-oil-
price benchmarks, they still react differently to external shocks and changing local market
conditions. Hence, the impact of threats and acts should not be generalized to other major
crude oils such as Dubai and Tapis [137]. Many countries have learned from previous
acts or disasters and have implemented proper policies, which may explain their ability to
absorb the negative effects of threats on crude-oil prices.

The reason for heating oil having similar behavior to WTI (higher impact of threats
than acts) could be that WTI generally acts as a net transmitter and the highest transmissions
are towards heating oil [138,139]. On other hand, the natural-gas market is riskier and more
complex than the crude-oil market, since its degree of multifractality is more important
in the post-crisis period [140]. This complexity in the gas market might be explained by
its specificities (transport costs, storage costs, seasonal consumption effect, etc.). Hence,
geopolitical threats tend to have a smaller impact on natural-gas prices. Even if financial
markets handle geopolitical acts effectively and efficiently, managing geopolitical threats
remains difficult, especially with the emergence of populist problems. The development of
populism around the world (especially in the US and Europe) is one of the most significant
concerns confronting the energy and other financial markets today [5].

The findings of this study have important modeling and policy implications for
academics, managers, investors, and policy makers. Firstly, through this multifractal
analysis, we find a new perspective to describe and understand the long-range cross-
correlation between geopolitical-risk indicators and major energy markets. Financial
models including long-range cross-correlations can better reflect the interconnections across
financial markets [141]. Secondly, the findings confirm that changes in energy prices are
multifractal and interact in a nonlinear way. So, the common linear models such as OLS,
correlation and vector-regression techniques are not suitable to model the dynamics of the
cross-correlations between geopolitical-risk indicators and major energy markets [99]. This
nonlinear dependency in the cross-correlations means that geopolitical risk and energy
prices mutually interact, which might assist investors in maximizing the portability of
technical trading strategies involving geopolitical acts and threats. Thirdly, from a risk
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management point of view, it is important to consider the variations in multifractality
strength among different pairs of energy markets and geopolitical-risk indices. For instance,
geopolitical threats have a greater influence on WTI prices, while natural-gas prices are
more vulnerable to geopolitical acts. Most of the energy markets exhibit cross-persistency,
which indicates that a positive or negative value of the cross-correlation at a given moment
has a higher probability of being followed by another positive or negative value at the
next moment. The cross-correlated behavior of a large fluctuation (q > 0) is higher than
that of a small fluctuation ( f or q < 0). Therefore, policy makers and market participants
should be wary of the impact of geopolitical threats as well as acts on energy-market-price
fluctuations. Given that WTI and heating-oil prices are connected to geopolitical threats,
policy makers should try to ensure stability during geopolitical threats. For Brent and
natural gas, policies should be devised for the occurrence of geopolitical acts. Thirdly,
energy investors should be aware that energy prices are not only sensitive to geopolitical
and financial crises but also to the law of demand and supply shocks. Specifically, WTI
prices crashed into the negative during COVID-19, falling from $18 to −$38 per barrel in
April 2020. This is due to a drop in demand and the price war between the oil giants of
Russia and Saudi Arabia in early March 2020. However, the recent Russian invasion of
Ukraine has pushed oil over the $130 per barrel mark for the first time since 2008 and gas
prices have also spiked to all-time highs. (https://www.jpmorgan.com/insights/research/
russia-ukraine-crisis-market-impact (accessed on 19 April 2022)) Hence, energy investors
can use these findings to make the best investment decisions possible.

This research has some limitations that can provide inspiration for further research.
For instance, the impact of geopolitical threats and acts is not uniform and cannot be
generalized across all energy markets. Therefore, future research should include more
energy markets to find out if the impact of geopolitical-risk indicators varies. Furthermore,
this study does not incorporate the asymmetric multiple-scaling behavior of the indices
used. Future studies could examine the correlation of asymmetry since the occurrence
of major geopolitical events could increase the asymmetry in the cross-correlation. It
would also be valuable to use the non-linear Granger Causality test to examine the causal
non-linear relationship between GPR indices and energy markets
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24. Akdoğan, K. Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment? Resour. Policy 2020,

67, 101653. [CrossRef]
25. Faseli, O. The relationship between European Brent crude oil price development and US macroeconomy. Int. J. Res. Bus. Soc. Sci.

2020, 9, 80–87. [CrossRef]
26. Lyu, Y.; Tuo, S.; Wei, Y.; Yang, M. Time-varying effects of global economic policy uncertainty shocks on crude oil price volatility:

New evidence. Resour. Policy 2021, 70, 101943. [CrossRef]
27. Gong, X.; Wang, M.; Shao, L. The impact of macro economy on the oil price volatility from the perspective of mixing frequency.

Int. J. Financ. Econ. 2020, 1–28. [CrossRef]
28. Jiang, Z.; Yoon, S.-M. Dynamic co-movement between oil and stock markets in oil-importing and oil-exporting countries: Two

types of wavelet analysis. Energy Econ. 2020, 90, 104835. [CrossRef]
29. Alkathery, M.A.; Chaudhuri, K. Co-movement between oil price, CO2 emission, renewable energy and energy equities: Evidence

from GCC countries. J. Environ. Manag. 2021, 297, 113350. [CrossRef]
30. Tudor, C.; Anghel, A. The Financialization of Crude Oil Markets and Its Impact on Market Efficiency: Evidence from the Predictive

Ability and Performance of Technical Trading Strategies. Energies 2021, 14, 4485. [CrossRef]
31. Liu, P.; Vedenov, D.; Power, G.J. Commodity financialization and sector ETFs: Evidence from crude oil futures. Res. Int. Bus.

Financ. 2020, 51, 101109. [CrossRef]
32. Bredin, D.; O’Sullivan, C.; Spencer, S. Forecasting WTI crude oil futures returns: Does the term structure help? Energy Econ. 2021,

100, 105350. [CrossRef]
33. Leng, N.; Li, J.-C. Forecasting the crude oil prices based on Econophysics and Bayesian approach. Phys. A Stat. Mech. Its Appl.

2020, 554, 124663. [CrossRef]
34. Ghazani, M.M.; Khosravi, R. Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil

prices. Phys. A Stat. Mech. Its Appl. 2020, 560, 125172. [CrossRef]
35. Yao, C.-Z.; Liu, C.; Ju, W.-J. Multifractal analysis of the WTI crude oil market, US stock market and EPU. Phys. A Stat. Mech. Its

Appl. 2020, 550, 124096. [CrossRef]
36. Anser, M.K.; Syed, Q.R.; Apergis, N. Does geopolitical risk escalate CO2 emissions? Evidence from the BRICS countries. Environ.

Sci. Pollut. Res. 2021, 28, 48011–48021. [CrossRef] [PubMed]
37. Escribano, G.; Valdes, J. Oil prices: Governance failures and geopolitical consequences. Geopolitics 2017, 22, 693–718. [CrossRef]

https://www.bis.org/review/r160704c.pdf
https://www.bis.org/review/r160704c.pdf
http://doi.org/10.1016/j.socec.2005.11.019
http://doi.org/10.1016/j.irfa.2020.101496
http://doi.org/10.1016/j.eap.2021.08.008
http://doi.org/10.1080/10242694.2013.832555
http://doi.org/10.1007/s43546-020-00007-8
http://doi.org/10.1016/j.frl.2020.101621
http://doi.org/10.1016/j.jbankfin.2020.105823
http://doi.org/10.1016/j.resourpol.2021.102039
http://doi.org/10.1016/j.jclepro.2020.123429
http://doi.org/10.1007/s11356-021-12447-2
http://www.ncbi.nlm.nih.gov/pubmed/33475921
http://doi.org/10.1016/j.eneco.2019.104548
http://doi.org/10.1016/j.energy.2019.116003
http://doi.org/10.1016/j.najef.2020.101309
http://doi.org/10.1016/j.najef.2019.01.011
http://doi.org/10.1016/j.energy.2020.118750
http://doi.org/10.3390/en13174465
http://doi.org/10.1016/j.resourpol.2020.101936
http://doi.org/10.1016/j.resourpol.2020.101653
http://doi.org/10.20525/ijrbs.v9i1.587
http://doi.org/10.1016/j.resourpol.2020.101943
http://doi.org/10.1002/ijfe.2383
http://doi.org/10.1016/j.eneco.2020.104835
http://doi.org/10.1016/j.jenvman.2021.113350
http://doi.org/10.3390/en14154485
http://doi.org/10.1016/j.ribaf.2019.101109
http://doi.org/10.1016/j.eneco.2021.105350
http://doi.org/10.1016/j.physa.2020.124663
http://doi.org/10.1016/j.physa.2020.125172
http://doi.org/10.1016/j.physa.2019.124096
http://doi.org/10.1007/s11356-021-14032-z
http://www.ncbi.nlm.nih.gov/pubmed/33900560
http://doi.org/10.1080/14650045.2016.1254621


Sustainability 2022, 14, 5828 20 of 23

38. Kutcherov, V.; Morgunova, M.; Bessel, V.; Lopatin, A. Russian natural gas exports: An analysis of challenges and opportunities.
Energy Strategy Rev. 2020, 30, 100511. [CrossRef]

39. Umar, M.; Su, C.H.; Rizvi, S.; Lobont, O.R. Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices.
Energy 2021, 231, 120873. [CrossRef]

40. Li, F.; Yang, C.; Li, Z.; Failler, P. Does Geopolitics Have an Impact on Energy Trade? Empirical Research on Emerging Countries.
Sustainability 2021, 13, 5199. [CrossRef]

41. Alsagr, N.; Almazor, S.F.V.H. Oil rent, geopolitical risk and banking sector performance. Int. J. Energy Econ. Policy 2020, 10, 305.
[CrossRef]

42. Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting realized gold volatility: Is there a role of geopolitical risks? Financ. Res. Lett.
2020, 35, 101280. [CrossRef]

43. Das, D.; Kannadhasan, M.; Bhowmik, P. Geopolitical risk and precious metals. J. Econ. Res. 2019, 24, 49–66.
44. Plakandaras, V.; Gupta, R.; Wong, W.-K. Point and density forecasts of oil returns: The role of geopolitical risks. Resour. Policy

2019, 62, 580–587. [CrossRef]
45. Alqahtani, A.; Bouri, E.; Vo, X.V. Predictability of GCC stock returns: The role of geopolitical risk and crude oil returns. Econ.

Anal. Policy 2020, 68, 239–249. [CrossRef] [PubMed]
46. Uddin, G.S.; Bekiros, S.; Ahmed, A. The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet

analysis. Phys. A Stat. Mech. Appl. 2018, 495, 30–39. [CrossRef]
47. Ding, Z.; Zhang, X. The Impact of Geopolitical Risk on Systemic Risk Spillover in Commodity Market: An EMD-Based Network

Topology Approach. Complexity 2021, 2021, 2226944. [CrossRef]
48. Bouri, E.; Gupta, R.; Hosseini, S.; Lau, C.K.M. Does global fear predict fear in BRICS stock markets? Evidence from a Bayesian

Graphical Structural VAR model. Emerg. Mark. Rev. 2018, 34, 124–142. [CrossRef]
49. Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1.
50. Leary, C.C.; Ruppe, D.A.; Hartvigsen, G. Fractals, average distance and the Cantor set. Fractals 2010, 18, 327–341. [CrossRef]
51. Mandelbrot, B.B. The variation of the prices of cotton, wheat, and railroad stocks, and of some financial rates. In Fractals and

Scaling in Finance; Springer: Berlin/Heidelberg, Germany, 1997; pp. 419–443.
52. Mandelbrot, B.B. The variation of certain speculative prices. In Fractals and Scaling in Finance; Springer: Berlin/Heidelberg,

Germany, 1997; pp. 371–418.
53. Muzy, J.-F.; Bacry, E.; Baile, R.; Poggi, P. Uncovering latent singularities from multifractal scaling laws in mixed asymptotic regime.

Application to turbulence. EPL (Europhys. Lett.) 2008, 82, 60007. [CrossRef]
54. Subramaniam, A.R.; Gruzberg, I.A.; Ludwig, A.W. Boundary criticality and multifractality at the two-dimensional spin quantum

Hall transition. Phys. Rev. B 2008, 78, 245105. [CrossRef]
55. Stanley, H.E.; Meakin, P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 405–409. [CrossRef]
56. Udovichenko, V.; Strizhak, P. Multifractal properties of copper sulfide film formed in self-organizing chemical system. Theor. Exp.

Chem. 2002, 38, 259–262. [CrossRef]
57. Rosas, A.; Nogueira, E., Jr.; Fontanari, J.F. Multifractal analysis of DNA walks and trails. Phys. Rev. E 2002, 66, 061906. [CrossRef]

[PubMed]
58. Makowiec, D.; Dudkowska, A.; Gałaska, R.; Rynkiewicz, A. Multifractal estimates of monofractality in RR-heart series in power

spectrum ranges. Phys. A Stat. Mech. Appl. 2009, 388, 3486–3502. [CrossRef]
59. Telesca, L.; Lapenna, V.; Macchiato, M. Multifractal fluctuations in earthquake-related geoelectrical signals. New J. Phys. 2005, 7,

214. [CrossRef]
60. Farjah, E. Proposing an Efficient Wind Forecasting Agent Using Adaptive MFDFA. J. Power Technol. 2019, 99, 152–162.
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