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Abstract: Rainfall-induced landslides bring great damage to human life in mountain areas. Landslide
susceptibility assessment (LSA) as an essential step toward landslide prevention has attacked a
considerate focus for years. However, defining a reliable or accurate susceptibility model remains a
challenge although various methods have been applied. The main purpose of this paper is to explore
a comprehensive model with high reliability, accuracy, and intelligibility in LSA by combing statistical
methods and ensemble learning techniques. Miyun country in Beijing is selected as the study area.
Firstly, the dataset containing 370 landslide locations inventories and 13 conditioning factors were
collected and non-landslide samples were prepared by clustering analysis. Secondly, random forest
(RF), gradient boosting decision tree (GBDT), and adaptive boosting decision tree (Ada-DT) were
selected as base learners for the Stacking ensemble method, and these methods were evaluated
using measures like area under the curve (AUC). Finally, the Gini index and frequent ratio (FR) were
combined to analyze the major conditioning factors. The results indicated that the performance of the
Stacking method was enhanced with an AUC value of 0.944 while the basic classifiers also performed
well with 0.906, 0.910, and 0.917 for RF, GBDT, and Ada-DT, respectively. Regions with a distance
to a stream less than 2000 m, a distance to a road less than 3000 m, and elevation less than 600 m
were susceptible to the landslide hazard. The conclusion demonstrates that the performance of LSA
desires enhancement and the reliability and intelligibility of a model can be improved by combining
binary and multivariate statistical methods.

Keywords: landslide susceptibility; statistical methods; ensemble techniques; GIS

1. Introduction

Landslides are a common natural phenomenon and may cause unpredictable damage
to human beings and property worldwide, especially in China where geohazards are
enormously occurring and widely distributed [1]. Generally, damages can be decreased or
mitigated by predicting the area prone to landslides [2,3]. Therefore, landslide susceptibility
mapping (LSM), which predicts the spatial distribution of the likelihood of a landslide
occurring, is significant and worthwhile for the reduction of hazards.

How to improve the quality of a model is always the focus of attention and discussed
by researchers although related studies have been conducted on improving the predictive
accuracy [4,5]. The effectiveness of LSM depends greatly on the models adopted [6], which
can be roughly divided into knowledge-based and data-driven methods [7]. Conventional
knowledge-based methods as a heuristic, are subjective and limited to be applied in small-
scale areas. Conventional statistical methods, like logistic regression (LR) and principal
component analysis, are popular due to their simplicity. Nevertheless, the mechanism of a
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landslide is complicated and usually involves multiple factors. Nevertheless, conventional
statistical methods fail to deal with nonlinear problems [8,9]. Geographic information
systems (GIS) and computing techniques are increasingly developing so that machine
learning techniques (MLT) translated from statistical methods have achieved promising
performance for LSM [10]. However, the inductive preference is inevitable for MLT and the
performance of different MLT fluctuates as the data change. Besides, the performance of a
model will be affected by the purity of the samples. Accordingly, controversy continues
over which method is the best and which is feasible for further improvement [11]. A single
classifier applied to form an ensemble is called the “base learner”. Base learners are not
limited to homogeneous but also can be heterogeneous. Bagging and boosting are two of
the most popular ensemble techniques of homogeneous and have been applied to LSM by
some researchers [12]. While the stacking ensemble method, which is heterogeneous, has
seldom been applied to LSM and needs more exploration [13].

Data-driven methods are binary classification processes and are sensitive to the quality
of training data, which require a data set consisting of an equal amount of both disaster
presence and absence observations in LSM [14]. In terms of landslide presence data, it
is obtained from the landslide inventory, which was achieved through historical records,
remote sensing technology, and extra field investigations. While absence samples were not
available, they are usually selected randomly or subjectively from the “safe area” based on
the acknowledgment and experience of the experts [15]. Nevertheless, it is controversial
and difficult to implement especially for a large area. We could not identify the area with
low susceptibility based on the historical records because these landslide-free areas may
contain locations prone to landslides, which have not been recorded in the past. Unreliable
sampling strategies may bring the noise to the data and eventually, a false assessment of
the models. This study applies clustering analysis to improve the quality of samples and
the performance of models [16]. Two initial landslide susceptibility maps are made by
k-means clustering and Fuzzy c-means (FCM) and the reasonability of the initial maps are
compared and finally determined the better one. Accordingly, the non-landslide samples
are selected from the very low susceptibility area.

Previous studies have emphasized the importance of accuracy and regarded it as the
only indicator for evaluating a model. However, emphasizing accuracy is not enough for
the requirement of prevention and control. Communication between theory and practice
can be improved through a better understanding of major variables. The bivariate statisti-
cal method as FR is commonly applied to explore the relationship between conditioning
factors and the occurrence of landslides by calculating the FR values of factors in a certain
interval [17]. While the bivariate statistical method fails to determine the relative impor-
tance among different factors and Gini index (the larger the value indicates the greater the
contribution to the occurrence of landslides) makes up for it [18].

The current study aims to explore a model with high reliability, accuracy, and intel-
ligibility on LSM. Three ensemble techniques were evaluated by 5-fold cross-validation
according to the Receiver Operating Characteristic (ROC) curve and statistical indexes. RF,
GBDT, and Ada-DT are selected as the candidate base learners of the stacking method and
LR as the meta-learner. The stacking method is explored as a potential application to LSM
and is compared to other ensemble methods. The purity of the samples is improved by
selecting the non-landslide samples in a more reliable way. The Gini index and FR were
combined to identify and analyze the major conditioning factors to improve intelligibility.
Miyun country, China, where shallow landslides occurred frequently, was selected as the
study area and a comparison of the ensemble methods above was made.

2. Materials
2.1. Study Area

Miyun country located in Beijing, China, extends from longitudes of 116◦39′ E to
117◦30′ E and latitudes of 40◦13′ N to 40◦47′ N (Figure 1). It has a population of more than
470,000 and occupies an area of about 2229.45 km2, which is composed of mountainous
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areas (82.9%), cultivated land (8.3%), and reservoirs, roads, and villages (collectively 9.8%).
The average annual precipitation is 663.1 mm (1981–2012) mainly concentrated in summer
(76.4%) and it is a continental monsoon semi-arid climate.
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Figure 1. Location map of the study area showing landslide inventory.

The study area is part of the transition zone between the North China Plain and the
Yanshan mountains, which leads to a series of large fold and fault structures. The faults are
large in scale and widely distributed, mainly in the Northeast and north-south directions.
The elevation ranges from 45 m to 1750 m above mean sea level with a slope angle between
10–45◦. The strata are mainly composed of Archaean (Ar), Proterozoic (Pt), Mesozoic
Jurassic (J), and Quaternary (Q). Three types of lithology are usually exposed in our
investigation: gneiss from Middle Archean (ArXdgn), dolomites from Proterozoic (Pt22w),
and siltstone from Mesozoic Jurassic (J2z). Magmatic intrusive rocks are widely distributed,
accounting for nearly one-third of the total area and are exposed discontinuously in the
northeast direction.

Road traffic is developed, and human activities are intensive in the study area, involv-
ing mining, reservoir, and power station projects. The disasters are various and frequent,
mainly rain-induced landslides, which has affected the normal life of the local villagers.

2.2. Data Preparation
2.2.1. Landslide Inventory

The statistically based models follow a crucial assumption: future landslides have
more chances to occur again in the places with the conditions which cause the landslides
once and present [18,19]). Accordingly, the landslide inventory map as the initial source
is essential and was depicted according to related records (from 1970–2010), field surveys
(from 2016–2017) (Figures 2 and 3), and Google Earth satellite images interpretation (May
2018) (Figure 4). Ultimately, 620 landslide locations were identified, including soil slides
(370), rockslides (6), and falls (244) [18]. It is accepted that different type of landslides has a
different mechanism of occurrence. Soil slides were only considered in our work and were
represented as points shown in Figure 1. Landslides occurred during or after heavy rainfall.
Based on field investigation, remote sensing interpretation and relevant records, the scale
of landslides in the study area is generally small, accounting for about 80%. The area of
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landslides ranges from 3.6 km2 to 300 m2 while the depth of most landslides is less than 4
m, belonging to shallow landslides.
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2.2.2. Choice of Mapping Units

The selection of mapping units should be determined in advance for LSM [20]. Another
piece of literature discussed and compared the difference among mapping units, such as
grid cells and slope units [21]. To better predict or identify the locations of landslides,
slope units were applied in our work, which describes the topographic and geomorphic
conditions of landslides integrally. Finally, the area was divided into 8736 slope units using
the hydrologic analysis tool in ArcGIS and indispensable artificial corrections according to
remote sensing images. Detailed division steps and discussion can be referred to in other
literature [22].

2.2.3. Conditioning Factors

Factors responsible for a landslide are various and there is no consensus on the choice
of number and types of factors. It is commonly accepted that landslide is controlled by
topographical, geological, and triggering factors. However, data availability, reliability, and
accuracy should be given priority [23] and finally, 13 conditioning factors were selected.
Detailed information on conditioning factors is shown in Table 1 and Figure 5a–m. A brief
description of each controlling factor is given below.

Table 1. Landslide conditioning factors in this study.

Category Conditioning Factors Type Data Source Values

Topographical

Elevation (m) Continuous SRTM
(1) <200; (2) 200–400;

(3) 400–600; (4) 600–800;
(5) >800

Plan curvature Continuous SRTM
(1) <0; (2) 0–0.01;

(3) 0.01–0.02; (4) 0.02–0.03;
(5) >0.03

Profile curvature Continuous SRTM
(1) <0; (2) 0–0.01;

(3) 0.01–0.02; (4) 0.02–0.03;
(5) >0.03

Slope angle (◦) Continuous SRTM (1) <10; (2) 10–20; (3) 20–30; (4) >30

TWI Continuous SRTM
(1) <6.5; (2) 6.5–7;

(3) 7–7.5; (4) 7.5–8;
(5) 8–8.5; (6) >8.5

MED (m) Continuous SRTM
(1) <100; (2) 100–200;

(3)200–300; (4) 300–400;
(5) 400–500; (6) >500

Slope aspect Categorical SRTM
(1) north; (2) northeast; (3) east;

(4) southeast; (5) south; (6) southwest;
(7) west; (8) northwest

Geological and
Geomorphological

Distance to faults (m) Continuous Geological map (1) <1000; (2) 1000–2000; (3) 2000–3000;
(4)3000–4000; (5) >4000

Distance to streams (m) Continuous DNRB (1) <1000; (2) 1000–2000; (3) 2000–3000;
(4)3000–4000; (5) >4000

Lithology Categorical Geological map
(1) Gneiss; (2) Dolomites; (3) Siltstone

(4) Granite;(5) Limestone;
(6) Conglomerate

Triggering factors

Maximum 24 h
rainfall (mm) Continuous BHM (1) <270; (2) 270–280;

(3) 280–290; (4) >290
Maximum 7 days

rainfall (mm) Continuous BHM (1) <320; (2) 320–330;
(3) 330–340; (4) >340

Distance to roads (m) Continuous DNRB (1) <1000; (2) 1000–2000;
(3) 2000–3000; (4)3000–4000; (5) >4000
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Figure 5. Study area thematic maps: (a) Elevation; (b) Plan curvature; (c) Profile curvature; (d) TWI;
(e) MED; (f) Slope; (g) Aspect; (h) DTR; (i) DTF; (j) DTS; (k) Lithology; (l) Maximum 24 h Rainfall;
(m) Maximum seven days Rainfall.

Topographic-related factors were derived from the DEM (Digital Elevation Model)
with a resolution of 30 m (http://www.gscloud.cn, accessed on 4 April 2022) originally
sourced from the Shuttle Radar Topography Mission (SRTM) data. Elevation affects slope
instability and precipitation properties and was frequently applied to LSM [24,25]. Land-
slides are likely to occur as slopes become steep and vice versa [26]. Maximum elevation
difference (MED) reflects the potential energy of a slope and was calculated in ArcGIS [27].
Topographic wetness index (TWI) and Curvature reflect topographic relief [28]. TWI was
reclassified into six classes (Figure 5g) and the related algorithm is as follows:

TWI = ln
(

As

tanβ

)
(1)

where, As is the specific catchment area, β is the slop angle.
The plan curvature (Figure 5g) and profile curvature (Figure 5g) are both the most

extensively used predisposing factors, which reflect the changes in terrain [29]. The slope aspect
map was reclassified into eight classes according to the eight cardinal directions (Figure 5g).

http://www.gscloud.cn
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Fault information (Figure 5i) was collected from a geological map of which the ratio
was 1:50,000. Faults decrease the rock strength, which acts as potential weak planes in
slopes. It was produced by the spatial distance analysis tool in ArcGIS. Similarly, the
distance to roads (Figure 5h) and distance to rivers (Figure 5j) were both constructed based
on the data from the Department of Natural Resources of Beijing (DNRB).

Shallow landslides are mainly caused by heavy or continuous rainfall [30]. Conse-
quently, both the maximum 24 h rainfall (Figure 5l) and maximum seven days of rainfall
(Figure 5m) were selected based on the data (1981–2000) from Beijing Hydrology Manual
(BHM) using the kriging interpolation coordinated with elevation in ArcGIS and 11 precipi-
tation stations nearby were taken as reference. Rainfall was regarded as the natural trigger
while the distance to the road was the human factor.

Factors were reclassified into four to eight classes and the mean value was regarded as
the statistic value of slope units.

3. Methods
3.1. Sampling Strategy
3.1.1. K-Means Clustering

K-means comes out to be a well know clustering method due to its efficiency and
feasibility [31]. It is applied to divide n observations into k clusters, where each sample is
allocated to the cluster based on the closest Euclidean distance, thus considered as the centroid
of the cluster [32]. The procedure is then repeated until the change of the cluster seed from
one stage to the next is negligible. The main equation involved in k-means is as follows:

|un+1 − un|
un+1

≤ ε (2)

where un+1 represents the sum of squares of distances from each point to the cluster center
after the nth clustering; ε represents the precision value.

3.1.2. FCM Algorithm

The fuzzy c-means method is a soft clustering method developed by Dunn [33] and it
is different from K-means (hard clustering). It has been widely used for statistical analysis
of geological problems because of its flexibility and rationality [34]. Its core idea is to assign
the objects to the corresponding clusters according to the degree of membership. The
function of the FCM clustering is defined by the equation:

Ci =
n

∑
j=1

µm
ij xj/

n

∑
j=1

µm
ij (3)

J =
N

∑
j=1

C

∑
i=1

µm
ij d2(Xj, Vi

)
(4)

µij= 1/
C

∑
k=1

(
dij

dkj

)2/(m−1)

(5)

where Ci represents the cluster centers, C represents the number of centers, uij represents
the membership matrix; m represents the degree of fuzziness; J is the objective function
and n is the number of objects in the database; d2 is the Euclidean distance between the ith
clustering center and the jth sample [35].

Two parameters as m and C are required to determine in advance. C is determined by the
cluster validity function [36] and m is equal to 2 referred to in most applications in this study.

Machine learning methods need both positive and negative datasets. Three-hundred-
seventy positive samples (that is, landslide locations) were set as “1” and the same number
of negative samples with the value of “0”, which were selected based on the result of



Sustainability 2022, 14, 6110 9 of 21

K-means and FCM in this study. As the purity of absent samples increases, it is more likely
to reflect the characteristics of non-landslide areas. Accordingly, the critical value of the
model results distinguishing landslides and non-landslides is 0.5.

3.1.3. Frequency Ratio

The equation for determining the FR value of a certain level of conditioning factor is
defined below [16]:

FRi =

landslide__cellsi
landslide__cellstot

total__cellsi
total__cellstot

(6)

where i indicates the i-th class for each variable considered.
An FRi greater than 1 manifest that there exists a close relationship between landslide

occurring and variable class, and if the values are less than 1 then a weak correlation is
reflected. Continuous variables are required to be reclassified into classes before application,
as Table 1 showed.

3.2. Modeling Landslide Susceptibility
3.2.1. LR Model

LR establishes a non-linear probability function model, trying to find appropriate
regression coefficients to express the correlation between the independent variable and the
dependent variable [37]. The LR model is constructed as the equation below:

p =
1

1 + e−y (7)

where p is the probability of a landslide occurring; y is a linear combination function as
Equation (7).

y = b0+b1x1+b2x2+b3x3+ . . . bnxn (8)

where b0 is the constant value, and b1, b2, . . . , bn refer to each significant input variable (x1,
x2,..., xn) causing the landslide.

The forward7 stepwise method was adopted to screen variables during LR modeling
in SPSS software.

3.2.2. RF

RF belongs to a family of ensemble methods based on the decision tree and Bagging
technique and it was first introduced by Breiman [17]. The bagging technique, which is also
called bootstrap aggregation, is applied to selecting variables and samples randomly as the
training data for modeling. Unused observations are applied to calculate the classification
error. Consequently, there are two powerful ideas of RF: random feature selection and
Bagging [38]. More details about RF can be found in Breiman [17]. RF was modeled in
Python 3.7 using the scikit-learn package [39]. The number of trees (k) and the number of
predictive variables (n) are required tuning before modeling [40].

3.2.3. GBDT

GBDT forms weak classifiers (DT) iteratively based on Gradient Boosting [41]. The
parameter of the weak classifier defaults to the direction of the. The GBDT was applied in
Python 3.7 using the GBDT class library of scikit-learn.

3.2.4. AdaBoost-DT

AdaBoost (known as adaptive boosting) is another boosting algorithm, which was
invented by Freund and Schapire [42]. Unlike gradient boosting, AdaBoost assigns incor-
rectly classified samples with modified weights after each iteration. The final classifier is
constructed by combining all weak classifiers. AdaBoost-DT is also applied in Python 3.7
using the AdaBoost class library of scikit-learn.
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3.2.5. Gini Index

The split method tree-based classifiers adopt is the minimum principle of Gini and
thus Gini index is applied to calculate the relative importance of conditioning factors. The
relevant formula is as follows:

Gini(T) = 1−∑N
j=1 P2

j (9)

where T expresses the training set, N is the number of categories, and P is the probability of
a sample that is classified into the kth class.

3.2.6. Stacking

The stacking ensemble consists of base-classifiers and meta-classifier. Stacking takes
the results predicted by the base-classifiers as the input attributes and the meta-classifier
merges the different predictions into the final prediction. It is believed that stacking
performs better than any basic classifiers [43]. Figure 6 shows the structure of the Stacking.
The basic classifiers of Stacking were three ensemble learning machines that have been
showing great performance in statistical analysis: RF, GBDT, and AdaBoost-DT. LR model
was used as the combiner. To avoid over-fitting of the meta-classifier, the dataset is divided
into two disjoint subsets: one for training base-classifiers and the other for testing. To train
the meta-level classifier, 5-fold cross-validation is applied to construct the meta-levels for
all combining methods.
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3.3. Evaluating Model Performance

Models need a reliable evaluation and/or validation process [44]. The capacity of a
model to classify was evaluated by a 5-fold cross-validation procedure, where the data
is divided into five independent groups, one at a time for testing and the remaining four
groups for training [45].

Accuracy, sensitivity, and specificity were three statistical indexes evaluating the
performance [13]:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Sensitivity =
TP

TP + FN
(11)
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Specificity =
TN

FP + TN
(12)

where True Positive (TP) refers to the number of landslide samples with correct classifi-
cation, True Negative (TN) refers to the number of non-landslide samples with correct
classification, False Positive (FP) refers to the number of landslide samples with incorrect
classification and False Negative (FN) refers to the number of non-landslide samples with
incorrect classification.

AUC is a metric commonly used to assess the quality of the model and it varies from
0.5 to 1. The higher the AUC value shows the stronger the predictive ability [46].

Non-parametric models need to be optimized by tuning related hyperparameters
before application [47]. The involved parameters for modeling utilized in this study were
shown in Table 2 and the flowchart of methods involved was shown in Figure 7.

Table 2. The optimized parameters of methods utilized in this study.

Methods Parameters

DT Criterion = ‘gini’; max_features = None; max_depth = 20; min_samples_split = 2;
min_samples_leaf = 1; max_leaf_nodes = None; class_weight = None

RF n_estimators = 500; criterion = ‘gini’; max_depth = None; max_features = ‘sqrt’;

GBDT n_estimators = 100; learning_rate = 0.1; max_depth = 2; verbose = 1;
subsample = 0.7; max_leaf_nodes = None

AdaBoost-DT base_estimator = None; n_estimators = 100; learning_rate = 1.0;
algorithm = ‘SAMME.R’; random_state = None
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4. Results and Verification
4.1. Non-Landslide Samples Selected by FCM and K-Means

LSM generated based on cluster analysis does not need to identify the positive and
negative labels of the samples in advance. Based on the curve of the clustering effectiveness
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index Vcs (Figure 8), the preferred value is five. Consequently, the study area was reclassi-
fied into five areas based on the FR values, which were very low, low, moderate, high, and
very high. The proportions of each area are: very low (15.97%), low (23.25%), moderate
(19.29%), high (33.5%) and very high (8%). Among them, the very-low area accounted for
15.97% of the whole study area with only 3.24% of landslide locations and an FR value of
0.2. Besides, the high or very-high area accounted for 41.5% of the study area with more
than 55% of landslide locations and the FR values were both greater than 1.
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Similarly, the results constructed by K-means were shown in Table 3. The proportions
of each area are: very low (11.66%), low (22.30%), moderate (18.71%), high (39.16%), and
very high (8.17%). The very-low area accounted for only 1.62% of landslide locations with
an FR value of 0.14. The high or very-high area accounted for 47.33% of the study area with
more than 55% of landslide locations.

Table 3. Frequency ratios of five susceptibility classes assessed with FCM and K-means.

Method Class Landslide Ratio (%) Area Ratio (%) FR

FCM

Very low 3.24 15.97 0.20

Low 19.73 23.25 0.85

Moderate 21.35 19.29 1.11

High 40.00 33.50 1.19

Very high 15.68 8.00 1.96

k-means

Very low 1.62 11.66 0.14

Low 15.41 22.30 0.69

Moderate 15.57 18.71 0.83

High 48.11 39.16 1.22

Very high 17.30 8.17 2.11

Compared to the results obtained by FCM, the area with low or very low class pre-
dicted by K-means occupied a smaller area (5.26%) while a bigger area (5.83) with high
or very high class. The zoning maps should follow two rules: (1) the recorded land-
slides should appear in high-susceptibility areas as many as possible and (2) the high-
susceptibility area should occupy a small proportion (Bui et al., 2012). Therefore, the results
obtained by FCM were more reasonable. Selecting the non-landslide samples in a more
reliable area is the main purpose and it means that the bigger the very-low class area, the
easier the sampling will be. Meanwhile, 370 non-landslides samples were collected from
the area with very-low susceptibility predicted by FCM.
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4.2. Evaluation and Comparison of Different Models

To highlight the performance of the Stacking model, three basic classifiers were also ap-
plied for modeling. Analyses of the statistical measures using the training set were shown
in Table 4. The Stacking showed the best performance in terms of classifying landslides (sen-
sitivity = 91.89%), followed by the GBDT model (sensitivity = 86.97%), the Ada-DT model
(sensitivity = 85.66%) and RF model (sensitivity = 79.93%). In terms of the classification of
non-landslides zones, Stacking model also performed best (specificity = 91.84%), followed
by the GBDT model (specificity = 85.67%), the Ada-DT model (specificity = 82.26%) and
the CART model (specificity = 83.16%). Besides, the Stacking model also had the highest
accuracy (91.84%). It was noticed that the Stacking model achieved an AUC of 0.963, while
RF was 0.920, GBDT was 0.957 and Ada-DT was 0.959 (Table 5). The standard errors were
less than 0.05 and the probability estimation was negligible.

Table 4. Models’ performance using training dataset.

Metrics RF GBDT Ada-DT Stacking

TP (%) 82.46 84.88 81.29 91.22
TN (%) 76.80 87.67 86.44 92.20
FP (%) 17.54 15.12 18.71 8.78
FN (%) 23.2 12.37 13.56 7.80

Sensitivity (%) 79.93 86.97 85.66 91.89
Specificity (%) 83.16 85.67 82.26 91.78
Accuracy (%) 81.56 86.29 83.87 91.84

Table 5. ROC analysis of the four models using training data.

Models AUC Standard Error 95% Confidence Interval

RF 0.920 0.011 0.899–0.941
GBDT 0.957 0.008 0.942–0.973

Ada-DT 0.959 0.009 0.942–0.976
Stacking 0.963 0.006 0.950–0.975

The predictive capacity needs to be evaluated using validation data. The results
confirmed that the Stacking model perform the best as the values of sensitivity, specificity,
accuracy and AUC were highest (Tables 6 and 7), which was 91.78%, 90.54%, 91.16%
and 0.944, respectively, followed by Ada-DT (sensitivity = 86.96%, specificity = 82.19%,
accuracy = 85.13% and AUC = 0.917), GBDT (sensitivity = 86.11%, specificity = 84.00%,
accuracy = 85.03% and AUC = 0.910), and RF (sensitivity = 81.33%, specificity = 75.34%,
accuracy = 78.38 and AUC = 0.906) (Figure 9).

Table 6. Models’ performance using verification dataset.

Metrics RF GBDT Ada-DT Stacking

TP (%) 77.22 86.30 83.54 90.54
TN (%) 79.71 83.78 86.96 91.78
FP (%) 22.78 13.70 16.46 9.46
FN (%) 20.29 16.22 13.04 8.22

Sensitivity (%) 81.33 86.11 86.96 91.78
Specificity (%) 75.34 84.00 82.19 90.54
Accuracy (%) 78.38 85.03 85.13 91.16
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Table 7. ROC analysis of the models using validating data.

Models AUC Standard Error 95% Confidence Interval

RF 0.906 0.027 0.853–0.959
GBDT 0.910 0.026 0.859–0.962

Ada-DT 0.917 0.021 0.877–0.958
Stacking 0.944 0.018 0.908–0.980
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landslide using the training dataset; (b) Prediction rate curve of landslide using the validation dataset.

The Stacking model exhibited the best both in training and validation data compared
to the other three ensemble learning methods, which indicated ideal goodness-of-fit to
modeling and generalization capability. The performance of GBDT and Ada-DT was similar,
and the RF model performed the worst but was still satisfactory. The gaps in performance
between training and validation data were not obvious among the models. Compared to
the RF model, the application of the Stacking model enhanced the performance significantly
and was regarded as the most suitable model for LSM in this study.

4.3. Application of Stacking Method for LSM

The above analysis proves that the Stacking method has superior ability in LSM
compared with the other three models. Therefore, the probability of landslides occurring
was calculated for all mapping units in the whole study area. The LSM was also constructed
with five susceptible classes, which were very low (0–0.2), low (0.2–0.4), moderate (0.4–0.6),
high (0.6–0.8), and very high (0.8–1) (Figure 10). Table 3 showed the distribution ratio of
each level. The very low susceptible level occupied 26.04% of the area while low, moderate,
high, and very high susceptible levels represented 15.31%, 15.46%, 32.45%, and 10.74%,
respectively (Figure 11). It was noticed that LSM has the smallest area percentage in very
high susceptibility levels while the largest is in high. Landslide locations were mostly
distributed in the red areas. Meanwhile, most of the non-landslide samples screened by
FCM clustering appeared in blue areas.
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Figure 10. Landslide susceptibility map using the Stacking model.
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Figure 11. The distribution of susceptible classes on landslide susceptibility maps.

The high or very-high susceptibility areas are mainly distributed closed to streams
or provincial highway, which runs through three townships including Fanzipai Town,
Sihetang Town, and Fengjiayu Town in the study area. These areas are densely populated.

The landslide susceptibility class ranged from very low to very high around the Miyun
reservoir. It is noteworthy that once a landslide occurs in this area, a series of disaster
chains may be induced.

4.4. Analysis of Major Conditioning Factors

The stacking method performed the best in terms of accuracy, but the results had
a poor analysis of the occurrence of landslides, which was confusing. Understanding
the major factors that have a significant contribution to landslides occurring helps in the
prevention and treatment of landslides. Based on the Gini index, ten major parameters
were selected and normalized as shown in Table 8, including DTS, DTR, elevation, slope



Sustainability 2022, 14, 6110 16 of 21

angle, TWI, maximum 24 h rainfall, lithology, MED, maximum seven days of rainfall, and
profile curvature. Among them, DTS, DTR, and elevation have a significant impact on the
occurrence of landslides (Figure 12), the weight values of which were 0.37, 0.34, and 0.16,
respectively. While the weight values of lithology, MED, maximum seven days rainfall, and
profile curvature were close to 0.01, which had a limited contribution. The weight values of
slope angle, TWI, and maximum 24 h rainfall were close to 0.04, 0.03, and 0.02, respectively.

Table 8. Conditioning factors assigned by the Ada-DT.

Method DTS DTR Elevation Slope
Angel TWI Maximum

24 h Rainfall Lithology MED Maximum
7 Days Rainfall

Profile
Curvature

GBDT 0.37 0.34 0.16 0.04 0.03 0.02 0.01 0.01 0.01 0.01
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Therefore, three conditioning factors, namely DTS, DTR, and elevation, were consid-
ered the major factors responsible for the landslide. Rivers are an important factor affecting
the occurrence of landslides. On the slopes closer to the river, the toe of the slope is easily
soaked by the river water, which reduces the strength of the rock and makes landslides
more likely. Road development and construction are important tasks in mountainous area
construction. However, unreasonable road excavation is a common human factor that
induces geological disasters. Road construction often produces a large number of slopes,
which destroy the stability of the slope and finally, lead to the occurrence of landslides.

The relationship between the major factors and landslides was further explored by
calculating the FRi of each parameter (Table 9). As for DTS, the percentages of landslide
area of the first two classes (<1000 m and 1000–2000 m) were 46.99% and 24.43% with the
FR values of 49.3 and 173.29, accounting for more than 70% of the landslides area. Similarly,
DTS showed a positive correlation in the first three classes (<1000 m, 1000–2000 m, and
2000–3000 m) with FR values greater than 1. Regarding elevation also a positive correlation
in the first three classes (<200m, 200–400 m, and 400–600 m) with values of FR gradually
decreasing with altitude and a negative relationship in the last two classes (>600 m).

The selection and analysis of major factors by combining basic machine learning and
bivariate methods made up for the defects of stacking, thereby ensuring the integrity of
geological hazard assessment.
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Table 9. Spatial relationship between landslide conditioning factors and landslides using frequency ratio.

Conditioning Factor Zone Landslide (%) Non-Landslide (%) FR

DTS(m)

<1000 46.99% 0.95% 49.30
1000–2000 24.43% 0.14% 173.29
2000–3000 14.33% 6.63% 2.16
3000–4000 5.33% 15.72% 0.34

>4000 8.91% 76.69% 0.12

DTR(m)

<1000 56.06% 7.13% 7.87
1000–2000 23.02% 7.13% 3.23
2000–3000 15.59% 9.29% 1.68
3000–4000 3.95% 11.51% 0.34

>4000 1.37% 66.79% 0.02

Elevation(m)

<200 4.36% 2.08% 2.09
200–400 53.76% 12.29% 4.37
300–600 30.36% 23.70% 1.28
400–800 10.06% 34.52% 0.29

>800 1.46% 27.41% 0.05

5. Discussion
5.1. Ensuring the Reliability of Models
5.1.1. Internal and External Cross-Validation

The basic classifiers used in our work have several hyperparameters that control
the behavior and performance. In some cases, reasonable “guesses” are available (e.g.,
n tree = 500 in RF), in other cases classifiers are very sensitive to the parameters, which
means that default hyperparameter settings fail to guarantee optimal performance of
machine-learning techniques. Therefore, hyperparameters need to be tuned before applica-
tion and inner cross-validation should be used for this [48].

On the other hand, external cross-validation was also essential. One can find an
“excellent model” using the method “Leave-One-Out” because of the randomness in the
sampling scheme, the results of which are unconvincing. Only by implementing a more
rigorous k-fold (or other types) cross-validation scheme can one infer the actual capacity of
a model to learn the functional relationships between landslides and causative factors as
well as the variability that the models and the susceptibility estimates exhibit [45,48].

While various machine-learning algorithms have been recognized in recent years
due to their powerful capabilities of data processing and generalization, there are several
practical challenges related to bias-reduced assessment of a model’s predictive power
and some researchers often ignore them, which leads to an unreliable or uncertain result.
Single hold-out model performance measures were popular [49]. However, statistically
based landslide susceptibility models desire a more credible validation and assessment
before generalization.

5.1.2. The Selection of Non-Landslide Samples

A complete disaster inventory map is emphasized in a multitude of studies, which
consists of the locations and number of a certain disaster [9]. The quality of landslide
presence samples is more convincing compared to that of landslide absence because non-
landslide samples are selected randomly or subjectively although quite a few methods or
principles will be adopted. Seldom do studies consider or discuss the noise and influence
of the absence of data bring to data-driven models [50]. Non-landslide points need to
be selected from low-prone areas as far as possible, which is arduous to implement by
selecting randomly. Clustering analysis help solve the problem by combining with the
bivariate methods. FR was calculated to judge the area with low susceptibility based on the
results of FCM and K-means in this study and the non-landslide samples were generated
from it, which improved the quality of non-landslide records and the performance of
models logically.
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5.2. Increasing the Accuracy of LSM

How to achieve an accurate landslide susceptibility zoning map is always a hot topic
and the main concern of researchers. However, determining the most suitable model is
challenging because the performance varies according to the study area and methods
applied. Actually, related studies have applied various methods and compared their
performance based on the value of AUC to obtain the best method for a given region [51,52].
Yet, it is controversial that we claim a model to be better than the other according to the
decimal places down the line (AUC). Therefore, it is necessary to explore new methods for
significant improvement and ensemble techniques are considered in our study, which have
also been proven to be an excellent solution [53–55]. A detailed comparison among three
ensemble techniques in LSM, namely bagging, boosting, and stacking was implemented.
Bagging and boosting are two algorithms commonly used in LSM while stacking have
rarely been applied. The results proved that the ensemble of the GBDT-Adaboost-DT-
RF-LR had the ability to enhance the predictive performance and the improvement was
obvious. This enhancement originates from reducing both bias and variance and avoiding
over-fitting problems [56,57]. It is believed that the stacking technique and its comparison
will guarantee a better result for further studies [58].

5.3. Maintain the Integrity of Geological Hazard Assessment

An optimal model should not only focus on accuracy, especially for geological hazard
assessment [50]. An outstanding model should also require communication skills, that
is, make it easy for researchers to understand, accept and apply, especially for natural
disasters [59]. The capacity of communicating model behavior is another valuable quality
for LSA, which is arduously achieved by machine learning methods because of the “black
box” nature. Stacking performed the best in terms of accuracy while it had a low capacity
for recognizing the importance of the variables. Gini index and FR were combined to
determine the major conditioning factors and analyze the individual landslide-related
factors in each interval and the relative importance among them, which improved the
readability of the stacking model.

6. Conclusions

LSM is the basis of supplementary analyses, such as land use and hazard prevention.
Meanwhile, this field of geomorphology has become an empty shell with no research ques-
tion on whether a model can be evaluated in an unreliable sampling strategy and focus only
on accuracy. Therefore, a more reliable and accurate landslide susceptibility map is urgently
needed through further comparison and application of different methods. In the present
study, three ensemble learning machines were compared in terms of the performance of
LSM in Miyun County, Beijing, China. Non-landslide samples were determined in a more
reliable way with the use of FCM and K-means clustering. Statistical indexes and AUC
were combined to assess the accuracy performance of the models. The major conditioning
factors were determined and analyzed based on the Gini index and FR. The following
conclusions can be drawn from the present study:

1. The performance of different ensemble techniques varies, but achieved satisfactory
results as a whole. Stacking was considered the most suitable model with obvious
improvement in terms of accuracy compared to the basic classifiers.

2. The combination of the bivariate statistical method and Gini index helps better explore
the major conditioning factors and improve the integrity of ensemble techniques.

3. The non-landslide samples selected by FCM are more representative and improved
the quality of samples. Overall, improvement of sample quality and selection of
advanced methods help improve the practicability of LSM.
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