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Abstract: The replacement of fish meal and fish oil by insect-based ingredients in the formulation of
marine aquafeeds can be an important step towards sustainability. To pursue this goal, the modulation
of the lipid profile of black soldier fly larvae (Hermetia illucens) has received great attention. While
its nutritional profile can shift with diet, the ability to modulate its lipidome is yet to be understood.
The present work provides an overview of the lipid modulation of H. illucens larvae through its
diet, aiming to produce a more suitable ingredient for marine aquafeeds. Marine-based substrates
significantly improve the lipid profile of H. illucens larvae, namely its omega-3 fatty acids profile.
An improvement of approximately 40% can be achieved using fish discards. Substantial levels of
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two essential fatty acids for marine
fish and shrimp species, were recorded in H. illucens larvae fed on fish discards and coffee silverskin
with Schyzochytrium sp. Unfortunately, these improvements are still deeply connected to marine-
based bioresources, some still being too costly for use at an industrial scale (e.g., microalgae). New
approaches using solutions from the biotechnology toolbox will be decisive to make H. illucens larvae
a feasible alternative ingredient for marine aquafeeds without having to rely on marine bioresources.

Keywords: insect feeds; long-chain PUFA; marine aquaculture; n-3 fatty acids; highly unsaturated
fatty acids; alternative ingredients; fish oil; fish meal

1. Introduction

Insects provide numerous services and natural products with considerable commercial
interest, ranging from feed to biofuel production, waste reduction, textile, pharmaceutical
and cosmetical industries, among others [1,2]. In the last decade, the interest in insects as
food and feed has experienced its fastest growth [3], despite its nutritional potential having
already been acknowledged at least four decades ago [4–6]. More recently, for instance, it
was found that coastal flies displayed interesting amounts of polyunsaturated fatty acids
(PUFA) [7]. In Europe, this interest mostly arose after July 2017 when the European Union
allowed the use of insect meals for aquafeeds formulation [8]. This decision mostly resulted
from the urge to find sustainable and nutritious alternative ingredients for aquafeeds [9].

Under this context, several studies using the larvae of Hermetia illucens, popularly
known as Black Soldier Fly (BSF), forecast its potential as an aquafeed ingredient [10–12].
This species is well-known for its protein level, amino acids profile, lipid fraction, specific
fatty acids, and micronutrients content [13,14]. However, its biochemical composition is not
always consistent, e.g., crude protein content can range from 40% to 54%, while lipid can
vary from 15 up to 49% [15]. Moreover, the lipid fraction per se lacks important essential
fatty acids (EFA) for marine fish and shrimp species, such as eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), which have a crucial role in the growth and health of
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most farmed marine organisms [16,17]. Under these circumstances, research on the use
of H. illucens larvae as an ingredient for marine aquafeeds has received more attention
concerning the modulation of its lipid fraction [18].

When selecting a raw material destined to be incorporated in the formulation of a
diet for aquafeeds, several issues need to be addressed beforehand [19]. One needs to
consider the receptor species, along with its life cycle stage and nutritional needs [20].
Concerning raw material, one needs to account for its safety, availability, biochemical
profile and stability overproduction, storage, processing, cost, and sustainability [21].
On the production side, it is important to understand if and how it complements other
ingredients, if it requires a shift in the production system, and if it changes the final product
(aquafeeds floatability, palatability, etc.) [22]. Most aquafeeds currently rely on terrestrial
plant sources that must be pre-treated to remove anti-nutritional factors and upgrade the
bioavailability of nutrients [23]. Additionally, the nutrient profile concerning amino acids
and fatty acids of terrestrial plant sources is not balanced, and the amount of carbohydrates,
namely starch, and fiber, may jeopardize the health of farmed marine fish [24]. In that scope,
it is urgent to find alternative substrates that are sustainable and low-cost that may provide
long-chain PUFA. Genetically modified oilseeds (GMO) can be putative candidates [25,26].
Unfortunately, the costs of GMO seeds, their negative public perception, the need for
regulatory approval, and the overexploitation of land and freshwater resources with high
environmental and economic costs are some of the multiple drawbacks impairing a more
generalized use of these enhanced oilseeds for marine aquafeeds [26,27]. Anti-nutritional
factors and industrial processing constraints may be avoided if enhanced oilseeds are
supplied as a substrate to H. illucens larvae. With no dietary restrictions, Hermetia larvae
would be able to digest and assimilate the much-wanted omega-3 fatty acids, and the
stigma of directly using a GMO in aquafeed could be somehow overcome.

Unicellular sources, such as microalgae or genetically engineered yeasts, are promising
choices on what concerns PUFA sources [28,29]. In the case of microalgae, their potential
use as sustainable ingredients for aquafeeds has already been documented [28,30]. Never-
theless, several upscaling obstacles must still be overcome to allow microalgae to become a
competitive, stable, and affordable bioresource [29]. In the case of genetically engineered
yeasts, a life cycle assessment displaying production and environmental costs, along with in-
dustry dissemination and upgrading, revealed that these are still constraining their broader
use as a source of PUFA [31]. Another subject of interest is that most research efforts seeking
alternatives to fish meal (FM) or fish oil (FO) pursue this goal decoupled. This likely occurs
mostly due to the specialization of these two different research areas within the field of
fish and shrimp nutrition, one more oriented towards protein metabolism, the other more
oriented towards lipid metabolism [21]. However, there is a greater potential in merging
these two approaches. Finding a raw material able to supply not only essential amino acids
but also the much-needed essential fatty acids in a sustainable and low-cost way would
be a major advance for the marine aquafeeds industry [3]. In that regard, H. illucens larva
is well-recognized as a protein provider for animal feed, with a production system that is
becoming mature and open to market needs [32]. As cultured marine fish and shrimp are
highly demanding species concerning the quantity and quality of fatty acids (FA) present
in aquafeeds, H. illucens larval biomass with an enhanced fine-tunned lipid profile could be
an appealing ingredient [23]. However, to keep Hermetia racing alongside microalgae and
yeasts, a major and cost-effective enhancement of their PUFA content must be achieved.
For that, new approaches concerning genetics, biotechnology, metabolomics, proteomics,
and lipidomics must be pursued [24]. Ongoing research targeting the expression of genes
involved in the synthesis pathways of fatty acids may enable α-linolenic acid (ALA), EPA,
or DHA production on H. illucens larvae and place them at the same level of microalgae
and yeasts as PUFA providers.

Despite the increasing interest in the use of H. illucens larvae as an aquafeed ingre-
dient [9,15,33], a comprehensive review addressing the improvement of its lipid fraction
for marine aquafeeds, namely in PUFA, fatty acids ratios, and feeding substrates used
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to modulate BSF lipid profile, is still missing. The present work provides a systematic
overview of key breakthroughs that have allowed the shaping of the lipid pool of H. illucens
larvae, with emphasis on n-3 PUFA, namely EPA and DHA. Our study also aims to provide
general guidelines on how the biotechnological toolbox can provide solutions to advance
the state of the art on this topic and decrease the dependence on using marine-based
bioresources.

2. Materials and Methods
2.1. Literature Search

In order to summarize the current trends on the use of different substrates already
tested to feed BSF (objective 1) and the achievements concerning the modulation of its lipid
fraction (objective 2), a systematic literature search was performed [34]. All peer-reviewed
journal articles were retrieved on January 2022 from the databases Web of Science™ (WoS™)
and Scopus using the following keywords and search syntaxes: [“Hermetia illucens” AND
(“fatty acids” OR “PUFA” OR “n-3” OR “omega 3” OR “HUFA” OR (“fatty acids” AND
“review”) OR (“n-3” AND “review”) OR (“omega 3” AND “review”))] and [“Black Soldier
Fly” AND (“fatty acids” OR “PUFA” OR “n-3” OR “omega 3” OR “HUFA” OR (“fatty
acids” AND “review”) OR (“n-3” AND “review”) OR (“omega 3” AND “review”)) ]. The
search options selected in Scopus were article title, abstract, and keywords, with no date
restriction (Table 1). In WoS™, the keywords and syntaxes were searched for in the “topic”
selection, with date limitation from 1900 to 2020 (Table 1). Using all the keywords and
search syntaxes, a total of 546 publications were retrieved from WoS™ and 581 from Scopus.
Duplicate titles were removed from the pool of retrieved publications. The subsequent
material collected from WoS™ and Scopus totaled 392 publications. These outcomes were
then categorized by author, title, year, journal, and DOI.

Table 1. Results delivered by Web of Science and Scopus addressing the listed keywords.

Keywords Web of Science™ Scopus

Hermetia illucens + fatty acids 196 214
Black Soldier Fly + fatty acids 183 205

PUFA + Hermetia illucens 23 21
PUFA+ Black Soldier Fly 23 24

n-3 + Hermetia illucens 32 34
n-3 + Black Soldier Fly 27 33

omega 3 + Hermetia illucens 8 10
omega 3 + Black Soldier Fly 23 26

HUFA + Hermetia illucens 2 2
HUFA + Black soldier fly 2 2

Hermetia illucens + fatty acids + review 18 6
Black Soldier Fly + fatty acids + review 7 2

PUFA + Hermetia illucens + review 0 0
n-3 + Hermetia illucens + review 1 0

omega 3 + Hermetia illucens + review 1 2
HUFA + Hermetia illucens+ review 0 0

Total of publications 546 581
Total of publications considered after removing duplicates 392

Total of publications considered after selection criteria 47

2.2. Inclusion Criteria and Data Extraction

Further selection procedures combined two steps: the analysis of: (a) title, (b) abstract,
and (c) results and a search for the following benchmarks: (1) BSF larvae feeding tests,
(2) fatty acid analysis, and (3) detailed description of fatty acid content. Each publication
was screened individually to determine whether it was considered or discarded for the
present study. The final number of relevant publications selected was 47 (Table 1).
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From these results, we built a table (Supporting Information Table S1) compiling the
relative abundance of molecular species allocated to the lipid fraction identified in the
larvae of H. illucens fed with the substrates described in each publication selected. A total
of 148 substrates were identified, and 46 molecular species of fatty acids were retrieved;
these were subsequently divided into Saturated Fatty Acids (SFA) (20 species), Monoun-
saturated Fatty Acids (MUFA) (12 species), and Polyunsaturated Fatty Acids (14 species).
For further analysis, the substrates were categorized into nine groups: Control (chicken
feed), Cereal, Fruit, Manure, Seafood, Seaweeds, Vegetables, Waste, and Miscellaneous
(Supporting Information Table S2). When the substrate described corresponded to a mix
encompassing more than one of the categories considered it was included in the group with
the highest percentage of inclusion, e.g., chicken feed + 4% of flaxseed oil—considered as
control group (chicken feed). However, in the case of seafood and seaweeds every substrate
containing a source of this category regardless of the percentage employed was included in
these categories, e.g., 10% fish offal (rainbow trout) and 90% cow manure—considered as
seafood.

2.3. Statistical Analysis

After the critical survey of the scientific literature retrieved, we performed a system-
atization and analysis of all data gathered on the fatty acid profile of larvae fed with the
different substrates described in the publications. The dataset was analyzed using a chemo-
metric statistical method aiming to obtain a biologically relevant perspective by looking
into patterns in lipid molecular species within the groups of feeding substrates considered.
Statistical analysis was performed using MetaboAnalyst (v5.0) [35,36]. Prior to analysis,
the percentage of relative abundance of each lipid species of the larvae of H. illucens fed with
the substrates considered for this survey was collected. Aiming to forecast the correlation
between substrates and the amount of n-3 fatty acids in larval tissues, only ALA, EPA, DHA,
PUFA, and SFA were considered for statistical analysis (Supporting Information Table S2).
Feeding-substrates provided to BSF were categorized in nine groups as described above.

Data normalization, namely log-transformation followed by auto-scaling, was per-
formed prior to analysis to decrease the influence of molecular species with high-abundance
and increase the statistical relevance of the ones present at lower abundances
(Supporting Information Figure S1). A Principal Components Analysis (PCA) was per-
formed to highlight the differences in lipid molecular species displayed by BSF larvae
provided with each group of substrates. A hierarchical cluster analysis was also performed
using the Euclidean distance similarity measure, as well as a Ward’s linkage visualized in a
heatmap and a dendrogram.

3. Results & Discussion
3.1. General Framework

After data categorization by year (Figure 1), it became clear that 2017 was the turning
point in the research field being covered in the present study. With this survey, it was
evidenced that publications addressing the lipid content of H. illucens larvae have grown
exponentially in recent years, showing the timely need for the present review.

To address the different scientific fields covered in the literature retrieved, publications
were grouped by journal (Supporting Information Table S3). Aquaculture, Animals, and
Journal of Insects as Food and Feed were the top three peer-reviewed scientific journals
publishing on H. illucens and its lipid profiles. These findings suggest that the study
of H. illucens larvae as a feed ingredient for aquaculture has gained momentum, with
the research community acknowledging the need to tailor the biochemical profile of this
emerging ingredient for aquafeeds. Modern-day aquafeed formulation is well beyond
the mix of single amounts of each ingredient to fulfil a balanced pool of nutrients to the
target species being cultured. In fact, it rather targets the balanced-dosage of multiple
ingredients, aiming to cover the nutritional needs of a given species at a specific life cycle
stage during production [21]. Hermetia illucens larva is a good candidate as an aquafeed
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ingredient, meeting multiple criteria for such purpose i.e., a suitable biochemical profile,
well-established industrial processing and already having been validated as an ingredient
in different formulations for several species, including marine organisms. Additionally,
the ability of H. illucens larvae to bio-convert wastes and industrial side streams became
a popular feature, namely when advocating circular bioeconomy approaches that have
positive environmental impacts [37,38]. The use of Hermetia larvae for this end allows
to close nutrient cycles, reduce problematic wastes, and give origin to a highly versatile,
nutritious feed substrate that can be produced under controlled conditions and scaled-up
to meet demand [13]. Moreover, the high percentage of crude lipid in the larvae of BSF
led to significant research on methods to attain better extraction yields and an increase in
fat [37,39–43].
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To date, multiple studies have documented the use of different feeding substrates
to produce Hermetia larvae framed within variable goals, from the bioconversion of
wastes [44–48], to the production of biodiesel [37,39–43], or the modulation of the nu-
tritional profile of H. illucens [33,49–51].

It is well documented that H. illucens larva is able to feed on a multitude of sub-
strates, including manure, fish offal [33], brewery and winery by-products [38], restaurant
waste [52], as well as fruits or vegetables [33,38,52,53]. In this survey, cereal, manure,
fish, and seafood were the top three substrates used to feed H. illucens larvae (Figure 2).
These findings highlight that, in recent years, multiple studies have been pursuing the
application of H. illucens larvae as an ingredient in aquafeeds, aiming to enhance its levels
of FA unsaturation and long chain n-3 PUFA.

3.2. Lipid Profile of Hermetia illucens Larvae-From Quantitative to Qualitative Approaches

Initially, insects gained the interest of feed producers due to their protein content [54,55].
Later it was found that insect oils were a valuable resource for animal nutrition, as they
displayed exceptional properties and a lipid content comparable to plant oils [55]. The
amounts of SFA and unsaturated fatty acids displayed by Hermetia larvae are similar to
those of sunflower or cottonseed oils, already used in the feed industry [56]. Moreover,
insect oils were demonstrated to have considerable levels of sterols, a group of biomolecules
known to be highly stable [56]. Additionally, by having a low content in PUFA, insect oils
display high oxidative stability, a feature that is not commonly displayed by other oils [57].
In general, the lipid content of insects does not display long-chain fatty acids longer than
C18:3 [58]. Additionally, their biochemical profile is known to be species-specific and
dependent on life cycle stage, feeding substrate, and several environmental parameters,
such as temperature, humidity, and light [59]. Studies on the lipid fraction of H. illucens
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larvae emerged fostered by the quest to find sustainable alternative sources to produce
biodiesel, which would not compete with other substrates already used as human foods. In
that regard, a large amount of literature described methods and compared the performance
of supplying different feeding substrate aiming to enhance the lipid content of H. illucens
larvae. For instance, Abduh et al. (2017) [60], demonstrated that the oil content of H. illucens
larvae varied from 19 to 28 weight percent (wt%) depending on whether or not rubber
seeds were pre-treated with a mix of microorganisms. In a study by Zheng et al. (2012) [61],
the lipid content of H. illucens larvae reached 39 wt% using rice straw as feeding substrate,
with this displaying a high content of cellulose, hemicellulose, and lignin, a mix of microbes
(Rid-X) and restaurant waste. These studies provided substantial data on the lipid content
of H. illucens larvae fed under different substrates and allowed a better understanding of
qualitative lipid modulation in this insect species. Currently, the use of insects for marine
aquafeeds opened a whole new set of questions related with their lipid profile. The major
concern for marine aquafeeds formulation refers to the quality, rather than the content,
of lipids, more precisely, the molecular species that are available in the lipid pool, namely
PUFA and highly unsaturated fatty acids (HUFA) (FAs with 4 or more double bonds on
their carbon chains). In that regard, St-Hillaire et al. (2007) [33] pioneered the studies that
aimed to modulate the lipid profile of H. illucens larvae for aquafeeds by using trout fish
offal as a substrate. This approach aimed to improve the ratio of ALA, EPA, and DHA in
aquafeeds being supplied to fish. In fact, the amount of n-3 fatty acids went from negligible
to nearly 3% of the total pool of FA present in the biomass of larval Hermetia, even in
short-term tests (24 h). Nevertheless, despite the levels of ALA, EPA, and DHA being below
the needs of most marine species, the results achieved opened good perspectives for future
breakthroughs in this research field.
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3.3. Manipulation of the Lipid Content of Hermetia illucens for Marine Aquafeeds Formulation

The use of insects as an ingredient for aquafeeds and as a potential substitute for
FM is now widely acknowledged [23,62]. The natural amino acid profile and the protein
content of H. illucens larvae is suited for most aquafeeds and continues to gain growing
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attention [63]. In the case of the lipid content, the high levels of SFA, along with the low
content of PUFA, jeopardize the direct use of Hermetia as a reliable substitute for FO when
it comes to marine fish or shrimp. As demonstrated in this review, several studies already
tried, and succeeded, to promote an increase in the PUFA content of Hermetia larvae, namely
on ALA, EPA, and DHA. Recent developments show that feeding substrates that gave
origin to Hermetia larvae with the highest contents in n-3 fatty acids were fish discards
(39.9%), coffee silverskin supplemented with Schyzochytrium sp. (28.5%), and seaweeds
(14.1%). Improved n-3/n-6 ratios were achieved by Ewald et al. (2020) [17] with fish, while
Spranghers et al. (2017) [52] achieved that goal with vegetable waste, and Truzzi et al.
(2020) [50] with coffee silverskin + 5% Isochrysis sp. The content of essential FAs for marine
fish and shrimp (such as EPA, and DHA) in H. illucens larvae was related to the type of
substrates used during larval feeding. In the case of ALA, the most significant levels were
obtained using chicken feed with a supplementation of 4% of flaxseed (9.7%) [64], and
vegetables (5.8%) [53]. Relevant levels of EPA and DHA were recorded in H. illucens larvae
supplied with fish discards (13.6% and 21.4%, respectively) [49], as well as when supplied
with coffee silverskin with Schyzochytrium sp. (11% and 16%, respectively) [50].

For the present review, 148 fatty acid profiles of H. illucens larvae (Table S1) were
allocated to 148 different feeding substrates. The average lipid profile assembled from this
search (Figure 3) displays five major contributors for SFA: lauric acid (C12:0), palmitic acid
(C16:0), myristic acid (C14:0), stearic acid (C18:0), and arachidic acid (C20:0). Lauric acid is
the most abundant fatty acid found in larvae of H. illucens. According to Spranghers et al.
(2017) [52], the abundance of this fatty acid is not conditioned by the stage of development
of H. illucens. When analyzing the data retrieved during the present work (Figure 3 and
Table S1), this dichotomy is clearly associated with the feeding substrate provided. Feed
with a marine origin, such as seaweeds, fish, or mussels present zero or very low values of
this fatty acid. The highest values are found in feeding substrates using fruits, vegetables,
and some cereals.
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of larvae fed with 148 substrates. SFA: Saturated fatty acids, MUFA: Monounsaturated fatty acids,
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In the case of MUFA (Figure 3) it is possible to distinguish four great fatty acids:
vaccenic (C18:1 (n-7)) and oleic acid (C18:1 (n-9)), grouped as C18:1, palmitoleic acid (C16:1
(n-7)) and 9-cis-Hexadecenoic acid (C16:1 (n-9)), grouped as C16:1, erucic acid (C22:1 (n-9))
(C22:1 (n-1)) and nervonic acid (C24:1 (n-9)). Oleic acid is the most common fatty acid in
nature, and it was found in all data analyzed in this survey. Results ranged from negligible
amounts to a maximum of 32% when Hermetia was supplied with cow manure [33,65]. As
part of the fatty acids that constitute fat tissue, palmitoleic acid is widely common and
found in most study cases of this review, with the exception of H. illucens larvae fed with
Philippine tung seed [66], cow manure, cow manure with fish, and pig manure [33,65].
Despite its wide availability, the maximum value registered was 10% [53]. In the case of
9-cis-hexadecenoic acid, the main results exhibiting this fatty acid ranged from 6.1% with
rye meal [56] to 0.006% with cornmeal and fruit and vegetable mixtures (50:50) [67]. With
few examples found in the literature in this scope, erucic acid was found in its n-1 form in
fish discard with 2.4% [49], and in n-9 in layer mash 0.08% and fish offal layer mash with
0.03% [68]. The maximum level was observed in coconut endosperm and soybean crude
residue (3:2) at 7.28% [69]. Nervonic acid was detected on H. illucens larvae in lower levels,
being mostly present when Hermetia larvae were fed fish discards [49] or chicken feed [70].

Further analysis of PUFA results show four fatty acids with a major contribution:
linoleic acid (C18:2 (n-6)), α-linoleic acid (C18:2 (n-3)) (presented as C18:2), DHA (C22:6),
EPA (C20:5), α-linolenic acid (C18:3 (n-3)), and γ-linolenic acid (C18:3 (n-6)). Linoleic acid is
one of the most common PUFAs in insects. The n-6 conformation was found in most studies
retrieved, with only a few exceptions, such as when feeding Hermetia larvae with palm
kernel meal [71], ice cream industrial waste [71], coconut endosperm and soybean crude
residue (3:2) [69], and food waste [72]. The percentages registered ranged from 0.49% [73]
to 52.5% [49]. The n-3 form was found exclusively when using pig manure at 2%, dog food,
and human faeces (4:4:2) [74]. Consistently, DHA was detected in H. illucens larvae reared
on marine sources [17,33,49,50,75–78], with fish discards being the substrate that yielded the
highest levels of this fatty acid (21.4%) [49]. EPA presented the same outline, with marine
sources being the privileged source for this fatty acid [16,17,33,50,68,75–81], again with fish
discards as its major contributor (13.6%) [49]. However, in minor amounts, other substrates
(food waste [17], pig manure [65], soybean crude residues [82] and others [32,51,74,82])
also evidenced this fatty acid in Hermetia larvae. Considering α-linolenic acid (C18:3 (n-3))
and γ-linolenic acid (C18:3 (n-6)), the n-3 form was the dominant conformation detected in
most substrates in levels going from 0.19% [68] up to 9.7% [64]. This fatty acid is of major
relevance due to its ability to be bio-converted into highly unsaturated fatty acids by some
marine and freshwater fish species. The n-6 conformation was also found, although in
lower amounts (0.02% [68] to 2.6% [53]) and in fewer substrates [50,65,68,83].

When analyzing the proportion of the three classes of fatty acids considered in this
work, SFA represented 60% of the of total of fatty acids. This is the most common class
of fatty acids found in insects, with H. illucens larvae being no exception. Major levels of
SFA were found in larvae reared on commercial broiler chicken feed (93.9%) [84], coconut
endosperm (87%) [69], and fruit (86%) [53]. The average values of MUFA retrieved in this
review fluctuated around 20%. The maximum values recorded where those for H. illucens
larvae fed with seaweed and coconut endosperm (34.4%) [69,79], ensile mussels [17], and
livestock manure (32.1%) [65]. PUFA represented nearly 20% of the pool of fatty acids of
H. illucens. Higher levels of these fatty acids were found when using Philippine tung seed
(67.6%) [66], a control diet employed by Barroso et al. (2019) (57.0%), and coffee silverskin
with 25% of Schyzochytrium sp. (37.8%) [17]. It is worth highlighting that C18 chain fatty
acids were the dominant source for these results.

From the principal component analysis, we found five principal components, each one
explaining the following percentage of total variance: PC1 43.5%, PC2 25.9%, PC3 19.3%,
PC4 8.2% and PC5 3.1%. The first two axes together accounted for 69.4% of total variance
(PC1 43.5%; PC2 25.9%) (Figure 4). The variables associated to PC1 and PC2 are substrate
types (manure, cereals, seafood, etc.) vs. fatty acids (SFA, PUFA, ALA, EPA, and DHA).
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PC1 was dominated by ALA, EPA, and DHA, with H. illucens larvae reared on seafood and
seaweeds showing a higher percentage of these FA and being easily differentiated in the
data cloud. PC2 was dominated by the contrast between SFA (negative scores) and PUFA
(positive scores).
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Figure 4. Score plot of Principal Components Analysis (PCA) of fatty acid profiles of Hermetia illucens
larvae fed on different substrates (n = 148) displaying the first two Principal Components (PC) (PC1
and PC2) of the five-axis identified. The variance explained by PC1 and PC2 is shown between
brackets.

The differences among the FA profiles of larvae supplied different feeding substrates
are represented on the heatmap and dendrogram in Figures 5 and S2. These results
emphasized the presence of DHA and EPA in seaweeds and seafood and separate fruit and
manure as substrates with low levels of ALA, EPA, DHA, and PUFA. Furthermore, cereals
and fruits presented the lowest levels of SFA and PUFA, respectively. The dendrogram
isolated two major groups, with seaweeds and seafood being separated from all substrates
surveyed. Moreover, SFA is separated as well from the other four groups, which were
clustered in pairs: DHA with EPA and ALA with PUFA.

The main finding of the present analysis is that H. illucens larvae fed with marine-based
substrates display an improved lipid profile, showing higher levels of EPA, DHA, or PUFA.
Thus, whenever possible, marine-based substrates should be favored when culturing
H. illucens biomass destined to be used for aquafeeds being formulated for marine fish and
shrimp, thus targeting higher levels of nutritionally relevant PUFA and HUFA. Nonetheless,
it is worth highlighting that this dependence on marine-based substrates may by itself
be a potential bottleneck. However, such substrates do not need to undergo any further
processing and may be directly provided to H. illucens to obtain an enriched larva on n-3
PUFA and HUFA. This is not the case when these same marine-based substrates (e.g.,
fish offal) are used to formulate aquafeeds for marine fish/shrimp [21]. This approach
may allow the reduction of production costs of marine aquafeeds, making it possible to
incorporate in a single ingredient balanced protein and lipid contents.
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4. Conclusions and New Research Pathways

There are clear benefits associated with the mass production of insects using ap-
proaches that do not compete with food production for human use, which enhance waste
management and nutrient recycling [85]. However, there are still some technological
constraints concerning the mass-rearing of insects that need to be overcome. Up-scaling
strategies allowing continuous production with consistent quantities and quality need to
be implemented, while reducing production costs and making insect meals more competi-
tive [86]. Nevertheless, the growing development of mass-rearing systems, along with the
forecasted economic crisis and/or the increase of food and feed prices, sets the stage to
further explore creative solutions to these current bottlenecks. An in-depth understanding
of Hermetia illucens larval lipid metabolism and lipidome, if supported by trials testing its
metabolic plasticity and environmental limits, are key to benefit the most from feeding
substrates currently available to mass produce H. illucens. Moreover, biotechnological ap-
proaches should be considered to improve the nutritional bioavailability of substrates and
upraise the yields of dietary incorporation, namely for polyunsaturated fatty acids (PUFA).
Research exploring the potential existence of dormant metabolic pathways on H. illucens
larvae or its associated gut microbiome, that may be triggered to allow the production
of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid
(ALA) precursors must also be pursued. Published results on the modulation of the fatty
acid profile of H. illucens larvae here analyzed are certainly promising but, with a few
exceptions, are still unable to fulfil the nutritional needs of marine fish and shrimp species
currently being farmed. With a biomass rich in essential amino acids and minerals, it is
most certain that in upcoming years Hermetia larvae will become a regular ingredient in
aquafeeds formulations. Its use will certainly increase for premium batches of this ingre-
dient featuring high levels of essential n-3 PUFA and highly unsaturated fatty acids. The
present review aims to inspire researchers to pursue innovative approaches that may allow
the unleashing of the true potential of H. illucens as a key ingredient for the formulation
of marine aquafeeds, supporting a more sustainable aquaculture and contributing to the
harnessing of Blue Foods.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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% of total pool of fatty acids) of Hermetia illucens larvae fed with different substrates retrieved from
the literature surveyed; Table S2: Dataset used on MetaboAnalist to perform the statistical analysis;
Table S3: Top 10 peer-reviewed scientific journals publishing scientific research addressing the fatty
acid profile of Hermetia illucens retrieved from WoS™ and Scopus. (Journals publishing 5 or less
articles on this topic were grouped as Others); Figure S1: Box plots and kernel density plots before
and after normalization. The boxplots show at most 50 features due to space limitations. The density
plots are based on all samples. Data transformation: Log Normalization; Data scaling: Autoscaling;
Figure S2: Hierarchical clustering of substrates shown as dendrogram (distance measures using
Euclidean, and clustering algorithm using Ward’s Distance).
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