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Abstract: The ecological validity of soundscape studies usually rests on the choice of soundscapes
that are representative of the perceptual space under investigation. For example, a soundscape
pleasantness study might investigate locations with soundscapes ranging from “pleasant” to “annoy-
ing”. The choice of soundscapes is typically researcher led, but a participant-led process can reduce
selection bias and improve result reliability. Hence, we propose a robust participant-led method
to pinpoint characteristic soundscapes possessing arbitrary perceptual attributes. We validate our
method by identifying Singaporean soundscapes spanning the perceptual quadrants generated from
the “Pleasantness” and “Eventfulness” axes of the ISO 12913-2 circumplex model of soundscape
perception, as perceived by local experts. From memory and experience, 67 participants first selected
locations corresponding to each perceptual quadrant in each major planning region of Singapore. We
then performed weighted k-means clustering on the selected locations, with weights for each location
derived from previous frequencies and durations spent in each location by each participant. Weights
hence acted as proxies for participant confidence. In total, 62 locations were thereby identified
as suitable locations with characteristic soundscapes for further research utilizing the ISO 12913-2
perceptual quadrants. Audio–visual recordings and acoustic characterization of the soundscapes will
be made in a future study.

Keywords: soundscape; soundscape mapping; soundscape clustering; ecological validity

1. Introduction
1.1. Background and Motivation

The idea of the soundscape approach, as defined in Part 1 of the International Standard
for Soundscapes, ISO 12913-1:2014 [1], marks a paradigm shift from traditional noise control
approaches to perception-driven approaches for planning and designing sustainable urban
acoustic environments. Considering soundscapes as “acoustic environments as perceived
or experienced and/or understood by a person or people, in context” [1], soundscape
studies have typically focused on the ecological validity and generalizability of their results
by studying a range of soundscapes representative of the space of the perceptual attributes
under study [2–4].

However, for an arbitrary perceptual attribute, there may not necessarily exist standard
examples of soundscapes possessing that attribute. Part 3 of the International Standard for
Soundscapes, ISO 12913-3:2019 [5], defines a circumplex model with two orthogonal axes
corresponding to the perception of the “Pleasantness” and “Eventfulness” of a given sound-
scape, but does not provide examples of soundscapes that are quintessentially “pleasant”
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or “eventful”. This is likely because of the need to perceive soundscapes in context—the
perception of a given soundscape may differ from country to country or setting to setting.
As a result, the identification of such soundscapes has often been based on external ex-
pert judgments made by soundscape researchers, or by a researcher-led choice of sets of
environments with a sufficient variety of pre-defined objective characteristics under the
assumption that they are representative of the corresponding perceptual attributes under
study. A brief overview of soundscape studies employing either of these methods is shown
in Table 1.

Table 1. Brief overview of soundscape studies employing researcher-driven choice of study areas.

Study (Year) Area(s) Stimuli
Originated Rationale for Choice Perceptual Attribute(s) under Study

Axelsson et al. (2010) [6] London (UK),
Stockholm (Sweden)

Variety in overall sound
pressure level, types of
sound sources

Agreement with 116 different affective
attributes (for example, “pleasant”
and “calm”)

Axelsson (2015) [7] Sheffield, London,
Brighton (UK)

Variety in types of urban and
peri-urban areas

Agreement with adjectives “pleasant”,
“vibrant”, “eventful”, “chaotic”,
“annoying”, “monotonous”,
“uneventful”, “calm”

Puyana Romero et al.
(2016) [8]

Naples (Italy) Variety in conditions of road
traffic flow

Perceived soundscape quality

Aumond et al. (2017) [9] Paris (France) Variety in types of urban areas Pleasantness

Fan et al. (2017) [10] Mixed (from
Freesound [11])

Variety in types of sound sources Valence, arousal

Puyana Romero et al.
(2019) [12]

Naples (Italy) Variety in types of urban spaces Agreement with adjectives “pleasant”,
“unpleasant”, “monotonous”,
“exciting”, “eventful”, “uneventful”,
“chaotic”, calm”

Masullo et al. (2021) [13] Mixed (from IADS-E
database [14])

Variety in types of urban
sound sources

2 sets of attributes (17 and 12 attributes)
related to emotional salience

Hasegawa and Lau
(2022) [15]

Singapore (Singapore) Presence of common noise
sources and greenery, resident
demographic similarity

Pleasantness, eventfulness, satisfaction

However, a choice of study areas or stimuli, if performed by the same researchers
conducting the study, is at risk of selection and confirmation bias. Preventing investi-
gator bias is crucial in building predictive models generalizable to multiple perceptual
components, and for validation studies (such as the Soundscape Attributes Translation
Project [16]) where a representative set of common stimuli is investigated under different
contexts. This applies even if the external expert-guided decisions indeed span the percep-
tual space under study in post hoc analysis. This argument is supported by findings in
landscape assessments, where researcher-led decisions on landscape quality based on aes-
thetic features have been found to be less reliable than perception-based approaches with
a group of human observers in participatory studies [17]. Since soundscape assessments
share numerous parallels with landscape assessments [18], the potential lack of reliability
conceivably applies to soundscape assessments as well.

Hence, an identification of characteristic soundscapes in local contexts by local experts,
each of whom has experienced those soundscapes before, would arguably be more appro-
priate compared to that performed by soundscape researchers as external experts (possibly)
unfamiliar with the local context [19]. Moreover, a replicable method to summarize the
opinions of a sizeable population of local experts as participants in a participant-led process,
independent of external expert-guided decisions, is desirable to provide sufficient blinding
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in the choice of study areas by soundscape researchers. Therefore, the overarching aim of
this study is to execute such a method by

• crowdsourcing opinions from a large sample of local experts via the administration of
a standardized questionnaire,

• accounting for the reliability of each local expert in the sample via the numerical
weighting of each opinion, and

• summarizing the crowdsourced opinions via an automatic, replicable clustering algorithm,

using regions in Singapore as a case study. In so doing, we hypothesize that our
method will identify locations of characteristic soundscapes in Singapore possessing per-
ceptual attributes of interest to ISO 12913-3:2019, even without using researcher opinions on
what locations may possess such perceptual attributes.

1.2. Organization and Scope

This paper is organized as follows:

• Section 2 provides a brief overview of work related to our study.
• Section 3 describes the study area, the questionnaire used to elucidate locations from

the participants of the study, and details on the weighted k-means clustering method
we used to obtain locations of the characteristic soundscapes from the locations eluci-
dated from the participants.

• Section 4 presents the results of our proposed clustering method.
• Section 5 analyzes the clusters and characteristic soundscapes obtained to validate

the method.
• Section 6 concludes our study and suggests possible directions for future work.

The scope of this work concerns only the identification of soundscapes possessing
arbitrary perceptual attributes and the statistical validation of such an identification method.
Empirical validation of the identified sites via in-situ observations and recordings is not in
the scope of the present study.

2. Related Work

Apart from the studies highlighted in Table 1, an iconic study focusing on the system-
atic identification of characteristic soundscapes with local experts is the Urban Soundscapes
of the World (USotW) study [20], which is part of a larger project that aims to identify
and record soundscapes that are “full of life and exciting”, “chaotic and restless”, “calm
and tranquil”, and “lifeless and boring” in various cities around the world. These are
descriptors located in each of the four quadrants generated by the “Pleasantness” and
“Eventfulness” axes in the ISO 12913-3:2019 circumplex model, as observed in the original
principal components analysis performed by Axelsson et al. [6] on 116 soundscape descrip-
tors. A visual representation of the descriptors with respect to the circumplex model is
shown in Figure 1.

Furthermore, Mediastika et al. [21] identified favorite public places in Indonesia with
local experts who each identified three of their favorite locations and then aggregated
the results by count and ranked them in descending order to identify the top locations as
representative public places with unique sounds. In addition, Jeon et al. [22] proposed a
participatory soundwalk approach with a group of acousticians and architects to identify
positive and negative soundscapes along a designated soundwalk route, and grouped
participants’ chosen locations into 16 positions of interest, each with at least five chosen
locations within a 10 m radius.

However, these studies did not account for possibly varying levels of expertise and
reliability in the participants surveyed. For instance, the original study conducted for the
USotW project [20] performed clustering using the Google Maps Application Programming
Interface (API) with equal weights on all points to obtain the locations with characteristic
soundscapes, and Mediastika et al. [21] assigned exactly one vote for each location identified
by a local expert. Local experts may differ in their levels of expertise, so accounting for this
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in the identification process is necessary to ensure greater reliability in the characteristic
soundscapes subsequently identified. Hence, we propose a modification of weights to
account for participant reliability in Section 3.4.
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Figure 1. ISO 12913-3:2019 circumplex model of soundscape perception with descriptors for each
quadrant drawn from [6].

Density-based clustering methods have also been used to identify tourist landmarks.
For example, Pla-Sacristán et al. [23] proposed the combination of a method they called “K-
DBSCAN” to first identify places of interest, and another method they called “V-DBSCAN”
to perform clustering of points into those places of interest. Their method used global
positioning system (GPS) metadata of pictures (mostly taken by tourists) uploaded to a
public website, but characteristic soundscapes might not necessarily be similar in nature to
tourist landmarks depending on the perceptual attributes under study. For example, tourist
landmarks might not necessarily have soundscapes that are “monotonous”, even though
that is a perceptual attribute of interest in ISO 12913-2:2018 [24]. A more general-purpose
clustering method may thus be necessary (and suffice) for the purpose of identifying
characteristic soundscapes, so we propose a modified k-means clustering algorithm in
Section 3.5.

3. Materials and Methods
3.1. Study Area and Context

For compatibility with the USotW database, we consider a similar collection of four
sets of perceptual attributes for which we aim to identify characteristic soundscapes. These
four sets of attributes are namely “full of life and exciting”, “chaotic and restless”, “calm and
tranquil”, and “lifeless and boring”. These attributes will be for soundscapes as perceived
by local experts in the Singaporean context.

There is no widely-accepted definition of “local expert” in the context of soundscape
research, so in line with the general idea that a “local expert” needs to be familiar with and
live in the area under study [19], for the purposes of this study, we define a “local expert”
to be a person who:

• has resided in Singapore for at least 10 years, or
• is a Singapore Tourism Board (STB)-licensed tourist guide (STB-licensed tourist guides

are required to undergo the training described at https://www.stb.gov.sg/content/
stb/en/assistance-and-licensing/licensing-overview/tourist-guide-licence.html [ac-
cessed on 11 May 2022] before obtaining their license).

Singapore, with a land area of 728 km2, is also much larger than the city centers that
were investigated for the USotW project. The questionnaire must thus be adapted to reduce
selection bias in the characteristic soundscapes that will later be identified by the clustering
method. To do so, we divide Singapore into the six planning regions as defined by the

https://www.stb.gov.sg/content/stb/en/assistance-and-licensing/licensing-overview/tourist-guide-licence.html
https://www.stb.gov.sg/content/stb/en/assistance-and-licensing/licensing-overview/tourist-guide-licence.html
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Urban Redevelopment Authority (URA) (the government agency in charge of land use
planning and conservation in Singapore), administer a separate questionnaire for each
region, and finally aggregate the points to perform the final clustering in Section 3.5. The
planning regions, together with the names of some representative neighborhoods, are
shown in Figure 2. The planning region officially designated as the “Central Area” in
Figure 2 is also colloquially known as the “Central Business District” (CBD) or “CBD Area”,
and will henceforth be referred to as such to prevent confusion with the similarly-named
“Central Region”.
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(URA) of Singapore (adapted from [25]).

3.2. Participants

Participants were recruited via email from a publicly available list of tourist guides
licensed by the Singapore Tourism Board (STB), and via online messaging applications. All
participants were fluent in English and self-reported that they had no history of hearing
loss, nor did they suspect that they had hearing loss. In total, 67 participants signed up for
the study and were remunerated for their time.

After each participant signed up, we asked them if they were an STB-licensed tourist
guide and obtained basic demographic information (age, gender, length of residence
in Singapore, region of main residence) from them. We then administered the 21-item
Weinstein Noise Sensitivity Scale (WNSS-21) [26], a standardized questionnaire to measure
noise sensitivity in individuals. WNSS-21 was scored on a series of 5-point scales, and the
total score for each participant was divided by 21 to obtain their normalized WNSS-21 score.
The normalized WNSS-21 score ranges from 1 to 5, with 1 indicating low noise sensitivity
and 5 indicating high noise sensitivity overall. A summary of the information obtained
from all participants is shown in Figure 3.
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Figure 3. Aggregated demographic information of participants (n = 67) in S5, with the numbers
above the bars in histograms denoting the exact number of participants in that bin: (a) age distribution
(Mean: 45.3, Standard Deviation (SD): 14.8); (b) distribution of length of residence in Singapore (Mean:
43.9, SD: 15.7); (c) whether the participant is an STB-licensed tourist guide; (d) gender distribution;
(e) distribution of normalized WNSS-21 score on a scale of 1 to 5 (Mean: 2.62, SD: 0.50); (f) Distribution
of participants’ main residence by URA planning region, with numbers in each region denoting the
number of participants whose main residence is in that region.

3.3. Questionnaire

For each set of perceptual attributes in the four quadrants of Figure 1 (“full of life
and exciting”, “chaotic and restless”, “calm and tranquil”, and “lifeless and boring”), each
participant was asked to identify one location in each planning region of Singapore (“CBD
Area”, “Central Region”, “East Region”, “North Region”, “North-east Region”, and “West
Region”, as shown in Figure 2) that they thought had a soundscape that best represented
that set of perceptual attributes. This gave a total of 67 × 6 = 402 locations in Singapore
for each set of perceptual attributes, and 402 × 4 = 1608 responses across all four sets of
perceptual attributes. Participants were instructed to identify locations based on prior
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memory and experience, and only to identify locations that they had visited at least once
before. Since the study was conducted amidst measures taken to minimize the spread of
COVID-19, we additionally instructed participants to identify locations based on memory
and experience prior to the implementation of these measures. Since COVID-19 mitigation
measures have altered the perception of in situ urban soundscapes [27], the instruction to
identify locations prior to the implementation of these measures would make the locations
applicable even after they have been lifted.

For each location identified, each participant was also asked to state how many times
they had previously visited the area (or passed by it on foot). Their response to this question
was then coded as a “frequency weight” according to Table 2.

Table 2. Coding table from the number of times visited to frequency weight.

Response (Number of Times Visited) Frequency Weight

1 to 3 1
4 to 6 2
7 to 9 3

10 or more 4

Lastly, for each location identified, each participant was also asked to state the average
duration per visit in minutes. The questionnaire was conducted via an online platform,
and further details about its implementation can be found in Appendix A.

3.4. Weight Assignment Accounting for Reliability

As described in Section 3.3, each identified location was coupled with the frequency
weight and average duration of each visit. Hence, the i-th response to the questionnaire
can be characterized by a tuple (xi, fi, ti), where xi = (ϕi, θi) denotes the coordinates of the
location identified by the participant with ϕi being the latitude and θi being the longitude
in radians, fi being the frequency weight for xi as coded by Table 2, and ti being the average
duration of each visit in minutes.

Since transient sound events significantly affect soundscape perception [28,29], and
the probability of only experiencing transient events at a location increases with a decrease
in time spent at the location, we consider the locations where participants spent less total
time as less reliable for k-means clustering. The lack of reliability in the location can also
be interpreted as a lack of confidence on the part of the participant when identifying
it. To quantify this reliability, we note that the product of the frequency weight and
average duration per visit, fiti, is a proxy measure of the overall time spent at each chosen
location, and the reliability of a chosen location is correlated to the probability of the chosen
location truly possessing the desired perceptual attributes. To transform the frequency–
duration product fiti to a probability value between 0 and 1, we use the sigmoid function
σ(u) = 1

1+e−u . Hence, the reliability measure of the coordinates xi of the chosen location is
represented by assigning xi a weight wi, where

wi = σ( fiti). (1)

Here,

• wi denotes the reliability measure of the coordinates xi of the chosen location,
• σ(·) denotes the sigmoid function,
• fi denotes the frequency weight for xi as coded by Table 2, and
• ti denotes the average duration of each visit to xi in minutes.

As an empirical validation of the reliability of this method, we plot the weights wi for
all locations identified by the participants for each set of perceptual attributes in ascending
order in Figure 4. Since fiti > 0, the minimum weight for any point is 0.5, and we can see
that the weights cover almost the entire range of possible values between 0.5 and 1. In
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addition, the weights for locations identified as “lifeless and boring” tended to be lower
than that for the other three sets of perceptual attributes, as can be seen from the reduced
area under the “lifeless and boring” curve of 0.70 in Figure 4 as compared to 0.91, 0.81, and
0.89 for the areas under the “full of life and exciting”, “chaotic and restless”, and “calm
and tranquil” curves, respectively. This indicates that participants were less confident with
their choice of “lifeless and boring” locations, which agrees with an observation made in
the USotW study [20], whose participants generally found “lifeless and boring” locations
hardest to select.
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Figure 4. Weights used for clustering against the cumulative proportion of responses (and corre-
sponding actual sorted response numbers in increasing order) at locations identified for each set of
perceptual attributes (labeled with area under curve [AUC]).

3.5. Clustering Method

After assigning the weights wi computed via Equation (1) to all locations xi = (ϕi, θi)
represented as latitude-longitude pairs, a weighted k-means clustering was performed on
each of the 402 locations identified by the participants in Singapore for each set of percep-
tual attributes. Consequently, the dataset used for clustering consisted of the following
input variables:

• the latitude of the location ϕi,
• the longitude of the location θi, and
• the weight, wi, associated with the location.

The clustering method was identical for each set of perceptual attributes and followed
the standard k-means clustering method (outlined in Section 3.5.1) with modifications
described in Sections 3.5.2–3.5.4.

3.5.1. Standard k-means Clustering Method

The standard k-means clustering method is an unsupervised learning technique typi-
cally used to group unlabeled data points into clusters such that the within-cluster variance
is minimized [30]. This simultaneously minimizes the overall distance between points
and their closest cluster center (computed as the mean of all points in the cluster), such
that cluster centers effectively represent their clusters. The algorithm used to perform the
standard k-means clustering method iteratively updates the cluster centers and points in
each cluster in an alternating manner, and one possible implementation of it is given as
Algorithm 1. As an example of its application in soundscape analysis, Flowers et al. [31]
used the standard k-means clustering algorithm to cluster soundscape recordings based on
eight acoustic indicators and analyzed the clusters to reveal spatiotemporal correlations
within the clusters.



Sustainability 2022, 14, 7485 9 of 22

Sustainability 2022, 14, 7485 9 of 22 
 

points and their closest cluster center (computed as the mean of all points in the cluster), 
such that cluster centers effectively represent their clusters. The algorithm used to perform 
the standard k-means clustering method iteratively updates the cluster centers and points 
in each cluster in an alternating manner, and one possible implementation of it is given as 
Algorithm 1. As an example of its application in soundscape analysis, Flowers et al. [31] 
used the standard k-means clustering algorithm to cluster soundscape recordings based 
on eight acoustic indicators and analyzed the clusters to reveal spatiotemporal correla-
tions within the clusters. 

Algorithm 1 Standard k-means clustering method 
Inputs:  Set of 𝑛 points 𝑋 = {𝑥 , 𝑥 , … , 𝑥 } to be clustered 

Number of clusters 𝑘 
Outputs: Set of 𝑘 cluster centers 𝐶 = {𝑐 , 𝑐 … , 𝑐 } 

Set of 𝑘  clusters 𝒞 = {𝐶 , 𝐶 , … , 𝐶 } , where 𝐶 ∩ 𝐶 = ∅  for all 𝑖 ≠ 𝑗  and ⋃ 𝐶 = 𝑋 
Initialization: 
  𝐶 ← Random 𝑘-element subset of 𝑋; / /  Each subset chosen with equal probability. 
while not converged do / /  Convergence is reached when 𝒞 remains 

  
  

 
unchanged for 1 iteration of the “while”
loop. 

  for 𝑖 = 1 to 𝑛 do    

    𝐶 ← 𝑥 ∶ argmin ∈ 𝑥 − 𝑐 = 𝑐 ; / /  Assign points to the cluster whose center
they are closest in Euclidean distance. 

  
  𝑐 ← 1|𝐶 | 𝑥{ : ∈ }  ; / / 

 
Update cluster center as mean of all points 
in cluster. 

        

Return: 𝐶, 𝒞 

3.5.2. Modification 1: Haversine Distance Metric 
Instead of the Euclidean distance used in Algorithm 1, we use the haversine distance 

metric to account for the curvature of the Earth, since the haversine distance between any 
two points on a sphere is the shortest distance between them when traveling on its surface. 
Since the points chosen by the participants on the map were given in latitude–longitude 
pairs on the surface of the Earth, we assume a spherical Earth with radius 𝑅 = 6371, in 
kilometers, and compute the haversine distance between any two points with latitude–
longitude pairs 𝑥 = 𝜑 , 𝜃  and 𝑥 = 𝜑 , 𝜃  as 𝑑 𝑥 , 𝑥 = 2𝑅 tan √𝑎√1 − 𝑎 , (2) 

where 𝑎 = sin 𝜑 − 𝜑2 + cos 𝜑 cos 𝜑 sin 𝜃 − 𝜃2 . (3) 

Here, 
• 𝑑 𝑥 , 𝑥  denotes the haversine distance between two points 𝑥 = 𝜑 , 𝜃  and 𝑥 =𝜑 , 𝜃  on a sphere, 
• 𝑅 denotes the sphere radius (with 𝑅 = 6371 [in km] assuming a spherical Earth), 
• 𝜑  denotes the latitude of the point 𝑥  on the sphere, 
• 𝜃  denotes the longitude of the point 𝑥  on the sphere, 
• 𝜑  denotes the latitude of the point 𝑥  on the sphere, and 
• 𝜃  denotes the longitude of the point 𝑥  on the sphere. 

By convention, we also assume 𝜑 , 𝜑 ∈ − ,  and 𝜃 , 𝜃 ∈ −𝜋, 𝜋 . 

3.5.2. Modification 1: Haversine Distance Metric

Instead of the Euclidean distance used in Algorithm 1, we use the haversine distance
metric to account for the curvature of the Earth, since the haversine distance between any
two points on a sphere is the shortest distance between them when traveling on its surface.
Since the points chosen by the participants on the map were given in latitude–longitude
pairs on the surface of the Earth, we assume a spherical Earth with radius R = 6371, in
kilometers, and compute the haversine distance between any two points with latitude–
longitude pairs x1 = (ϕ1, θ1) and x2 = (ϕ2, θ2) as

d(x1, x2) = 2R tan−1
( √

a√
1− a

)
, (2)

where

a = sin2
(

ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
θ2 − θ1

2

)
. (3)

Here,

• d(x1, x2) denotes the haversine distance between two points x1 = (ϕ1, θ1) and
x2 = (ϕ2, θ2) on a sphere,

• R denotes the sphere radius (with R = 6371 [in km] assuming a spherical Earth),
• ϕ1 denotes the latitude of the point x1 on the sphere,
• θ1 denotes the longitude of the point x1 on the sphere,
• ϕ2 denotes the latitude of the point x2 on the sphere, and
• θ2 denotes the longitude of the point x2 on the sphere.

By convention, we also assume ϕ1, ϕ2 ∈
[
−π

2 , π
2
]

and θ1, θ2 ∈ (−π, π].

3.5.3. Modification 2: Cluster Center Initialization with k-Means++

Since the standard k-means algorithm can result in suboptimal solutions upon con-
vergence, Arthur and Vassilvitskii [32] proposed a cluster initialization method known
as “k-means++” that chooses the initial cluster centers one by one, with a point having a
reduced probability of being chosen as a cluster center the nearer it is to existing cluster
centers. The probability reduction is proportional to the squared distance of a point to its
nearest cluster center. This is in contrast to the standard cluster center initialization method



Sustainability 2022, 14, 7485 10 of 22

of picking k points from a uniform distribution over all points. The initialization method is
summarized in Algorithm 2.

Algorithm 2 Cluster center initialization with k-means++ (adapted from [32])

Sustainability 2022, 14, 7485 10 of 22 
 

3.5.3. Modification 2: Cluster Center Initialization with k-means++ 
Since the standard k-means algorithm can result in suboptimal solutions upon 

convergence, Arthur and Vassilvitskii [32] proposed a cluster initialization method 
known as “k-means++” that chooses the initial cluster centers one by one, with a point 
having a reduced probability of being chosen as a cluster center the nearer it is to existing 
cluster centers. The probability reduction is proportional to the squared distance of a point 
to its nearest cluster center. This is in contrast to the standard cluster center initialization 
method of picking 𝑘 points from a uniform distribution over all points. The initialization 
method is summarized in Algorithm 2. 

Algorithm 2 Cluster center initialization with k-means++ (adapted from [32]) 
Inputs: Set of 𝑛 points 𝑋 = {𝑥 , 𝑥 , … , 𝑥 } to be clustered 

Number of clusters 𝑘 
Distance metric 𝑑 ⋅,⋅  

Output: Set of 𝑘 initial cluster centers 𝐶 = {𝑐 , 𝑐 … , 𝑐 } 
Initialization: 
  𝐶 ← ∅ ; / /  Initialize set of cluster centers as empty set. 

  
𝐫 ← ∞, … , ∞ ∈ ℝ  ; / /  𝐫 𝑚  is the distance from the point 𝑥 ∈ 𝑋 to its clos-

est center in 𝐶. 

  
𝐩 ← 1𝑛 , … , 1𝑛 ∈ ℝ  ; / / 

 
𝐩 𝑚  is the probability that the point 𝑥 ∈ 𝑋 is cho-
sen as an initial cluster center in 𝐶. Probabilities are 
initialized uniformly. 

for 𝑖 = 1 to 𝑘 do 

  𝑐 ∼𝐩 𝑋 ; / / 
 
Choose 𝑐  as a random point from 𝑋, where 𝑥  is 
chosen with probability 𝐩 𝑚 . 

  𝐶 ← 𝐶 ∪ {𝑐 } ; / /  Append 𝑐  to the set of cluster centers. 
  for 𝑗 = 𝟏 to 𝑛 do    

    𝐫 𝑗 ← min∈ 𝑑 𝑐, 𝑥  ; / /  Update the distance from each point to its nearest
cluster center in C. 

  for 𝑗 = 1 to 𝑛 do    

    𝐩 𝑗 ← 𝐫 𝑗∑ 𝐫 𝑙  ; / /  Update the new probability for each point using 𝐫. 

        

Return: 𝐶 

Essentially, the k-means++ initialization method spaces out the initial cluster centers 
adaptively across the dataset, thereby improving both convergence speed and the opti-
mality of clusters obtained via k-means clustering. It has also been shown to achieve sim-
ilar improvements in results for any distance metric [33], such as the haversine distance 
metric described in Section 3.5.2. Therefore, we replaced the initialization step of Algo-
rithm 1 (where 𝐶 is assigned as a random k-element subset of 𝑋) with the output of Al-
gorithm 2. Alternative methods to improve the convergence speed and optimality of clus-
ters obtained via k-means clustering exist, such as Meta-Heuristics Tabu Search with 
Adaptive Search Memory (MHTSASM) [34], but require the tuning or setting of additional 
hyperparameters. Therefore, we have opted for k-means++ since it does not rely on any 
hyperparameters beyond the number of clusters k, that is required by default. 

3.5.4. Modification 3: Cluster Center Computation with Weighted Means 
To reflect the reliability of the locations identified by each participant, in each itera-

tion of the k-means clustering algorithm, we computed each cluster center as the weighted 
mean of all points 𝑥  in that cluster, with the weights being the values 𝑤  computed via 
Equation (1). In other words, if we denote with 𝐶  the set of all points in the 𝑖-th cluster, 
then its cluster center 𝑐  is computed as 

Essentially, the k-means++ initialization method spaces out the initial cluster centers
adaptively across the dataset, thereby improving both convergence speed and the optimality
of clusters obtained via k-means clustering. It has also been shown to achieve similar
improvements in results for any distance metric [33], such as the haversine distance metric
described in Section 3.5.2. Therefore, we replaced the initialization step of Algorithm 1
(where C is assigned as a random k-element subset of X) with the output of Algorithm 2.
Alternative methods to improve the convergence speed and optimality of clusters obtained
via k-means clustering exist, such as Meta-Heuristics Tabu Search with Adaptive Search
Memory (MHTSASM) [34], but require the tuning or setting of additional hyperparameters.
Therefore, we have opted for k-means++ since it does not rely on any hyperparameters
beyond the number of clusters k, that is required by default.

3.5.4. Modification 3: Cluster Center Computation with Weighted Means

To reflect the reliability of the locations identified by each participant, in each iteration
of the k-means clustering algorithm, we computed each cluster center as the weighted
mean of all points xi in that cluster, with the weights being the values wi computed via
Equation (1). In other words, if we denote with Ci the set of all points in the i-th cluster,
then its cluster center ci is computed as

ci =
Si
Wi

=
Weighted sum
Sum of weights

, (4)

where
Si = ∑

{j:xj∈Ci}
wjxj, (5)
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and
Wi = ∑

{j:xj∈Ci}
wj. (6)

Here,

• ci denotes the cluster center of the i-th cluster,
• Ci denotes the set of all points in the i-th cluster,
• xj denotes the point with index j,
• wj denotes the weight of the point xj computed via Equation (1), and
•

{
j : xj ∈ Ci

}
denotes the set of indices of all the points in the i-th cluster.

Notice that Equation (4) simplifies to the standard mean if all the weights are equal
(in other words, if wj = 1

|Ci |
for all j as in Algorithm 1). Using the weighted mean in

the computation of cluster centers effectively moves the cluster centers towards points
with higher weights, which are themselves proxies for reliability. The k-means clustering
algorithm is still guaranteed to converge even with the use of the weighted mean because
each weight wi can also be interpreted as a ratio of multiple points located at xi. For
example, if two points x1 and x2 respectively have weights 0.5 and 0.75 in the weighted
mean computation of cluster centers, it would be identical to having 2 points at x1 and
3 points at x2 in the standard mean computation of cluster centers.

4. Results
4.1. Optimal Number of Clusters

For each set of perceptual attributes in the four quadrants of Figure 1, we ran the
weighted k-means clustering algorithm described in Section 3.5 100 times, using different
seeds each time, at values of k ranging from 2 to 20 (inclusive) to determine an optimal
number of clusters for each set of perceptual attributes. Since there were 402 points per set
of perceptual attributes, we did not exceed

√
402 ≈ 20 clusters to ensure that, on average,

the number of points per cluster is at least the same as the number of clusters.
To determine an optimal number of clusters, we used the Dunn index α(C; k), which

depends on the number of clusters k and the set of clusters C = {C1, C2, . . . , Ck}, where Ci
is the set of all points in cluster i. Specifically, the Dunn index for a distance metric d(·, ·) is
defined by

α(C; k) =

min
1≤i<j≤k

[
min

x∈Ci ,y∈Cj
d(x, y)

]

max
1≤i≤k

[
max
x,y∈Ci

d(x, y)
] =

Minimum inter− cluster distance
Maximum intra− cluster distance

. (7)

Here,

• C = {C1, C2, . . . , Ck} denotes the set of clusters,
• k denotes the number of clusters,
• Ci denotes the set of all points in the i-th cluster, and
• d(x, y) denotes the distance between two points x and y.

The Dunn index is a standard measure of cluster separation [35]. It has also been
used in spatiotemporal cluster analysis of urban acoustic environments based on sound
pressure level parameters in Barcelona, Spain [36] and for the clustering and classification
of urban park soundscapes in Seoul, Korea based on acoustic indicators [37]. Furthermore,
the Dunn index takes a value in the range [0, ∞), and has a higher value when clusters are
small (thus decreasing the maximum intra-cluster distance) and far apart (thus increasing
the minimum inter-cluster distance). A higher Dunn index thus indicates a more optimal
clustering, since small and separated clusters are usually desired from clustering methods.

The highest Dunn index obtained from the 100 runs for each value of k ∈ {2, 3, . . . , 20}
and each set of perceptual attributes is shown in Figure 5. From Figure 5, we can also
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see that the highest Dunn index is attained when there are 15 clusters for the attribute
“full of life and exciting”, 14 clusters for the attribute “chaotic and restless”, 15 clusters for
the attribute “calm and tranquil”, and 18 clusters for the attribute “lifeless and boring”.
Therefore, these are the number of characteristic soundscapes to be extracted from the
responses to the questionnaire in Section 3.3 for each set of perceptual attributes.
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Figure 5. Maximum Dunn index values by number of clusters (with optimal number represented by
red circles and dashed lines) for points labeled as (a) full of life and exciting; (b) chaotic and restless;
(c) calm and tranquil; and (d) lifeless and boring.

4.2. Cluster Centers

As mentioned in Section 4.1, we extracted the results of weighted k-means clustering
with 15, 14, 15, and 18 clusters for each of the sets of perceptual attributes “full of life and
exciting”, “chaotic and restless”, “calm and tranquil” and “lifeless and boring”, respectively.
The locations chosen by each participant and the resultant cluster centers obtained from
the weighted k-means clustering algorithm described in Section 3.5 are shown in Figure 6,
superimposed on a map of Singapore.
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Figure 6. Cluster centers (black crosses) and points (marked with a unique color for each cluster),
superimposed on a map of Singapore and representing locations considered by participants to be the
most: (a) full of life and exciting; (b) chaotic and restless; (c) calm and tranquil; or (d) lifeless and
boring. Regions are color-coded in the same manner as in Figure 2.

5. Discussion
5.1. Distribution of Cluster Centers

Given the clusters shown in Figure 6, we can see that each of the six planning regions
of Singapore contain at least one cluster center, which indicates that the clusters have
indeed covered the range of points chosen by the participants well. The distribution of
cluster centers also shows that all six planning regions contain characteristic soundscapes
possessing all four sets of perceptual attributes, albeit in unequal numbers.

From Figure 6, we can additionally observe that the number of cluster centers in the
CBD Area is the least among the six regions (four in total across all four sets of perceptual
attributes). This is likely because it is the smallest planning region in Singapore, thus
leading to many points being close together and being able to be represented well by a
single cluster center. On the other hand, the number of cluster centers in the West Region is
the greatest among the six regions (16 in total across all four sets of perceptual attributes),
because the West Region is the largest planning region in Singapore and requires a greater
number of cluster centers to represent.

The Central, East, and North Regions have 12, 10, and 14 cluster centers across all
four sets of perceptual attributes, but of note is the North-east Region, which only has
6 cluster centers across the four sets of perceptual attributes despite it being roughly the
same size as the Central and East Region. This is possibly due to several clusters having
points that are contained in both the North-east and Central Regions, and the weighted
mean computation caused the cluster centers to be located in the Central Region instead of
the North-east Region. This is especially evident in Figure 6a,b, which respectively have 1
and 2 such clusters whose cluster centers are in the Central Region, but are very close to
the border of the Central and North-east Regions.

Lastly, we can see from Figure 6d that the points identified by the participants to
be “lifeless and boring” are spread out most sparsely among the four sets of perceptual
attributes, followed in order by the points identified to be “calm and tranquil”, “chaotic
and restless”, and “full of life and exciting”. This visual observation is supported by the
fact that participants tended to have lower confidence in their identification of “lifeless and
boring” locations in Figure 4, as well as the Dunn indices computed in Figure 5 for each
of the four sets of perceptual attributes, where the highest Dunn indices for “lifeless and
boring”, “calm and tranquil”, “chaotic and restless”, and “full of life and exciting” are in
increasing order from 0.084, 0.136, 0.144, and 0.181.
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5.2. Characteristic Soundscapes

Given the cluster centers, it remains to choose locations with characteristic soundscapes
in Singapore for each set of perceptual attributes. It may not be realistic to choose the
locations of cluster centers as the exact locations of the characteristic soundscapes, because
the cluster centers may be located sufficiently far away from the locations chosen by the
participants in the Section 3.3 questionnaire to have soundscapes significantly different
from the locations chosen by the participants. As an illustration, suppose a cluster contains
exactly two points located at busy traffic intersections on opposite sides of a park, like that
shown in Figure 7. If both points have exactly the same weights, the cluster center would
be located in the middle of the park, which would most likely have different environmental
and perceptual characteristics from busy traffic intersections.
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Figure 7. Illustration of how the environmental and perceptual characteristics of cluster center
locations may differ from actual locations identified by participants. Here, the actual locations
identified are busy traffic intersections, but the cluster center is in the middle of a park.

In light of this concern, it is preferable to have actual points chosen by the participants
as characteristic soundscapes to prevent an unexpected domain shift as a result of the
identification procedure. Hence, we chose the point closest to each cluster center, in terms
of the haversine distance, as the location with the characteristic soundscape for each cluster.
No weights were applied for this distance computation, since the cluster centers already
reflect the weights of the points in each cluster from the weighted k-means clustering
algorithm. The resultant points chosen via this method are listed in Tables 3–6, with
coordinates and a short textual description of the exact location.

We can see from Table 3 that the characteristic soundscapes considered “full of life
and exciting” consist primarily of shopping malls, bus interchanges, and mass rapid transit
(MRT) train stations. From Table 4, the characteristic soundscapes considered “chaotic
and restless” contain comparatively more wide roads and intersections, whereas from
Table 5, the characteristic soundscapes considered “calm and tranquil” are overwhelmingly
in parks and nature reserves. Lastly, from Table 6, a number of characteristic soundscapes
considered “lifeless and boring” are located along smaller roads, residential areas, and
housing blocks. This shows that there is a reasonably clear distinction in the locations
whose soundscapes evoke the perceptual constructs “full of life and exciting”, “chaotic and
restless”, “calm and tranquil”, and “lifeless and boring” in the participants of this study,
even without the use of any researcher input to the automatic, modified k-means algorithm
used to identify these characteristic soundscapes. Hence, this observation backs our initial
hypothesis in Section 1.1 for our proposed method that the locations have soundscapes
possessing distinct perceptual attributes of interest.

However, this distinction may not be perfect, because there are coordinates sharing
almost identical locations, namely two corresponding to Changi Airport Terminal 1 (A03
and B04) and two corresponding to Holland Village Market and Food Centre (A06 and
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B05). Nonetheless, the exact coordinates in the tables are different, so it is also possible that
the soundscapes at the exact coordinates differ from each other.

Table 3. Details for characteristic soundscapes considered “full of life and exciting”.

ID Region Latitude
(Degrees)

Longitude
(Degrees) Description

A01 CBD 1.291598203 103.8465300 Opposite Clarke Quay Shopping Mall
A02 East 1.354207500 103.9435079 Tampines Bus Interchange
A03 East 1.363875914 103.9914004 Changi Airport Terminal 1
A04 Central 1.263173177 103.8228356 VivoCity Shopping Mall
A05 Central 1.301498905 103.9049564 Parkway Parade Shopping Mall
A06 Central 1.311034361 103.7943141 Holland Village Market & Food Centre
A07 Central 1.350677442 103.8494603 Junction 8 Shopping Mall
A08 North 1.404012379 103.7934915 Singapore Zoo (Ah Meng Restaurant)
A09 North 1.429740500 103.8351859 Yishun MRT Station
A10 North 1.437221700 103.7861714 Woodlands MRT Station

A11 North 1.446914441 103.7301914 Sungei Buloh Wetland Reserve
(Mangrove Boardwalk)

A12 North-east 1.392070753 103.8956615 Compass One Shopping Mall
A13 West 1.333243872 103.7414451 Jurong East MRT Station

A14 West 1.336767900 103.6941672 Jurong West Sports Hall (facing Jurong
West Street 93)

A15 West 1.343433486 103.6351438 Raffles Marina

Table 4. Details for characteristic soundscapes considered “chaotic and restless”.

ID Region Latitude
(Degrees)

Longitude
(Degrees) Description

B01 CBD 1.300102657 103.8459222 Handy Road (Opposite Plaza Singapura
Shopping Mall)

B02 East 1.324737167 103.9306484 Bedok Interchange Hawker Centre
B03 East 1.359156559 103.9407174 Tampines Central 7 (Road)
B04 East 1.364476558 103.9915721 Changi Airport Terminal 1
B05 Central 1.310991457 103.7947432 Holland Village Market & Food Centre
B06 Central 1.335196760 103.8844747 Harrison Industrial Building
B07 Central 1.350930707 103.8480879 Bishan MRT Station
B08 North 1.429664842 103.8341680 S-11 Yishun 744 Hawker Centre
B09 North 1.442881682 103.7756387 Opposite SPC Admiralty (Petrol Station)
B10 North-east 1.391455032 103.8955306 Sengkang Bus Interchange

B11 West 1.333995645 103.6346393 Intersection of Tuas West Drive &
Pioneer Road

B12 West 1.337641500 103.7036367 Intersection of Jurong West Street 63 &
Jurong West Street 64

B13 West 1.334852761 103.7461658 IMM Shopping Mall

B14 West 1.379686712 103.7606068 Intersection of Woodlands Road & Choa
Chu Kang Road
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Table 5. Details for characteristic soundscapes considered “calm and tranquil”.

ID Region Latitude
(Degrees)

Longitude
(Degrees) Description

C01 CBD 1.290393318 103.8510017 National Gallery Singapore (Museum)
C02 East 1.362116882 103.9467685 Tampines Eco Green Park
C03 East 1.388507653 103.9884539 Changi Beach Park
C04 Central 1.301187849 103.9156572 East Coast Park (Area C)
C05 Central 1.320559055 103.8162867 Botanic Gardens Eco Lake
C06 North 1.404355599 103.8036195 Upper Seletar Reservoir

C07 North 1.441122864 103.7228199 Sungei Buloh Wetland Reserve (Buloh
Besar River)

C08 North 1.446485425 103.7805025 Admiralty Park
C09 North 1.451390510 103.8405410 Sembawang Park
C10 North-east 1.374836700 103.8455383 Ang Mo Kio Town Garden West
C11 North-east 1.408367898 103.9072628 Punggol Waterway Park
C12 West 1.334123398 103.7277980 Jurong Lake Gardens
C13 West 1.344436500 103.6339522 Johor Straits Lighthouse
C14 West 1.348941989 103.6876865 NTU Sports and Recreation Centre
C15 West 1.354816300 103.7762985 Bukit Timah Hill Summit

Table 6. Details for characteristic soundscapes considered “lifeless and boring”.

ID Region Latitude
(Degrees)

Longitude
(Degrees) Description

D01 CBD 1.287693895 103.8514652 Asian Civilisations Museum
D02 East 1.321819702 103.9144639 Jalan Senyum (Road)

D03 East 1.342467129 103.9633338 Singapore University of Technology
and Design Staff Housing

D04 East 1.372735405 103.9496974 White Sands Shopping Mall
D05 Central 1.305542629 103.8222091 Napier Road
D06 Central 1.336814235 103.7931607 The Grandstand Shopping Mall
D07 Central 1.344033838 103.8470656 Bishan Harmony Park
D08 North 1.407594732 103.7576143 Mandai Estate
D09 North 1.417440810 103.8332204 Khatib MRT Station
D10 North 1.443074739 103.7904874 Woodlands North Plaza

D11 North 1.448458900 103.8223306 Intersection of Canberra Road and Old
Nelson Road

D12 North-east 1.358085773 103.8887448 Hougang Block 236
(Residential Building)

D13 North-east 1.399313682 103.8852278 Sengkang Riverside Park
D14 West 1.282380986 103.6306377 Tuas South Avenue 7
D15 West 1.321123540 103.7405868 Teban Neighborhood Park
D16 West 1.332750479 103.6394783 Tuas West Road MRT Station
D17 West 1.336054064 103.6840244 Singapore Discovery Centre (Museum)
D18 West 1.391549335 103.6987229 Lim Chu Kang Road

5.3. Limitations

Even though we performed a spatial clustering of points to obtain the characteristic
soundscapes, there is also a need to consider the time of day that the soundscape at that
location exhibits the perceptual attributes specified in the questionnaire, since the sound
source composition of each soundscape may be different at different times of day [38], and
may thus affect the perception. Although there was a part of the questionnaire in Section 3.3
for participants to report reasons for their choice of location and characteristic times on top
of the location of the characteristic soundscapes, not all participants did so. Hence, we were
unable to carry out a spatiotemporal clustering approach (with time as an additional input
to the weighted k-means clustering algorithm on top of the latitude–longitude pairs) in
as rigorous a manner as the purely spatial approach (using only latitude–longitude pairs)
described in Section 3.5.
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Follow-up interviews could be conducted with the participants who chose the locations
of the characteristic soundscapes to elucidate a range of suitable time periods matching the
perceptual attributes under consideration. Alternatively, a separate study with other local
experts could be conducted to identify these characteristic times, given the locations of the
characteristic soundscapes.

In addition, no in situ verification has been carried out at the characteristic sound-
scapes identified yet, since participants answered from memory in the online questionnaire
described in Section 3.3, and we performed the weighted k-means clustering purely based
on the locations provided by the participants. It may not be practical to conduct sound-
walks or record the soundscapes at those locations, and future in situ studies using the
characteristic soundscape locations may need to use the closest feasible location to the
identified cluster centers instead of just the closest location described in Section 5.2.

6. Conclusions and Future Work

In conclusion, we conducted a questionnaire with 67 participants to obtain their opin-
ions on soundscapes in Singapore that are characteristically “full of life and exciting”,
“chaotic and restless”, “calm and tranquil”, and “lifeless and boring”. With the locations
chosen by the participants, we implemented a weighted k-means clustering algorithm
to identify a selection of characteristic soundscapes for each set of perceptual attributes,
with the weights encoding the reliability (in the form of a probability of accurate iden-
tification) of the location. The locations identified to have characteristic soundscapes
were evenly distributed around mainland Singapore and were distinct for different sets of
perceptual attributes.

Since the participants were local experts, the application of the questionnaire served
as a bottom-up approach to site identification for soundscape studies, in contrast to stan-
dard top-down approaches to site identification adopted by soundscape researchers. Our
proposed clustering method was carried out without external input from us as study re-
searchers and did not assume prior knowledge of Singapore, so the method effectively
blinded us against bias in site selection and can also be applied to other countries or regions
in a replicable manner.

Under our proposed method, each location identified to have a characteristic sound-
scape could also be interpreted as a “soundmark”, defined by Schafer as “a community
sound which is unique or possesses qualities which make it specially regarded or noticed by
the people in that community” [39]. Hence, the locations identified in our study (or using
our method) can also inform urban planners about important places whose soundscapes
might be valuable to preserve and conserve when designing or redesigning a given venue
or town [40,41], thereby allowing for better-guided sustainable development strategies
for the venue or town. This is in line with United Nations Sustainable Development Goal
11.3 [42], which aims to “enhance inclusive and sustainable urbanization and capacity for
participatory, integrated and sustainable human settlement planning and management”.

Natural extensions for future work would thus involve the recording of the physi-
cal locations into an audio-visual database similar to the USotW database, with in situ
responses obtained via a standard protocol such as the SSID Protocol outlined by Mitchell
and colleagues [43]. Longitudinal studies observing or recording the soundscapes over
longer periods of time could also be conducted with the installation of wireless acoustic
sensor networks (such as those described in [44–46]) with nodes installed at the identi-
fied locations.

Recording the characteristic soundscapes as audio-visual media furthers the goal
of soundscape conservation and has the twofold effect of allowing faithful reproduction
in laboratory conditions, thereby increasing the ecological validity of results obtained
using said recordings in the local context. The recordings can also serve as an important
reference for urban planners and soundscape researchers when comparing or classifying
other locations that have soundscapes that are similar in nature to, but are not part of, the
representative set.
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Appendix A Questionnaire

The questionnaire consisted of 24 questions, each corresponding to one of the pairwise
combinations of perceptual attributes in the 4 quadrants of the ISO 12913-2 circumplex
model (full of life and exciting, chaotic and restless, calm and tranquil, lifeless and boring)
and 6 major planning regions of Singapore (Central Area (“CBD Area”), Central Region,
East Region, North Region, North-east Region, West Region). Each question consisted of
the following parts:

https://github.com/ntudsp/singapore-soundscape-site-selection-survey
https://www.google.com/maps/d/u/0/edit?mid=16fjoOwG-AnmwhTfc4MR11DrL_6iDL979
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A. Considering public open spaces (e.g., streets, squares, parks, etc.) in the <Plan-
ning Region> of Singapore, where do you experience the soundscape to be most
<Perceptual Attributes>?

B. Coordinates of your chosen location.
C. Please explain and elaborate on your choice of location. For example, you can

indicate the typical time and day of the week, etc., that you find the location to have
a soundscape that is <Perceptual Attributes>.

D. How often do you visit your chosen location or pass by it on foot?
E. How many times have you visited your chosen location or passed by it on foot?
F. On average, how long do you spend at your chosen location or pass by it on foot?

All questionnaires were administered via an online platform. For part A, participants
were given a virtual map where they could drag a marker to their desired location to denote
their response. Participants were advised not to choose a location that they have never
visited or passed by on foot before, and markers could also be placed by entering the names
of locations in a search bar on the map. In addition, there was an internal check to ensure
that all markers were dragged at least once, to ensure that markers were not accidentally
left at their default locations, and participants were also informed of this fact. For reference,
the default marker locations are as shown in Table A1 and are Mass Rapid Transit (MRT)
stations (train stations) located roughly in the center of their corresponding regions.

Table A1. Default marker locations for virtual maps in online questionnaire.

Region Latitude
(Degrees)

Longitude
(Degrees) Description

Central Area (“CBD Area”) 1.2830173 103.8513365 Raffles Place MRT Station
Central Region 1.3199584 103.8259427 Stevens MRT Station
East Region 1.3532359 103.9452235 Tampines MRT Station
North Region 1.4273512 103.7931482 Woodlands South MRT Station
North-east Region 1.3829481 103.8933582 Buangkok MRT Station
West Region 1.3376415 103.6968990 Pioneer MRT Station

For part B, the coordinates of the participants’ chosen locations were automatically
populated by the online questionnaire to match the marker location in part A. The answers
to parts C and D were not used for this study, but may be used for future studies. A
screenshot of a sample page of the online questionnaire is shown in Figure A1.
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