

Article Performance of 45 Non-Linear Models for Determining Critical Period of Weed Control and Acceptable Yield Loss in Soybean Agroforestry Systems

Taufan Alam ^{1,*}, Priyono Suryanto ², Nanang Susyanto ³, Budiastuti Kurniasih ¹, Panjisakti Basunanda ¹, Eka Tarwaca Susila Putra ¹, Dody Kastono ¹, Dyah Weny Respatie ¹, Muhammad Habib Widyawan ¹, Nurmansyah ¹, Andrianto Ansari ¹ and Taryono ^{1,4}

- ¹ Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; tuti_b@ugm.ac.id (B.K.); panjisakti@ugm.ac.id (P.B.); eka.tarwaca.s@ugm.ac.id (E.T.S.P.); dody.kastono@ugm.ac.id (D.K.); wenyrespatie@ugm.ac.id (D.W.R.); habib.widyawan@ugm.ac.id (M.H.W.); nurmansyah@ugm.ac.id (N.); andrianto.ansari@mail.ugm.ac.id (A.A.); tariono60@ugm.ac.id (T.)
- ² Department of Silviculture, Faculty of Forestry, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; psuryanto@ugm.ac.id
- ³ Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; nanang_susyanto@ugm.ac.id
- ⁴ Agrotechnology Innovation Center, Universitas Gadjah Mada, Kalitirto, Berbah, Sleman, Yogyakarta 55573, Indonesia
 - Correspondence: taufan.alam@ugm.ac.id

Abstract: A family of Sigmoidal non-linear models is commonly used to determine the critical period of weed control (CPWC) and acceptable yield loss (AYL) in annual crops. We tried to prove another non-linear model to determine CPWC and AYL in a soybean agroforestry system with *kayu putih*. The three-year experiment (from 2019–2021) was conducted using a randomised complete block design factorial with five blocks as replications. The treatments comprised weedy and weed-free periods. Non-linear models comprised 45 functions. The results show that the Sigmoidal and Dose-Response Curve (DRC) families were the most suitable for estimating CPWC and AYL. The best fitted non-linear model for weedy and weed-free periods in the dry season used the Sigmoidal family consisting of the Weibull and Richards models, while in the wet season the best fit was obtained using the DRC and Sigmoidal families consisting of the DR-Hill and Richards models, respectively. The CPWC of soybean in the dry season for AYL was 5, 10, and 15%, beginning at 20, 22, and 24 days after emergence (DAE) and ended at 56, 54, and 52 DAE. The AYL in the wet season started at 20, 23, and 26 DAE and ended at 59, 53, and 49 DAE.

Keywords: agroforestry; AYL; CPWC; *kayu putih*; non-linear models; soybean; weed-free period; weedy period

1. Introduction

A problem of soybean cultivation with non-tillage systems in rain-fed areas lies in competition for solar radiation, water, and nutrients with weeds [1–4]. In addition, weeds secrete allelopathy in the form of phytotoxins that inhibit plant growth [5,6]. Weeds can reduce soybean productivity, thus minimising the income of farmers [7,8]. Weed control is considered a critical factor in the success of soybean production. Survanto et al. [8] reported that competition between soybeans and weeds could reduce soybean production in agroforestry systems with *kayu putih (Melaleuca cajuputi)* by 80.09%.

The critical period of weed control (CPWC) is defined as the maximum length of time from which the initial weeds appear, which can disturb the plant without causing a significant yield loss [9]. Only some stages of plant growth are susceptible to weed

Citation: Alam, T.; Suryanto, P.; Susyanto, N.; Kurniasih, B.; Basunanda, P.; Putra, E.T.S.; Kastono, D.; Respatie, D.W.; Widyawan, M.H.; N.; et al. Performance of 45 Non-Linear Models for Determining Critical Period of Weed Control and Acceptable Yield Loss in Soybean Agroforestry Systems. *Sustainability* **2022**, *14*, 7636. https://doi.org/ 10.3390/su14137636

Academic Editors: Roberto Mancinelli and Emanuele Radicetti

Received: 22 February 2022 Accepted: 19 June 2022 Published: 23 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). competition [10]. Weeds emerging with the crop should be removed by the V2 or V3 stage of soybean development, particularly when weeds are less than 4 inches tall, to minimise yield loss. Weeds can reduce soybean yield by 1% daily if left uncontrolled after the V2 to V3 stage of soybean growth [11]. The soybean yield in agroforestry with *kayu putih* significantly decreased when the weedy periods were conducted after 14 up to 42 days after emergence (DAE) [8].

Various methods related to integrated weed management have been developed for weed control. One of these methods is the CPWC [12]. Knowledge of the critical timing of weed removal, critical weed-free period, and subsequently the CPWC, could help producers improve their weed management strategies and prevent yield loss due to weed interference whilst reducing the amount of herbicide use.

CPWC has two components: weedy and weed-free curves. The weedy curve is the maximum amount of time that the crop can tolerate early-season weed competition before suffering from an irreversible yield reduction, whilst the weed-free curve is the minimum weed-free period necessary from the time of planting to prevent yield loss [12]. The beginning and end of the CPWC are determined by calculations using a non-linear model equation based on the level of acceptable yield loss (AYL) to predict its beginning and end [12]. CPWC has been widely used as a guideline for weed removal timing of soybean [8,9,13].

Various types of statistical methods, including multiple comparison techniques and non-linear models, have also been widely reported in the literature [9]. Non-linear models are important tools because many crop and soil processes are better represented by non-linear than linear models. The main advantages of non-linear models lie in their parsimony, interpretability, and prediction [14].

Many researchers have widely used non-linear models to estimate CPWC and AYL in various annual crop commodities. Some non-linear models used to determine CPWC include the Sigmoidal family, such as Boltzmann, Exponential, Logistic, and Gompertz models [8,12,15–21]. The development of various types of non-linear models does not dismiss the existence of other non-linear models that are substantially accurate in determining the CPWC of soybean, especially those planted amongst *kayu putih* stands.

We tried to prove another non-linear model to determine CPWC and AYL in soybean agroforestry system with *kayu putih*. The performance of different non-linear regression models on soybean planted for three years (2019–2021) in the dry and wet seasons is compared in this study. The accuracy of the best non-linear models for determining CPWC and AYL in soybean agroforestry systems with *kayu putih* is also investigated.

2. Materials and Methods

2.1. Study Site

The study was conducted in Menggoran Forest Resort, Playen District, Gunungkidul Regency, Special Province of Yogyakarta, Indonesia, in dry and wet seasons from 2019 to 2021. This area is located ± 43 km south-east of Yogyakarta City (Figure 1). The altitude of the command area is ± 150 m above sea level, with an average air temperature of 25.60 °C and relative humidity of 84.20%. The average rainfall is 2005 mm year⁻¹, and the soil type is Lithic Haplusterts [8,22]. The dominant annual weeds in this study consisted of *Spigelia anthelmia, Lindernia crustacea*, and *Eleutheranthera ruderalis*, while the perennial weeds were *Panicum distachyum, Panicum muticum*, and *Leptochloa chinensis*.

Figure 1. The geographical locations of the study area are as follows: latitude $7^{\circ}57'50''$ S and longitude $110^{\circ}29'54''$ E.

2.2. Experimental Design and Crop Management

All the trials were laid out in a randomised complete block design with five blocks as replications. The treatments included the duration of weedy (0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 DAE) and weed-free (0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 DAE) periods in soybean, which comprised 20 levels as illustrated in Table 1. This research was conducted during the dry and wet seasons and was repeated for three years (2019–2021).

Table 1. Weedy and weed-free periods of treatments.

Duration of Weedy and Weed-Free Periods ¹	Remarks
W—0 DAE	Weedy until 70 days after emergence (DAE)
W—7 DAE	Weedy after 7 until 70 DAE
W—14 DAE	Weedy after 14 until 70 DAE
W—21 DAE	Weedy after 21 until 70 DAE
W—28 DAE	Weedy after 28 until 70 DAE
W—35 DAE	Weedy after 35 until 70 DAE
W—42 DAE	Weedy after 42 until 70 DAE
W-49 DAE	Weedy after 49 until 70 DAE
W—56 DAE	Weedy after 56 until 70 DAE
W63 DAE	Weedy after 63 until 70 DAE
WF—7 DAE	Weed-Free after 7 until 70 DAE
WF—14 DAE	Weed-Free after 14 until 70 DAE
WF—21 DAE	Weed-Free after 21 until 70 DAE
WF—28 DAE	Weed-Free after 28 until 70 DAE
WF—35 DAE	Weed-Free after 35 until 70 DAE
WF—42 DAE	Weed-Free after 42 until 70 DAE
WF—49 DAE	Weed-Free after 49 until 70 DAE
WF—56 DAE	Weed-Free after 56 until 70 DAE
WF—63 DAE	Weed-Free after 63 until 70 DAE
WF—0 DAE	Weed-Free until 70 DAE

¹ W: Weedy period; WF: Weed-free period.

The soybean variety used in this study was the Grobogan variety. This variety is commonly used by farmers in Indonesia and has high yields, wide stability and short age [22,23]. The seeds were obtained from the Indonesian Legumes and Tuber Crops Research Institute in Malang Regency, Province of East Java, Indonesia. The experimental plots covered an area of 20 m² (5 m × 4 m) between *kayu putih* stands and a harvest area of

12 m², excluding the border rows. The plant spacing was 40 cm \times 20 cm. Pesticide and fertiliser were not used in this study. Irrigation was not performed because the field used in this study was in a rain-fed area.

2.3. Data Collection

The data collected for each treatment (duration of weed, seasons, and years) was the seed weight per plot in the harvest area (12 m²). Seed weight per plot was weighed using a digital scale, and the moisture content was measured using a moisture tester. Seed weight per plot was converted to seed weight per hectare with a moisture content of 12% using the formula [8,22,23]:

yield
$$(\text{tons ha}^{-1}) = \frac{10,000}{\text{HA}} \times \frac{100 - \text{MC}}{100 - 12} \times \text{Y}$$
 (1)

where yield is the yield of soybean (tons ha^{-1}), HA is harvest area (7 m²), MC is the seed moisture content at harvesting and Y is the seed weight at harvesting.

2.4. Statistical Analysis

The following steps were considered [14]: (i) selection of candidate models; (ii) measures of goodness-of-fit for the best non-linear models; (iii) evaluation of model assumptions, and (iv) model calibration between observed and prediction values.

2.4.1. Selection of Candidate Models

Forty-five non-linear models were used in determining the duration of weedy and weed-free periods in soybean. A general example of the non-linear model is as follows:

$$y = f(x, \theta) + \varepsilon, \tag{2}$$

where y is the response variable, f is the function or model, x is the input, θ denotes the estimated parameters, and ε is an error term [14].

The non-linear models used in this study were Decline, Distribution, Dose–Response Curve, Exponential, Growth, Miscellaneous, Power Law Family, Sigmoidal, and Yield-Spacing families. The non-linear equation models are detailed in Tables 2 and 3.

Decline	Distribution	Dose– Response	Exponential	Growth	Miscellaneous	Power Law Family	Sigmoidal	Yield-Spacing Models
 Exponential Decline 	– Log Normal CDF	– DR-Gamma	– Exponential	 Exponential Association 2 	– Gaussian model	– Geometric	– Gompertz Relations	– Bleasdale
– Harmonic	– Log Normal PDF	– DR-Hill	 Modified Exponential 	 Exponential Association 3 	– Heat Capacity	– Hoerl	- Logistics	– Farazdaghi– Harris
– Hyperbolic Decline	– Normal (Gaussian) CDF	- DR-Logistic	– Natural Logarithm	– Saturation Growth Rate	– Rational model	– Modified Geometric	– Logistics Power	– Reciprocal
	– Normal (Gaussian) PDF	– DR-Probit	– Reciprocal Logarithm		– Sinusoidal	– Modified Hoerl	– Morgan Mercer Flodin (MMF)	– Reciprocal Quadratic
		– DR-Weibull	– Vapour Pressure models		– Steinhart– Hart equation	– Modified Power	– Ratkowsky	
					– Truncated Fourier Series	– Power	– Richards	
					Jenes -	– Root – Shifted Power	– Weibull	

Table 2. Detail family of non-linear models used in this study.

No.	Model	Family	Equation	References
1.	Bleasdale	Yield-Spacing Models	$y = (a + bx)^{\frac{-1}{c}}$	[24]
2.	Exponential	Exponential Models	$y = ae^{bx}$	[24]
3.	Exponential Association 2	Growth Models	$y = a \left(1 - e^{-bx} \right)$	[24]
4.	Exponential Association 3	Growth Models	$y = a(b - e^{-cx})$	[24]
5.	Exponential Decline	Decline Models	$y = q_0 e^{\frac{-x}{a}}$	[25]
6.	Farazdaghi–Harris	Yield-Spacing Models	$y = 1/(a + bx^c)$	[26]
7.	DR-Gamma	Dose-Response Models		[26]
8.	DR-Hill	Dose-Response Models	$y = \alpha + \frac{\theta x^{\eta}}{\kappa^{\eta} + x^{\eta}}$	[26]
9.	DR-Logistic	Dose-Response Models	$y = \gamma + \frac{1 - \gamma}{1 + e^{-\alpha - \beta x}}$	[26]
10.	DR-Probit	Dose-Response Models	$y = \gamma + \frac{1 - \gamma}{2} \left[1 + erf\left(\frac{\alpha + \beta x}{\sqrt{2}}\right) \right]$	[26]
11.	DR-Weibull	Dose-Response Models	$y = \gamma + (1 - \gamma) \left(1 - e^{-\beta x^{\alpha}}\right)$	[26]
12.	Gaussian Model	Miscellaneous	$y = ae^{\frac{-(x - b)^2}{2c^2}}$	[24]
13.	Geometric	Power Law Family	$y = ax^{bx}$	[24]
14.	Gompertz Relation	Sigmoidal Models	$y = ae^{-e^{b - cx}}$	[24]
15.	Harmonic Decline	Decline Models	$y = q_0 / (1 + x/a)$	[24]
16.	Hyperbolic Decline	Decline Models	$y = q_0 (1 + bx/a)^{(-1/b)}$	[24]
17.	Heat Capacity	Miscellaneous	$y = a + bx + c/x^2$	[24]
18.	Hoerl	Power Law Family	$y = ab^{x}x^{c}$	[27]
19.	Logistic	Sigmoidal Models	$y = a/(1 + be^{-cx})$	[24]
20.	Logistic Power	Sigmoidal Models	$y = a/(1 + (x/b)^c)$	[27]
21.	Log Normal CDF	Distribution Models	$y = \frac{1}{2} \operatorname{erfc}\left(-\frac{\ln(x) - \mu}{\sigma\sqrt{2}}\right)$	[27]
22.	Log Normal PDF	Distribution Models	$y = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2}$	[27]
23.	Modified Exponential	Exponential Models	$y = ae^{b/x}$	[24]
24.	Modified Geometric	Power Law Family	$y = ax^{b/x}$	[24]
25.	Modified Hoerl	Power Law Family	$y = ab^{1/x_{x^c}}$	[24]
26.	Modified Power	Power Law Family	$y = ab^x$	[24]
27.	Morgan–Mercer–Flodin (MMF)	Sigmoidal Models	$y = \frac{ab + cx^d}{b + x^d}$	[28]
28.	Natural Logarithm	Exponential Models	y = a + bln(x)	[27]
29.	Normal (Gaussian) CDF	Distribution Models	$y = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x - \pi}{\sigma\sqrt{2}}\right) \right]$	[27]
30.	Normal (Gaussian) PDF	Distribution Models	$y = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	[27]
31.	Power	Power Law Family	$y = ax^b$	[24]
32.	Rational Model	Miscellaneous	$y = \frac{a + bx}{1 + cx + dx^2}$	[24]
33.	Ratkowsky	Sigmoidal Models	$y = a / \left(1 + e^{b - cx} \right)$	[28]
34.	Reciprocal	Yield-Spacing Models	$\mathbf{v} = 1/(\mathbf{a} + \mathbf{b}\mathbf{x})$	[24]

 Table 3. Non-linear equation models used in this study.

No.	Model	Family	Equation	References
35.	Reciprocal Logarithm	Exponential Models	$y = \frac{1}{a + b ln(x)}$	[27]
36.	Reciprocal Quadratic	Yield-Spacing Models	$y = 1/\left(a + bx + cx^2\right)$	[24]
37.	Richards	Sigmoidal Models	$y = \frac{a}{\left(1 + e^{b - cx}\right)^{1/d}}$	[29]
38.	Root	Power Law Family	$y = ab^{\frac{1}{x}}$	[24]
39.	Saturation Growth Rate	Growth Models	y = ax/(b+x)	[24]
40.	Shifted Power	Power Law Family	$y = a(x - b)^c$	[24]
41.	Sinusoidal	Miscellaneous	y = a + bcos(cx + d)	[24]
42.	Steinhart-Hart Equation	Miscellaneous	$y = \frac{1}{a + b \ln(x) + c (\ln(x))^3}$	[24]
43.	Truncated Fourier Series	Miscellaneous	$y = \alpha \cos(x+d) + b \cos(2x+d) + \cos(3x+d)$	[27]
44.	Vapour Pressure Model	Exponential Models	$y = e^{a + b/x + cln(x)}$	[24]
45.	Weibull	Sigmoidal Models	$y = a - be^{-cx^d}$	[30]

Table 3. Cont.

2.4.2. Measures for Goodness-of-Fit

The best amongst non-linear models was evaluated by goodness-of-fit [31]. Different statistical criteria can be used depending on the model structure to find the best model, including highest adjusted coefficient of determination (R_{adj}^2) , lowest root mean square error (RMSE), lowest bias-corrected Akaike information criterion (AIC_C), and lowest Bayesian information criterion (BIC) [31].

 R_{adj}^2 was chosen to compensate for the bias due to the difference in the number of parameters:

$$R_{adj}^{2} = 1 - \frac{n-1}{n-p} * (1-R^{2}),$$
(3)

where n is the sample size, p is the number of parameters, and R^2 is the coefficient of determination [32,33].

$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}},$$
(4)

where $SS_{residual}$ and SS_{total} are the sums of the square for the residual and the total, respectively [32,33].

$$RMSE = \sqrt{\frac{SS_{residual}}{n - p - 1}},$$
(5)

where $SS_{residual}$ is the sum of the square for the residual; n is the number of data points, and p is the number of model parameters [31].

An AIC variant that corrects small sample sizes, namely the bias-corrected AIC (AICc) was employed to ensure fairness.

$$AIC_{C} = AIC + \frac{2p(p+1)}{n-p-1},$$
(6)

where n is the sample size, p is the number of parameters, and AIC is the AIC_C [34].

$$AIC = 2p - 2\ln(L), \tag{7}$$

where p is the number of parameters and ln(L) is the maximum log-likelihood of the estimated model [35].

The BIC, which provides a high penalty on the number of parameters, was also chosen.

$$BIC = p \ln(n) - 2 \ln(L), \qquad (8)$$

where p is the number of parameters; n is the sample size, and L is the maximum likelihood of the estimated model [36].

The values of R_{adj}^2 , RMSE, AICc, and BIC in each non-linear model were averaged over three years based on seasons (dry and wet) and weed durations (weedy and weed-free periods).

2.4.3. Evaluation of Model Assumptions

The next step was to evaluate key model assumptions, normally distributed with a Q–Q plot and homogeneous variance with a residual versus value graph [14,37].

2.4.4. Model Calibration

The model calibration between observed and prediction values during weedy and weed-free periods in soybean used the pooled *T*-test (p < 0.05) [38].

2.4.5. Data Analysis

Data analysis included the following: calculation of 45 non-linear models, evaluation of model assumptions, measures of goodness-of-fit, and model calibration between observed and prediction values (weedy and weed-free periods using PROC NLMIXED and PROC TTEST in SAS 9.4 and RStudio software v. 3.6.3 R Development Core Team, respectively) with the drc and nlstools packages, and CurveExpert Professional software [9,27,39,40].

3. Results

3.1. Choose Candidate Models for Determining CPWC

The predicted data for 45 non-linear models to determine the weedy and weed-free periods in the wet and dry seasons on soybean in an agroforestry system with *kayu putih* are illustrated in Tables 4 and 5. The best fitted models were evaluated on the basis of the highest R_{adj}^2 , lowest RMSE, lowest AICc, and lowest BIC. The evaluation results showed that the Weibull model was the best fitted non-linear model for determining the weedy period in the dry season. The values of R_{adj}^2 , RMSE, AICc, and BIC for the Weibull model were 0.997, 1.732, 15.883, and 19.128, respectively, under the following model parameters: a = 96.221, b = 88.989, $c = 3.202 \times 10^{-3}$, and d = -2.357 (Table 4). Furthermore, the best fitted non-linear model for determining the weed-free period in the dry season was the Richards model with R_{adj}^2 , RMSE, AICc, and BIC values of 0.996, 2.298, 19.944, and 23.708, respectively, under the following model parameters: a = 98.525, b = 17.820, c = 0.312, and d = 10.223 (Table 4).

The Dose–Response Hill (DR-Hill) and Richards models were the best fitted non-linear models for determining weedy and weed-free periods in the wet season. The values of R_{adj}^2 , RMSE, AICc and BIC for the DR-Hill model were 0.997, 1.822, 16.893, and 20.238, respectively, under the following model parameters: $\alpha = 15.082$, $\theta = 72.743$, $\eta = -4.241$, and $\kappa = 37.369$ (Table 5). The values of R_{adj}^2 , RMSE, AICc, and BIC for the Richards model were 0.996, 2.194, 17.464, and 21.061, respectively, under the following model parameters: a = 97.432, b = 420.280, c = 7.172, and d = 233.497 (Table 5).

		1	Goodness-of-Fit				
No.	Models	Periods ¹	\mathbf{R}^2_{adj}	RMSE	AICc	BIC	
1.	Bleasdale	W	0.946	8.143	44.091	52.018	
		VVF	0.952	7.348	42.035	49.529	
2.	Exponential	W	0.933	7.607	40.851	48.092	
		VVF	0.952	6.873	38.819	45.628	
3.	Exponential Association 2	W	0.000	32.789	70.070	83.550	
	1	WF	0.966	5.796	35.411	41.523	
4	Exponential Association 3	W	0.956	7.340	42.015	49.500	
т.	Exponential resociation o	WF	0.974	5.397	35.863	42.065	
5	Exponential Decline	W	0.946	7.617	40.876	48.122	
5.	Exponential Decline	WF	0.952	6.873	38.819	45.628	
(Farazdaghi Harris	W	0.991	3.246	25.697	30.163	
6.	Parazuagin–Plattis	WF	0.957	6.951	40.925	48.180	
-		W	0.986	4.099	30.361	35.585	
7.	DR-Gamma	WF	0.000	33.528	72.395	86.167	
		W	0.000	37.861	77.570	92.334	
8.	DR-Hill	WF	0.991	3.490	29.890	34.974	
		W	0.000	73,558	88,109	104.131	
9.	DR-Logistic	WF	0.000	77.572	89.172	105.216	
		W	0.000	73.558	88.109	104.131	
10.	DR-Probit	WF	0.000	77.572	89.172	105.216	
		W	0.000	73 558	88 109	104 131	
11.	DR-Weibull	WF	0.000	77.572	89.172	105.216	
		147	0.983	4 125	30/187	35 733	
12.	Gaussian	WF	0.987	3.813	28.913	33.832	
		147	0.967	5 973	36.015	/2 280	
13.	Geometric	WF	0.907	7.949	41.731	49.159	
		101	0.000	21 220	71 029	01 600	
14.	Gompertz Relation	WF	0.000	51.526 4 427	71.056	04.090 37 343	
-		147	0.950	10.000	50.502	50.020	
15.	Harmonic Decline	VV WF	0.859	12.326	50.503 48 585	59.836 57.518	
		VV1	0.072	(100	40.000	45.004	
16.	Hyperbolic Decline		0.969	6.192 4.925	38.613	45.394 39.874	
			0.970	H.72 5	01.002		
17.	Heat Capacity	W	0.957	7.270	41.822	49.266	
		VVF	0.964	4.334	31.477	30.041	
18.	Hoerl	W	0.990	3.101	24.783	29.113	
		VVF	0.973	5.483	36.181	42.447	
19.	Logistic	W	0.843	12.427	52.545	62.331	
	0	WF	0.987	3.829	28.999	33.932	
20	Logistic Power	W	0.992	2.710	22.085	26.039	
20.		WF	0.968	5.973	37.890	44.505	
21	Log Normal CDF	W	0.000	68.807	84.895	100.613	
<u></u>		WF	0.000	72.642	85.979	101.690	
22	Log Normal PDF	W	0.000	64.208	83.573	99.144	
		WF	0.000	66.136	84.103	99.595	
	Modified Experimetal	W	0.512	22.901	62.891	74.936	
23.	moumeu Exponential	WF	0.888	10.521	47.336	55.992	

 Table 4. Goodness-of-fit of non-linear models for the weedy and weed-free periods in the dry season.

NT		1	Goodness-of-Fit			
N0.	Models	Periods ¹	R ² _{adj}	RMSE	AICc	BIC
24.	Modified Geometric	W WF	0.640 0.931	19.688 8.268	59.869 42.515	71.269 50.113
25.	Modified Hoerl	W WF	0.972 0.982	5.903 4.560	37.657 32.493	44.246 38.043
26.	Modified Power	W WF	0.946 0.952	7.617 6.873	40.876 38.819	48.122 45.628
27.	MMF	W WF	0.996 0.980	2.097 4.721	19.414 33.189	23.035 38.870
28.	Natural Logarithm	W WF	0.863 0.832	10.852 12.840	47.956 51.320	56.725 60.857
29.	Normal (Gaussian) CDF	W WF	0.000 0.000	68.807 72.701	84.895 85.996	100.613 101.709
30.	Normal (Gaussian) PDF	W WF	0.000 0.000	61.212 65.515	82.556 83.914	98.006 99.383
31.	Power	W WF	0.731 0.968	15.178 5.586	54.666 34.675	64.924 40.642
32.	Rational Model	W WF	0.996 0.995	2.323 2.608	21.748 24.065	25.658 28.268
33.	Ratkowsky	W WF	0.982 0.987	4.223 3.829	30.962 28.999	36.291 33.932
34.	Reciprocal	W WF	0.859 0.873	50.503 11.199	50.503 48.586	59.836 57.519
35.	Reciprocal Logarithm	W WF	0.641 0.958	19.634 6.449	59.814 37.547	71.202 44.092
36.	Reciprocal Quadratic	W WF	0.996 0.995	2.311 2.435	18.904 21.532	22.466 25.443
37.	Richards	W WF	0.995 0.996	2.379 2.298	22.222 19.944	26.194 23.708
38.	Root	W WF	0.512 0.888	22.901 10.521	62.892 47.336	74.937 55.992
39.	Saturation Growth Rate	W WF	0.438 0.966	24.580 5.794	64.308 35.405	76.648 41.516
40.	Shifted Power	W WF	0.918 0.978	10.010 4.925	48.219 34.032	57.046 39.874
41.	Sinusoidal	W WF	0.994 0.992	2.694 3.191	24.711 28.099	29.031 32.885
42.	Steinhart-Hart Equation	W WF	0.957 0.980	7.236 4.721	41.729 33.189	49.154 38.870
43.	Truncated Fourier Series	W WF	0.000	73.623 79.345	90.870 92.368	107.092 108.695
44.	Vapour Pressure Model	W	0.954	6.726 4.560	40.266	47.386 38.043
45.	Weibull	WWF	0.997 0.993	1.732 3.113	15.883 27.601	19.128 32.308

¹ W: Weedy period; WF: Weed-free period.

NT	NC 1.1	1	Goodness-of-Fit			
N0.	Models	Periods ¹	R ² _{adj}	RMSE	AICc	BIC
1	Bleasdale	W	0.931	8.188	44.200	52.151
	DiedSuale	WF	0.961	6.741	40.311	47.435
2	Exponential	W	0.947	7.533	40.653	47.853
۷.	Exponential	WF	0.961	6.305	37.095	43.547
2	Exponential Association 2	W	0.000	29.249	67.786	80.828
3.	Exponential Association 2	WF	0.966	5.858	35.625	41.780
4	Exponential Association 2	W	0.961	6.183	38.585	45.361
4.	Exponential Association 5	WF	0.969	5.970	37.882	44.496
_	Even on the De aline	W	0.931	7.659	40.985	48.254
5.	Exponential Decline	WF	0.961	6.305	37.095	43.547
	Para la l'II mite	W	0.992	2.861	23.171	27.272
6.	Farazdagni–Harris	WF	0.960	6.796	40.475	47.634
		W	0.987	3.526	27.351	32.074
7.	DR-Gamma	WF	0.000	34.020	72.687	86.509
		W	0.997	1.822	16.893	20.238
8.	DR-Hill	WF	0.993	3.115	27.618	32.328
		W	0.000	69.330	86.925	102.844
9.	DR-Logistic	WF	0.000	75.296	88.576	104.562
		W	0.000	69.330	86.925	102.844
10.	DR-Probit	WF	0.000	75.296	88.576	104.562
		W	0.000	69.330	86.925	102.844
11.	DR-Weibull	WF	0.000	75.296	88.576	104.562
		W	0.981	4.790	33.478	39.261
12.	Gaussian	WF	0.987	29.496	29.496	34.513
		W	0.956	6.119	36.498	42.858
13.	Geometric	WF	0.947	7.319	40.079	47.154
		W	0.000	35.125	73.326	87.396
14.	Gompertz Relation	WF	0.983	4.423	31.885	37.323
		W	0.842	11.615	49.314	58.383
15.	Harmonic Decline	WF	0.883	10.894	48.033	56.844
		W	0.965	5.845	37.458	44.007
16.	Hyperbolic Decline	WF	0.980	4.810	33.563	39.315
		W	0.965	5.861	37.515	44.076
17.	Heat Capacity	WF	0.983	4.384	31.705	37.110
		W	0.992	3.116	24.877	29.221
18.	Hoerl	WF	0.975	5.403	35.888	42.095
	T •	W	0.859	13.186	53.731	63.781
19.	Logistic	WF	0.961	6.740	40.309	47.433
	Letter D	W	0.992	3.037	24.363	28.632
20.	Logistic Power	WF	0.966	6.242	38.772	45.571
	L.N. LODE	W	0.000	64.852	83.711	99.298
21.	Log Normal CDF	WF	0.000	70.469	85.372	101.014
	L. N. DDF	W	0.000	58.588	81.680	97.021
22.	Log Normal PDF	WF	0.000	63.230	83.204	98.586
		W	0.884	10.860	47.971	56.744
23.	Modified Exponential	WF	0.888	10.661	47.600	56.315

 Table 5. Goodness-of-fit of non-linear models for the weedy and weed-free periods in the wet season.

No. Models Periods 1 R_{def}^2 RMSE AICc BIC 24. Modified Geometric W 0.608 18.314 58.421 69.506 25. Modified Hoerl W 0.952 6.845 40.618 47.811 26. Modified Power W 0.961 6.305 37.095 43.547 27. MMF W 0.996 2.206 21.519 25.397 28. Natural Logarithm W 0.996 2.236 21.519 25.391 29. Normal (Gaussian) CDF W 0.000 64.852 83.711 99.298 30. Normal (Gaussian) PDF W 0.000 65.807 81.617 96.950 31. Power WF 0.966 5.838 33.925 38.938 32. Rational Model W 0.9760 16.086 55.827 66.342 33. Ratkowsky W 0.982 4.725 33.205 38.938 <t< th=""><th>NT</th><th></th><th> 1</th><th colspan="2">Goodness-of-Fit</th><th></th></t<>	N T		1	Goodness-of-Fit			
24. Modified Geometric W WF 0.608 0.927 18.314 8.618 58.421 43.346 69.506 51.125 25. Modified Hoerl W WF 0.983 4.379 31.684 37.085 26. Modified Power W WF 0.991 7.659 40.985 48.254 27. MMF W WF 0.996 2.296 21.519 25.349 28. Natural Logarithm W WF 0.882 10.797 47.854 56.601 29. Normal (Gaussian) CDF W WF 0.000 64.852 83.711 99.298 30. Normal (Gaussian) PDF W WF 0.000 55.407 81.617 96.590 31. Power W WF 0.966 5.838 35.558 41.699 32. Rational Model W WF 0.966 5.838 35.558 41.699 33. Ratkowsky W WF 0.987 3.824 28.973 33.902 34. Reciprocal Logarithm W WF 0.996 2.194	N0.	Models	Periods ¹	R ² _{adj}	RMSE	AICc	BIC
25. Modified Hoerl W WF 0.952 0.983 6.845 4.379 40.618 31.684 47.811 37.085 26. Modified Power W WF 0.931 7.659 40.985 40.985 43.547 27. MMF W WF 0.996 2.296 5.410 21.519 33.656 25.399 45.431 28. Natural Logarithm W WF 0.892 10.797 47.854 45.601 5.292 29. Normal (Gaussian) CDF W WF 0.000 58.407 6.5701 83.711 89.927 99.248 30. Normal (Gaussian) PDF W WF 0.000 58.407 6.5701 83.971 99.444 31. Power W WF 0.766 16.086 5.883 55.827 3.223 66.342 33. Rational Model W WF 0.996 2.453 3.223 22.174 25.6894 34. Reciprocal W WF 0.887 13.654 49.314 3.56.844 35.841 35. Reciprocal Logarithm W WF 0.620 0.620 18.032 3.2051 58.112 3.902 69.129 3.3015 34. Reciprocal Logari	24.	Modified Geometric	W WF	0.608 0.927	18.314 8.618	58.421 43.346	69.506 51.125
26. Modified Power W WF 0.931 0.961 7.659 6.305 48.254 37.095 43.547 27. MMF WF 0.996 2.296 21.519 38.656 25.399 45.410 28. Natural Logarithm W WF 0.808 13.928 52.947 62.841 29. Normal (Gaussian) CDF WF 0.000 64.852 83.710 101.045 30. Normal (Gaussian) PDF WF 0.000 58.407 83.971 99.298 31. Power W 0.000 58.407 83.971 99.447 33. Rational Model WF 0.906 16.086 55.827 66.342 33. Ratkowsky W 0.996 2.453 22.893 33.905 34. Reciprocal WF 0.987 3.824 28.973 33.905 35.55 Reciprocal Logarithm W 0.987 3.824 28.973 33.905 36. Reciprocal Quadratic WF 0.961 6.304 37	25.	Modified Hoerl	W WF	0.952 0.983	6.845 4.379	40.618 31.684	47.811 37.085
27. MMF W WF 0.996 0.978 2.296 5.410 21.519 38.656 25.947 45.431 28. Natural Logarithm W WF 0.802 10.797 47.854 56.601 29. Normal (Gaussian) CDF W WF 0.000 64.852 83.711 99.298 30. Normal (Gaussian) PDF W WF 0.000 58.407 81.617 96.950 31. Power W WF 0.766 16.086 55.827 66.432 33. Rational Model W WF 0.966 2.453 22.839 26.894 33. Ratkowsky W WF 0.982 4.725 33.902 38.902 34. Reciprocal W WF 0.982 10.634 56.841 35. Reciprocal Logarithm W WF 0.961 6.304 37.091 43.542 36. Reciprocal Quadratic W WF 0.996 2.174 21.661 47.402 37.0 Richards W WF 0.997 2.125 19.971	26.	Modified Power	W WF	0.931 0.961	7.659 6.305	40.985 37.095	48.254 43.547
28. Natural Logarithm W WF 0.892 10.797 47.854 56.601 29. Normal (Gaussian) CDF W WF 0.000 64.852 83.711 99.298 30. Normal (Gaussian) PDF W WF 0.000 58.407 81.617 99.447 31. Power W WF 0.000 55.837 26.342 32. Rational Model W WF 0.996 2.453 22.839 25.681 33. Ratkowsky W WF 0.996 2.453 22.839 25.681 33. Ratkowsky W WF 0.996 2.453 22.8973 33.902 34. Reciprocal W WF 0.982 4.725 33.205 38.938 35. Reciprocal Logarithm W WF 0.983 10.894 48.033 56.844 36. Reciprocal Quadratic W WF 0.996 2.194 10.616 12.99 37. Richards W WF 0.997 <	27.	MMF	W WF	0.996 0.978	2.296 5.410	21.519 38.656	25.399 45.431
29. Normal (Gaussian) CDF W WF 0.000 0.000 64.852 70.567 83.711 85.400 99.298 101.045 30. Normal (Gaussian) PDF W WF 0.000 65.701 83.971 99.447 31. Power W WF 0.966 5.838 35.558 41.699 32. Rational Model W WF 0.996 2.453 22.839 26.894 33. Ratkowsky W WF 0.996 2.453 22.839 26.894 34. Reciprocal W WF 0.982 4.725 33.205 38.938 35. Reciprocal Logarithm W WF 0.883 10.694 48.033 56.844 36. Reciprocal Quadratic W WF 0.993 2.573 21.051 24.871 37. Richards W WF 0.996 2.194 20.608 24.430 39. Saturation Growth Rate W WF 0.996 2.194 19.91 23.658 41. Sinusoidal W WF 0.980 4.811 <td>28.</td> <td>Natural Logarithm</td> <td>W WF</td> <td>0.892 0.808</td> <td>10.797 13.928</td> <td>47.854 52.947</td> <td>56.601 62.841</td>	28.	Natural Logarithm	W WF	0.892 0.808	10.797 13.928	47.854 52.947	56.601 62.841
30. Normal (Gaussian) PDF W WF 0.000 0.000 58.407 65.701 $81.61783.971 99.44799.447 31. Power WWF 0.760 16.086 55.8275.838 66.34235.558 41.699 32. Rational Model WWF 0.996 2.3232.323 21.748 25.681 33. Ratkowsky WWF 0.982 4.7253.824 28.973 33.902 34. Reciprocal WWF 0.883 10.894 48.033 56.844 35. Reciprocal LogarithmWF W0.961 6.304 37.091 43.542 36. Reciprocal QuadraticWF W0.996 2.194 21.603 61.219 72.909 37. Richards WWF 0.996 2.194 17.644 21.061 38. Root WWF 0.986 2.194 17.464 21.061 38. Root WWF 0.986 3.847 35.577 41.746 40. Sh$	29.	Normal (Gaussian) CDF	W WF	0.000 0.000	64.852 70.567	83.711 85.400	99.298 101.045
31. Power W WF 0.760 0.966 16.086 5.838 55.827 35.558 66.342 41.699 32. Rational Model W WF 0.996 2.453 22.839 26.894 33. Ratkowsky W WF 0.996 2.323 21.748 25.681 33. Ratkowsky W WF 0.987 3.824 28.973 33.902 34. Reciprocal W WF 0.842 11.615 49.314 58.83 35. Reciprocal Logarithm W WF 0.961 6.304 37.091 43.542 36. Reciprocal Quadratic W WF 0.996 2.194 20.608 24.430 37. Richards W WF 0.996 2.194 20.608 24.430 38. Root W WF 0.888 10.661 47.600 56.315 39. Saturation Growth Rate W WF 0.996 5.847 35.597 41.746 40. Shifted Power W WF 0.980 4.810 33.563	30.	Normal (Gaussian) PDF	W WF	0.000 0.000	58.407 65.701	81.617 83.971	96.950 99.447
32. Rational Model W WF 0.996 2.453 2.323 22.839 21.748 26.894 25.681 33. Ratkowsky W WF 0.982 0.987 4.725 3.824 33.205 28.973 38.938 33.902 34. Reciprocal W WF 0.882 0.883 11.615 0.883 49.314 48.033 56.844 35. Reciprocal Logarithm W WF 0.620 0.961 18.032 6.304 58.112 37.091 69.129 43.542 36. Reciprocal Quadratic W WF 0.993 0.996 2.573 2.194 21.051 20.608 24.871 24.430 37. Richards W WF 0.996 0.996 2.194 20.608 24.430 38. Root W WF 0.997 0.996 2.194 17.464 21.061 39. Saturation Growth Rate W WF 0.961 5.847 0.980 35.597 74.402 40. Shifted Power W WF 0.989 0.993 3.960 3.0819 32.415 3.863 38.003 3.0819 41. Sinusoidal W WF 0.939 0.980 7.744 43.087 3.0819 3.615	31.	Power	W WF	0.760 0.966	16.086 5.838	55.827 35.558	66.342 41.699
33.RatkowskyW WF 0.982 $0.9874.7253.82433.20528.97338.93833.90234.ReciprocalWWF0.8420.88311.61510.89449.31448.03358.44435.Reciprocal LogarithmWWF0.6200.96118.0326.30458.11237.09169.12943.54236.Reciprocal QuadraticWWF0.9930.9962.5732.19421.05120.60824.87124.43037.RichardsWWF0.9970.9962.1942.19417.46421.06121.06121.9438.RootWWF0.9960.88861.21910.66172.90947.60039.Saturation Growth RateWWF0.9010.9809.8424.81047.88233.56356.33539.31541.SinusoidalWWF0.9930.9933.0603.081927.40332.08042.Steinhart–Hart EquationWWF0.9930.9933.0603.081927.4033.081932.41538.0033.081943.Truncated Fourier SeriesWWF0.0000.9984.37743.8103.341139.13443.Truncated Fourier SeriesWWF0.9970.9984.3794.37931.6823.081945.WeibullWWF0.9980.9984.3793.168237.08345.WeibullWWF0.9980.9981.8$	32.	Rational Model	W WF	0.996 0.996	2.453 2.323	22.839 21.748	26.894 25.681
34. Reciprocal W WF 0.842 0.883 11.615 10.894 49.314 48.033 58.383 56.844 35. Reciprocal Logarithm W WF 0.620 0.961 18.032 6.304 58.112 37.091 69.129 43.542 36. Reciprocal Quadratic W WF 0.996 0.996 2.194 2.194 20.608 24.430 37. Richards W WF 0.996 0.996 2.194 17.464 17.464 21.061 38. Root W WF 0.481 0.996 21.063 2.194 61.219 17.464 72.909 2.909 39. Saturation Growth Rate W WF 0.481 0.966 22.400 5.847 62.450 35.597 74.402 41.746 40. Shifted Power W WF 0.989 0.980 3.060 4.810 33.563 39.315 39.315 41. Sinusoidal W WF 0.939 0.989 7.744 3.061 30.031 32.080 42. Steinhart–Hart Equation W WF 0.939 0.980 7.744 4.774 33.411 39.134 43. Truncated Fourier Series W WF 0.000 0.980 6.056 4.38.169 <td< td=""><td>33.</td><td>Ratkowsky</td><td>W WF</td><td>0.982 0.987</td><td>4.725 3.824</td><td>33.205 28.973</td><td>38.938 33.902</td></td<>	33.	Ratkowsky	W WF	0.982 0.987	4.725 3.824	33.205 28.973	38.938 33.902
35.Reciprocal LogarithmW WF 0.620 0.961 18.032 6.304 58.112 37.091 69.129 43.542 36.Reciprocal QuadraticW WF 0.993 0.996 2.573 2.194 21.051 20.608 24.430 37.RichardsW WF 0.997 0.996 2.194 2.194 20.608 24.430 37.RichardsW WF 0.996 2.194 21.063 17.464 21.061 38.RootW WF 0.481 0.888 21.063 10.661 47.600 47.600 56.315 39.Saturation Growth RateW WF 0.966 0.986 5.847 35.597 74.402 41.746 40.Shifted PowerW WF 0.901 0.980 9.842 4.810 47.882 33.563 56.635 39.315 41.SinusoidalW WF 0.993 0.993 3.0819 27.403 32.080 42.Steinhart–Hart EquationW WF 0.939 0.980 4.774 43.087 33.411 50.799 39.134 43.Truncated Fourier SeriesW WF 0.000 0.980 69.928 4.379 89.841 105.995 107.926 44.Vapour Pressure ModelW WF 0.970 0.983 6.056 4.379 38.169 4.3661 45.WeibullW WF 0.998 0.998 1.839 17.073 20.436	34.	Reciprocal	W WF	0.842 0.883	11.615 10.894	49.314 48.033	58.383 56.844
36.Reciprocal QuadraticW WF 0.993 0.996 2.573 2.194 21.051 20.608 24.871 24.430 37.RichardsW WF 0.997 0.996 2.194 20.608 21.94 24.430 38.RootW WF 0.996 0.888 2.194 17.464 21.061 21.061 38.RootW WF 0.481 0.888 21.063 0.661 61.219 47.600 72.909 	35.	Reciprocal Logarithm	W WF	0.620 0.961	18.032 6.304	58.112 37.091	69.129 43.542
37.Richards W_{WF} 0.997 0.996 2.125 2.194 19.971 17.464 23.658 21.061 38.Root W_{WF} 0.481 0.888 21.063 10.661 61.219 47.600 72.909 56.315 39.Saturation Growth Rate W_{WF} 0.413 0.966 22.400 5.847 62.450 35.597 74.402 41.746 40.Shifted Power W_{WF} 0.966 5.847 33.563 39.315 41.Sinusoidal W_{WF} 0.980 4.810 33.663 32.415 38.003 	36.	Reciprocal Quadratic	W WF	0.993 0.996	2.573 2.194	21.051 20.608	24.871 24.430
38.RootW WF 0.481 0.888 21.063 10.661 61.219 47.600 72.909 56.315 39.Saturation Growth RateW WF 0.413 0.966 22.400 5.847 62.450 35.597 74.402 41.746 40.Shifted PowerW WF 0.966 5.847 35.597 41.746 41.SinusoidalW WF 0.980 4.810 3.0819 32.415 27.403 38.003 	37.	Richards	W WF	0.997 0.996	2.125 2.194	19.971 17.464	23.658 21.061
39. Saturation Growth Rate W WF 0.413 0.966 22.400 5.847 62.450 35.597 74.402 41.746 40. Shifted Power W WF 0.901 9.842 4.810 47.882 33.563 56.635 39.315 41. Sinusoidal W WF 0.980 4.810 33.563 39.315 41. Sinusoidal W WF 0.989 3.960 3.0819 32.415 38.003 32.080 42. Steinhart-Hart Equation W WF 0.939 7.744 43.087 43.087 	38.	Root	W WF	0.481 0.888	21.063 10.661	61.219 47.600	72.909 56.315
40.Shifted PowerW WF 0.901 9.842 47.882 56.635 41.SinusoidalW WF 0.980 4.810 33.563 39.315 41.SinusoidalW WF 0.993 3.960 32.415 38.003 42.Steinhart-Hart EquationW WF 0.939 7.744 43.087 50.799 43.Truncated Fourier SeriesW WF 0.000 69.928 89.841 105.995 44.Vapour Pressure ModelW WF 0.970 6.056 38.169 44.861 45.WeibullWF 0.998 1.839 17.073 20.436	39.	Saturation Growth Rate	W WF	0.413 0.966	22.400 5.847	62.450 35.597	74.402 41.746
41. Sinusoidal W 0.989 3.960 32.415 38.003 42. Steinhart-Hart Equation W 0.939 7.744 43.087 50.799 43. Truncated Fourier Series W 0.000 69.928 89.841 105.995 44. Vapour Pressure Model W 0.970 6.056 38.169 44.861 45. Weibull W 0.998 1.839 17.073 20.436	40.	Shifted Power	W WF	0.901 0.980	9.842 4.810	47.882 33.563	56.635 39.315
42. Steinhart–Hart Equation W 0.939 7.744 43.087 50.799 43. Truncated Fourier Series W 0.900 69.928 89.841 105.995 44. Vapour Pressure Model W 0.970 6.056 38.169 44.861 45. Weibull W 0.998 1.839 17.073 20.436	41.	Sinusoidal	W WF	0.989 0.993	3.960 3.0819	32.415 27.403	38.003 32.080
43. Truncated Fourier Series W 0.000 69.928 89.841 105.995 44. Vapour Pressure Model W 0.970 6.056 38.169 44.861 45. Weibull W 0.998 1.839 17.073 20.436	42.	Steinhart-Hart Equation	W WF	0.939 0.980	7.744 4.774	43.087 33.411	50.799 39.134
44. Vapour Pressure Model W 0.970 6.056 38.169 44.861 45. Weibull W 0.998 1.839 17.073 20.436	43.	Truncated Fourier Series	W WF	0.000	69.928 76.577	89.841 91.658	105.995 107.926
45. Weibull WE 0.004 0.0072 25.140 20.436	44.	Vapour Pressure Model	W WF	0.970	6.056 4.379	38.169 31.682	44.861 37.083
WF 0.994 0.9972 25.140 29.485	45.	Weibull	W WF	0.998 0.994	1.839 0.9972	17.073 25.140	20.436 29.485

¹ W: Weedy period; WF: Weed-free period.

3.2. Evaluation of Model Assumptions

The best non-linear model chosen to determine CPWC and AYL must fulfil normal distribution and homogeneous variance assumptions. The analysis results of the Q–Q plot graph show that all selected non-linear models had normally distributed data (Figure 2A–D). Analysis of the homogeneous variance using a residual versus value graph revealed that all selected non-linear models had homogeneous variance (Figure 3A–D). The results of the assumption test demonstrate that the selected non-linear model candidate fulfilled all assumptions and can thus be used to determine CPWC and AYL.

Figure 2. Q–Q plot to evaluate the assumption of normally distributed variance. (**A**) Weedy period in the dry season using the Weibull Model. (**B**) Weed-free period in the dry season using the Richards model. (**C**) Weedy period in the wet season using the DR-Hill model. (**D**) Weed-free period in the wet season using Richards model.

3.3. Model Calibration

Comparing the observed versus predicted values in the weedy and weed-free periods in the dry and wet seasons used the pooled *T*-test (t < 0.05). The observed and predicted values using the Weibull model showed no significant difference ($t < 0.998^{ns}$) based on the pooled T-test in the weedy period (Figure 4A). The same result was found in the weedfree period with the predicted value of the Richards model, and no significant difference ($t < 0.999^{ns}$) was observed (Figure 4B). A similar trend was also obtained in the wet season between the observed versus predicted values in the weedy period (DR-Hill model) and weed-free period (Richards model), which revealed no significant difference ($t < 0.999^{ns}$ and $t < 0.999^{ns}$) (Figure 4C,D). Overall, the four selected non-linear models satisfy the aforementioned assumptions and are feasible to use.

Figure 3. Residual versus value graph to evaluate the assumption of homogeneous variance. (**A**) Weedy period in the dry season using the Weibull model. (**B**) Weed-free period in the dry season using the Richards model. (**C**) Weedy period in the wet season using the DR-Hill model. (**D**) Weed-free period in the wet season using the Richards model.

3.4. Predicted AYL Based on the Best Fitted Model

Weed control throughout the season (dry and wet) demonstrated yield loss below 5% AYL. The CPWC of soybean in the dry season for AYL was 5, 10, and 15%, which began at 20, 22, and 24 days after emergence (DAE), respectively, and ended at 56, 54, and 52 DAE (Figure 5 and Table 6). The AYL in the wet season began at 20, 23, and 26 DAE and ended at 59, 53, and 49 DAE (Figure 6 and Table 6).

	Dry Sea	ason	Wet Sea	ason
AYL (%)	Beginning	End	Beginning	End
5	20	56	20	59
10	22	54	23	53
15	24	52	26	49

Table 6. Critical period of weed control (CPWC) in soybean yield for acceptable yield loss (AYL) based on days after emergence (DAE).

Figure 4. Comparison of observed versus predicted values of relative yield (% of weed-free) of soybean in agroforestry system with *kayu putih.* (**A**) Weedy period in the dry season using the Weibull model. (**B**) Weed-free period in the dry season using the Richards model. (**C**) Weedy period in the wet season using the DR-Hill model. (**D**) Weed-free period in the wet season using the Richards model.

Figure 5. Relative yield (% of weed-free) of soybean in agroforestry system with *kayu putih* as influenced by increasing weedy and weed-free periods (expressed in DAE) in dry season. The weedy period used the Weibull model, whilst the weed-free period used the Richards model.

Figure 6. Relative yield (% of weed-free) of soybean in agroforestry system with *kayu putih* as influenced by increasing weedy and weed-free periods (expressed in DAE) in wet season. The weedy period used the Dose–Response Hill (DR-Hill) model, whilst the weed-free period used the Richards model.

4. Discussion

The advantage of using a non-linear regression model lies in its stronger prediction compared to polynomials, especially outside the observed data range (extrapolation) [14]. Compared with a linear model, a non-linear model has an unbiased least squares estimator, minimum variance, and normally distributed estimator [28]. The best fitted non-linear model to determine the weedy and weed-free periods in the CPWC and AYL was selected on the basis of the highest R^2_{adj} , lowest RMSE, lowest AIC_C, and lowest BIC [26,34,41,42].

 R^2 is not used to measure goodness-of-fit for non-linear models. R^2 represents the percentage of variability in Y, which has been explained by the fit regression model ranging from 0% to 100%. This value is used to provide prediction limits for new observations [43]. A wide error exists in the non-linear regression where R^2 is used to decide on the fit of the non-linear model. R^2 is effectively utilised to indicate the proportion of variation explained by the linear model, whilst R^2 does not have a definite meaning for non-linear regression models [28,33,42,43].

AICc and BIC are measured to assist in selecting model candidates [35,36]. The best model demonstrates the lowest AICc and BIC based on the aforementioned criterion. This criterion considers the proximity of the point to the model and the number of parameters used by the model. AICc is designed to compare the performance of models that have been fitted to the data through maximum likelihood estimation [34]. Bauldry [44] showed that BIC can be used to select the model with more parsimonious criteria than complex models.

The results of the current study indicate that the Weibull, DR-Hill, and Richards models are the best for predicting weed and weed-free periods in the wet and dry seasons. All selected non-linear models fulfilled the assumptions set, namely normal distribution and homogeneous variance, as indicated by the absence of outliers and extreme data [14].

The Weibull and Richards models belong to the Sigmoidal family, whilst the DR-Hill curve is included in the Dose–Response Curve (DRC) family. The Sigmoidal family is often used to describe plant height, weight, leaf area index, seed germination as a function of time, N application rate, and herbicide dose [45]. The Sigmoidal family is also used as a 0–1 modifier in process-based models to include moisture availability, soil pH, soil N

transformation processes, and a breaker function in studies assessing plant photoperiodic sensitivity [46].

The Weibull model has never been used in selecting CPWC and AYL. However, this model is widely utilised in agriculture, forestry, and livestock research to explain growth models. The Weibull model is also recommended for studies related to growth (plants and animals) because it has a smaller additive term error compared with that of Gompertz and Richards models [47]. Mahanta and Borah [48] used the Weibull model to explain the growth of trees. The Weibull model was also utilised to calculate the height increase of the *Pinus radiate* [49]. The application of the Weibull model can help more accurately describe the macromineral requirements of laying hens compared with the Logistics and Gompertz models [50]. Weibull is the best model amongst other non-linear models for broiler and Japanese quail growth. This model is also the most suitable, but has poor logistics [51].

The Richards model is widely used by researchers to determine CPWC for various annual crops, and such determination is possible because this model is direct and has remarkable flexibility and accuracy [52]. Suryanto et al. [8] used the Richards model to estimate the increasing duration of the weedy period in soybeans. The Richards model can also be used to predict CPWC and AYL. Teleken et al. [53] revealed that a modified Richards model could more accurately predict isothermal and non-isothermal microbial growth in food products compared with other models.

Dose–Response Curve (DRC) are widely used in several sciences (medicine, biology, and chemistry). This model is widely utilised in plant growth analysis to assess the effect of toxicity or dose of fertiliser [54]. Knezevic and Datta [9] and Tursun et al. [21] reported a recent development regarding the use of DRC in determining CPWC and AYL. This finding is due to the rapid development of software, especially R Software, which can estimate DRC, including the drc package (dose–response curve) [37].

DR-Hill, which belongs to the family of DRC, was considered in this study to be best to determine the weedy period in the wet season. The DR-Hill model has been widely used in biochemistry and pharmacology to describe the binding of ligands to macromolecules as a function of ligand concentration. The DR-Hill model is also used in biology to model the regulation of gene transcription [55]. The use of the DR-Hill model concerning the determination of CPWC and AYL was not observed. This finding is novel because the DR-Hill model is one of the best non-linear models for CPWC and AYL estimation.

The CPWC of soybean in the dry season for AYL was 5, 10, and 15%, and began at 20, 22, and 24 DAE and ended at 56, 54, and 52 DAE. The AYL in wet season began at 20, 23, and 26 DAE and ended at 59, 53, and 49 DAE. The critical period for soybeans against weeds generally begins when soybeans are at 20 DAE and ends at 59 DAE. Soybeans enter the pre-flowering phase (V3) to seed filling (R3) during this time. Limited environmental factors (soil moisture, nutrients, and sunlight) in these critical phases reduce soybean yields [56]. Various environmental conditions between the wet and dry seasons cause differences in soybean AYL. Suryanto et al. [8] stated that competition between soybeans and weeds was influenced by the dry weight of weed, weed heterogeneity, and soil moisture availability.

5. Conclusions

The Sigmoidal and Dose–Response Curve (DRC) families were the most suitable for estimating CPWC and AYL. The best fitted non-lienear model for weedy and weed-free periods in the dry season used the Sigmoidal family consisting of the Weibull ($R_{adj}^2 = 0.997$; RMSE = 1.732; AICc = 15.883; BIC = 19.128) and Richards ($R_{adj}^2 = 0.996$; RMSE = 2.298; AICc = 19.944; BIC = 23.708) models, while in the wet season the best fits were obtained using the DRC and Sigmoidal families consisting of the DR-Hill ($R_{adj}^2 = 0.997$; RMSE = 1.822; AICc = 16.893; BIC = 20.238) and Richards ($R_{adj}^2 = 0.996$; RMSE = 2.194; AICc = 17.464; BIC = 21.061) models, respectively. A comparison between the observed versus predicted values in the weedy and weed-free periods in the dry and wet seasons showed no significant differences. The CPWC of soybean in the dry season for AYL was 5, 10, and 15%, and began

at 20, 22, and 24 DAE and ended at 56, 54, and 52 DAE. The AYL in the wet season started at 20, 23, and 26 DAE and ended at 59, 53, and 49 DAE.

Author Contributions: Conceptualisation, T.A. and P.S.; methodology, T.A., N.S., P.B., E.T.S.P., M.H.W. and T.; software, T.A. and M.H.W.; validation, T.A., P.S., N.S., B.K., P.B., E.T.S.P., D.K., D.W.R., M.H.W., N., A.A. and T.; formal analysis, T.A.; investigation, T.A., P.S. and T.; resources, T.A. and P.S.; data curation, T.A., N.S., M.H.W. and T.; writing—original draft preparation, T.A.; writing—review and editing, T.A., P.S., N.S., B.K., P.B., E.T.S.P., D.K., D.W.R., D.W.R., M.H.W., N., A.A. and T.; visualisation, T.A.; supervision, T.A., P.S., D.K. and T.; project administration, T.A.; funding acquisition, T.A., P.S. and T. All authors have read and agreed to the published version of the manuscript.

Funding: The research for this article was fully funded by Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada (No: 2625/UN1/PN/PN/PT.01.03/2022).

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available upon request from the corresponding author.

Acknowledgments: The authors would like to thank the field technicians of Teguh for their field assistance. Our special thanks to Harimurti Buntaran (Universität Hohenheim, Stuttgart, Germany) and Nasrullah, (Universitas Gadjah Mada, Yogyakarta, Indonesia) for their discussions in data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Abbas, A.; Khaliq, A.; Saqib, M.; Majeed, M.Z.; Ullah, S.; Haroon, M. Influence of tillage systems and selective herbicides on weed management and productivity of direct-seeded rice (*Oryza sativa*). *Planta Daninha* **2019**, *37*, 1–15. [CrossRef]
- Hosseini, S.Z.; Firouzi, S.; Aminpanah, H.; Sadeghnejhad, H.R. Effect of tillage system on yield and weed populations of soybean (*Glycine max L.*). An. Acad. Bras. Ciências 2016, 88, 377–384. [CrossRef] [PubMed]
- 3. Swanton, C.J.; O'Sullivan, J.; Robinson, D.E. The critical weed-free period in carrot. Weed Sci. 2010, 58, 229–233. [CrossRef]
- 4. Travlos, I.S.; Cheimona, N.; Roussis, I.; Bilalis, D.J. Weed-species abundance and diversity indices in relation to tillage systems and fertilization. *Front. Environ. Sci.* **2018**, *6*, 11. [CrossRef]
- Bastiaans, L.; Kropff, M.J. Weed competition. In *Encyclopedia of Applied Plant Sciences: Crop Systems*, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: New York, NY, USA, 2017; Volume 3, pp. 473–478.
- 6. McLeod, R. Annual Costs of Weeds in Australia; eSYS Development Pty Limited: Sydney, NSW, Australia, 2018; pp. 9–14.
- 7. Shrestha, A.; Thapa, B.; Devkota, M.; Subedi, R. Comparative efficiency of different weed management practices on yield and economic in summer maize in Dang. *Adv. Crop. Sci. Tech.* **2018**, *6*, 2.
- 8. Suryanto, P.; Tohari, S.E.; Putra, E.T.S.; Kastono, D.; Alam, T. Estimation of critical period for weed control in soybean on agro-forestry system with *kayu putih. Asian J. Crop Sci.* **2017**, *9*, 82–91. [CrossRef]
- 9. Knezevic, S.Z.; Datta, A. The critical period for weed control: Revisiting data analysis. Weed Sci. 2015, 63, 188–202. [CrossRef]
- Zandoná, R.R.; Agostinetto, D.; Silva, B.M.; Ruchel, Q.; Fraga, D.S. Interference periods in soybean crop as affected by emergence times of weeds. *Planta Daninha* 2018, *36*, e018169361. [CrossRef]
- 11. Hartzler, R. Is Your Weed Management Program Reducing Your Economic Return? Iowa State University: Ames, IA, USA, 2003. Available online: http://extension.agron.iastate.edu/weeds/mgmt/2003/economics.shtml (accessed on 9 February 2022).
- 12. Knezevic, S.Z.; Evans, S.P.; Blankenship, E.E.; Van Acker, R.C.; Lindquist, J.L. Critical period of weed control: The concept and data analysis. *Weed Sci.* 2002, *50*, 773–786. [CrossRef]
- 13. Hendrival, W.; Zurrahmi; Abdul, A. Critical period for weed control competition in soybean. Floratek J. 2014, 9, 6–13.
- 14. Archontoulisa, S.V.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. *Agron. J.* **2014**, 107, 786–798. [CrossRef]
- 15. Cardoso, G.D.; Alves, P.L.C.A.; Severino, L.S.; Vale, L.S. Critical periods of weed control in naturally green colored cotton BRS Verde. *Ind. Crops Prod.* 2011, 34, 1198–1202. [CrossRef]
- 16. Singh, M.; Bhullar, M.S.; Chauhan, B.S. The critical period for weed control in dry-seeded rice. *Crop Prot.* **2011**, *66*, 80–85. [CrossRef]
- 17. Singh, M.; Bhullar, M.S.; Chauhan, B.S. Relative time of weed and crop emergence is crucial for managing weed seed production: A study under an aerobic rice system. *Crop Prot.* **2017**, *99*, 33–38. [CrossRef]
- 18. Stagnari, F.; Pisante, M. The critical period for weed competition in French bean (*Phaseolus vulgaris* L.) in Mediterranean areas. *Crop Prot.* **2011**, *30*, 179–184. [CrossRef]

- 19. Seyyedi, S.M.; Moghaddam, P.R.; Mahallati, M.N. Weed competition periods affect grain yield and nutrient uptake of black seed (*Nigella Sativa L.*). *Hortic. Plant J.* **2016**, *2*, 172–180. [CrossRef]
- Tursun, N.; Datta, A.; Tuncel, E.; Kantarci, Z.; Knezevic, S.Z. Nitrogen application influenced the critical period for weed control in cotton. *Crop Prot.* 2015, 74, 85–91. [CrossRef]
- 21. Tursun, N.; Datta, A.; Sakinmaz, M.S.; Kantarci, Z.; Knezevic, S.Z.; Chauhan, B.S. The critical period for weed control in three corn (*Zea mays* L.) types. *Crop Prot.* **2016**, *90*, 59–65. [CrossRef]
- 22. Alam, T.; Kurniasih, B.; Suryanto, P.; Basunanda, P.; Supriyanta; Ambarwati, E.; Widyawan, M.H.; Handayani, S.; Taryono. Stability analysis for soybean in agroforestry system with kayu putih. *SABRAO J. Breed. Genet.* **2019**, *51*, 405–418.
- 23. Alam, T.; Suryanto, P.; Handayani, S.; Kastono, D.; Kurniasih, B. Optimizing application of biochar, compost and nitrogen fertilizer in soybean intercropping with kayu putih (*Melaleuca cajuputi*). *Rev. Bras. Cienc. Solo* **2020**, *44*, 1–17. [CrossRef]
- 24. Kuri-Morales, A.; Rodríguez-Erazo, F. A search space reduction methodology for large databases: A case study. In *Advances in Data Mining: Theoretical Aspects and Applications*; Carbonell, J.G., Siekmann, J., Eds.; Springer: Leipzig, Germany, 2007; pp. 204–205.
- Satter, A.; Iqbal, G.M. Decline curve analysis for conventional and unconventional reservoirs. *Reservoir. Eng.* 2016, 211–232. Available online: https://www.researchgate.net/publication/314643400_Decline_curve_analysis_for_conventional_and_unconventional_reservoirs (accessed on 20 June 2022).
- 26. Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021.
- Hyams, D.G. CurveExpert Professional Documentation. Available online: https://www.curveexpert.net/docs/curveexpert/pro/ pdf/CurveExpertProfessional.pdf (accessed on 9 February 2022).
- 28. Ratkowsky, D.A. Handbook of Nonlinear Regression Models; Marcel Dekker: New York, NY, USA, 1990; pp. 123–147.
- 29. Richards, F.J. The quantitative analysis of growth. In *Plant Physiology*; Steward, F.C., Ed.; Academic Press: New York, NY, USA, 1969; pp. 3–76.
- 30. Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [CrossRef]
- 31. Wallach, D. Evaluating crop models. In *Working with Dynamic Crop Models: Evaluations, Analysis, Parameterization, and Applications,* 1st ed.; Wallach, D., Makowski, D., Jones, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 11–53.
- 32. Anderson-Sprecher, R. Model comparisons and R-square. Am. Stat. 1994, 48, 113–117.
- 33. Kvalseth, T.O. Cautionary note about R². Am. Stat. **1985**, 39, 279–285.
- Burnham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2003; pp. 271–273.
- 35. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [CrossRef]
- 36. Schwarz, G. Estimating the dimension of a model. *Ann. Stat.* **1978**, *6*, 461–464. [CrossRef]
- 37. Ritz, C.; Streibig, J.C. Nonlinear Regression with R; Springer: New York, NY, USA, 2008; pp. 4-6.
- Bhattacharyya, M. To pool or not to pool: A comparison between two commonly used test statistics. *Int. J. Pure Appl. Math.* 2013, 89, 497–510. [CrossRef]
- 39. SAS Institute Inc. *Step-by-Step Programming with Base SAS*[®] 9.4, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013.
- Baty, F.; Ritz, C.; Charles, S.; Brutsche, M.; Flandrois, J.P.; Delignette-Muller, M.L. A toolbox for nonlinear regression in R: The package nlstools. J. Stat. Softw. 2015, 66, 1–21. [CrossRef]
- 41. Lewis, F.; Butler, A.; Gilbert, L. A unified approach to model selection using the likelihood ratio test. *Methods Ecol. Evol.* **2011**, *2*, 155–162. [CrossRef]
- 42. Spiess, A.N.; Neumeyer, N. An evaluation of R² as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. *BMC Pharmacol.* **2010**, *10*, *6*. [CrossRef]
- 43. Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1998; pp. 243–250.
- 44. Bauldry, S. Structural equation modeling. In *International Encyclopedia of the Social & Behavioral Sciences*, 2nd ed.; Wright, J.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 615–620.
- 45. Miguez, F.E.; Villamil, M.B.; Long, S.P.; Bollero, G.A. Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. *Agric. For. Meteorol.* **2008**, *148*, 1280–1292. [CrossRef]
- 46. Amaducci, S.; Colauzzi, M.; Bellocchi, G.; Venturi, G. Modelling post-emergent hemp phenology (*Cannabis sativa* L.): Theory and evaluation. *Eur J. Agron.* **2008**, *28*, 90–102. [CrossRef]
- Dagogo, J.; Nduka, E.C.; Ogoke, U.P. Comparative analysis of richards, gompertz and weibull models. *IOSR J. Math.* 2020, 16, 15–25.
- 48. Mahanta, D.J.; Borah, M. Parameter estimation of weibull growth models in forestry. Int. J. Math. Trends Technol. 2014, 8, 158–163.
- 49. Colff, M.V.D.; Kimberley, M.O. A national height-age model for *Pinus radiata* in New Zealand. N. Z. J. For. Sci. 2013, 43, 1–11.
- Sholikin, M.M.; Alifian, M.D.; Purba, F.M.; Harahap, R.P.; Jayanegara, A.; Nahrowi. Evaluate Non-Linear Model Logistic, Gompertz, and Weibull: Study Case on Calcium and Phosphor Requirements of Laying Hen. In Proceedings of the Conference Series: Earth and Environmental Science, Malang, Indonesia, 24–27 October 2020.
- 51. Raji, A.O.; Mbap, S.T.; Aliyu, J. Comparison of different models to describe growth of the japanese quail (*Coturnix japonica*). *Trakia J. Sci.* **2014**, *12*, 182–188.
- Svagelj, W.S.; Laich, A.G.; Quintana, F. Richards's equation and nonlinear mixed models applied to avian growth: Why use them? J. Avian Biol. 2019, 2019, 1–8. [CrossRef]

- 53. Teleken, J.T.; Galvão, A.C.; Robazza, W.S. Use of modified Richards model to predict isothermal and non-isothermal microbial growth. *Braz. J. Microbiol.* **2018**, *49*, 614–620. [CrossRef]
- 54. Ritz, P.P.; Rogers, M.B.; Zabinsky, J.S.; Hedrick, V.E.; Rockwell, J.A.; Rimer, E.G. Dietary and biological assessment of the omega-3 status of collegiate athletes: A cross-sectional analysis. *PLoS ONE* **2020**, *15*, e0228834. [CrossRef]
- 55. Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The hill equation and the origin of quantitative pharmacology. *Arch. Hist. Exact Sci.* **2012**, *66*, 427–438. [CrossRef]
- 56. Sobko, O.; Stahl, A.; Hahn, V.; Zikeli, S.; Claupein, W.; Gruber, S. Environmental effects on soybean (*Glycine max* (L.) Merr) production in Central and South Germany. *Agronomy* **2020**, *10*, 1847. [CrossRef]