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Abstract: Traffic accidents, by their nature, are random events; therefore, it is difficult to estimate the
exact places and times of their occurrences and the true nature of their impacts. Although they are
hard to precisely predict, preventative actions can be taken and their numbers (in a certain period)
can be approximately predicted. In this study, we investigated the relationship between accident
frequency and factors that affect accident frequency; we used accident data for events that occurred on
a flat rural state road in Serbia. The analysis was conducted using five statistical models, i.e., Poisson,
negative binomial, random effect negative binomial, zero-inflated Poisson, and zero-inflated negative
binomial models. The results indicated that the random effect negative binomial model outperformed
the other models in terms of goodness-of-fit measures; it was chosen as the accident prediction
model for flat rural roads. Four explanatory variables—annual average daily traffic, segment length,
number of horizontal curves, and access road density—were found to significantly affect accident
frequency. The results of this research can help road authorities make decisions about interventions
and investments in road networks, designing new roads, and reconstructing existing roads.

Keywords: accident frequency; flat rural roads; prediction; road safety

1. Introduction

Road accidents are becoming global, social, public health, and economic issues; as such,
broad measures are required to prevent them, including having a better understanding of
the impacts of the roadway and environmental factors on traffic crashes. Great attention
has been placed on the influences of urban and rural environments on road accidents. The
risks of road deaths on rural roads (per kilometer traveled) are generally higher than on
urban roads, and four to six times higher than on motorways [1]. Of the traffic fatalities that
took place in the US in 2016—18,590 occurred in rural areas (or 50% of all traffic fatalities
for that year) [2]. In 2015, 8% of fatalities occurred on European motorways, 55% on rural
roads, and 37% on urban roads [3]. According to research carried out by the Road Traffic
Safety Agency of the Republic of Serbia, in 2015, the majority of traffic fatalities occurred
on rural state roads (48.7%), municipal roads (25.9%), and motorways (17.7%) [4].

Traffic accidents, by their nature, are random events [5]; therefore, it is difficult to
estimate the exact places and times of their occurrences and the true nature of their impacts.
Although they are hard to precisely predict, preventative actions can be taken and their
numbers (in a certain period) can be approximately predicted. All key stakeholders in
road safety systems should take appropriate steps and measures to increase road safety
measures and reduce the number of accidents and casualties. One task for researchers,
road safety specialists, and engineers is to maintain the highest level of safety on road
networks [6]. Much effort has been devoted to improving road safety, through modeling
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safety issues and examining the factors related to accident frequency and severity. The
authors of [7–9] have conducted meta-analyses regarding accident frequencies and severity.
They emphasized that there are methodological issues that influence the selection of
appropriate models for predicting accidents. These statistical models have been considered
for different spatial units of observation (e.g., sections, intersections, etc.) in the functions
of their characteristics [10].

Predictive models have been developed (depending on the type of terrain through
which a road passes). The Highway Safety Manual (HSM) identified three road terrain types
(flat, rolling, and mountainous) that were used to develop safety performance functions
(SPFs) [11]. Regarding accident frequency analysis, there is a research gap in modeling
the accident frequencies of flat rural roads. Flat rural roads are mainly observed through
the influence of exploratory terrain variables. Persaud et al. [12] developed a predictive
model for horizontal curves based on the road environment. They found that the accident
frequency is lower if the road is in a flat environment compared to a rolling environment.
Choi et al. [13] found that including the terrain type (flat and mountainous) in their analysis
of accidents helped with formulating better models. Moreover, they found that long
horizontal curved elements in a flat terrain contributed to reducing accident costs. It was
also found that there are no similar studies in the Western Balkans region. Flat rural roads
in the Republic of Serbia are characterized by mild shoulders, long horizontal curved
elements, long directions, the absence of vertical curves, and a large number of access roads
(private driveways, industrial–commercial access roads, and agricultural roads).

1.1. Models in Accident Frequency Analysis

In prior research, accident frequencies and determining the relationships between acci-
dents and the factors that contributed to the occurrences of accidents were examined using
conventional multiple linear regression techniques. However, Joshua and Garber [14] have
shown that conventional linear regression models are not suitable for modeling events such
as traffic accidents, because they have non-negative values and (approximately) follow the
Poisson distribution. The greatest advantage of the Poisson model is its simplicity in the
calculation—the characteristics of the model involve the mean and variance being equal [7].
This also presents the limitations of the Poisson model (because this assumption is rarely veri-
fied in the actual data). In addition, it cannot cope with overdispersion and underdispersion of
data [15], small sample sizes, or low sample mean values [16,17]. Numerous extensions of the
Poisson model have been conducted in previous studies [18–21]. For example, Kronprasert
et al. [19] developed an accident frequency predictive model based on the Poisson regression
model—a useful tool when the observation numbers are very small, such as with the fatal acci-
dent frequency. To resolve the problem of overdispersion, a negative binomial (NB) model was
introduced, which assumes that the Poisson parameter follows the gamma distribution [22]
and relaxes the assumption of the equality of the mean and variance. The NB model has
been widely used in accident modeling [23]. The NB model is shown to be good at resolving
overdispersion [24], but in certain data sets, where there are temporal [25] and spatial [26]
correlations, it has not been the best solution, and the use of a random effect negative binomial
(RENB) model has been suggested [27,28]. Another problem that occurs in accident frequency
modeling is excess zeros in the observations, due to the fact that traffic accidents are rare
events. The Poisson and NB models tend to produce erroneous estimates for over-dispersed
accident data when there are large numbers of zeros in a data set; thus, zero-inflated Poisson
(ZIP) and zero-inflated negative binomial (ZINB) models are more adequate [29]. However,
the problem with the inflated models is in the assumption of a dual state. Lord et al. [30]
argue that the safe state is not theoretically possible with a data set involving traffic accidents.
In general, count data models allow for analyses when the dependent variables of interest
are numerical counts. Count data represent types of data in which observations only have
non-negative integer values. Variables of countable types have common properties: (a) their
values are always integers, (b) the smallest possible value is 0 (and can never be negative),
and (c) they are mostly positively flattened, with more data having small values (and small
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numbers—higher values) [31]. Count data models can be used to estimate the effects of policy
intervention or accident prediction.

1.2. Factors Affecting the Accident Frequency

Many factors that affect accident frequency have been analyzed. They could be
grouped into five main groups: traffic flow characteristics, road characteristics, environment
characteristics, vehicle characteristics, and human-related factors [32,33].

Traffic volume is the most commonly used independent variable for accident fre-
quency modeling. Studies have shown that accidents increase with the increase in the
annual average daily traffic (AADT) [19,32,34,35] or the average daily traffic (ADT) [36,37].
Conversely, Milton and Mannering [38] determined that an increase in traffic volume
during peak hours reduces accident frequency (due to traffic congestion). The authors
of [25,39] claimed that a larger percentage of heavy vehicles in traffic flow contributes to an
increase in the accident frequency.

Many studies have found that accident frequency is affected by the segment
length [21,24,29,32], lane width [29,40], lane numbers [27,32,38], carriageway width [21,29,41],
and the shoulder width and type [29,42]. Significant attention has been dedicated to hor-
izontal and vertical road geometric elements, which are found to affect the accident fre-
quency [28,37,43,44]. Shankar et al. [45] revealed that an increase in the number of horizontal
curves at a road section leads to an increase in accident frequency. Moreover, they determined
that horizontal curves with higher design speeds have larger effects on the accident frequency
than curves with lower design speeds, due to risk compensation by the drivers. The effects of
horizontal curves have been investigated through various elements; it was found that a larger
horizontal curvature [27], a smaller radius of a horizontal curve [29,46], a greater angle of a
curvature [28,47], and a shorter horizontal curve [46], increase the accident frequency. Huo
et al. [48] claimed that the number of accidents increases with the increase in the longitudinal
grade. Similarly, Miaou [49] found that the truck accident involvement rate increases with the
increase in the vertical grade. Montella and Imbriani [50] established that with the increase in
the longitudinal grade, the accident frequency rises by 4% more at the downgrade than at the
upgrade. The length of a vertical curve is negatively related to the accident frequency, and with
the increase in length, the accident frequency declines [23]. The carriageway condition can
have a significant impact on the accident frequency. The authors [21,51] determined that
a greater friction coefficient tends to reduce the accident frequency. The rutting depth is
positively related to accidents, and adverse safety effects are produced with the increase of
the rutting depth [27]. The authors of [27,52] have shown that an increase in the value of the
International Roughness Index (IRI) contributes to an increase in the number of accidents.

Great efforts have been made to determine the relationship between accidents and
speed. Milton and Mannering [38] determined that a high posted speed limit is associated
with a lower accident frequency. Hosseinpour et al. [39] suggested that this fact is the
consequence of low-speed limits at unsafe locations and on roads with poor geometric
characteristics. On the other hand, Donnell and Mason [53] found that on interstate
highways, with the increase in the speed limit, there is an increase in the accident frequency.
Imprialou et al. [54] have shown that higher speeds cause accidents with more severe
consequences. The greater the difference between the posted speed limit and the average
speed of the traffic flow—the so-called “speed gap”—causes an increase in the accident
rate [55].

Access roads may also have a significant role in the occurrence of traffic accidents
on rural roads. Research conducted by Vaiana et al. [56] has shown that the increase
in driveway density increases the accident frequency. Similarly, Saccomanno et al. [18]
claimed that the increase in the number of personal access points to sections increases the
number of accidents.
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1.3. Aims of the Research

Given the level of knowledge and the state of the practice concerning road safety on
flat rural roads, this research attempted to fill in some of the knowledge gaps in this area.
In particular, we focused on two-way rural roads. The main goal of this paper was to
develop a predictive model for flat rural roads using accident data over three years. The
predictive model was developed based on the comparisons of the performances of several
selected statistical models. In addition, the influences of several independent variables
on the accident frequency were analyzed—primarily traffic and geometric variables and
then the variables that define the pavement conditions and the influence of access roads.
Finally, an elasticity analysis was performed to assess the relative importance of the selected
independent variables on the accident frequency.

2. Materials and Methods
2.1. Data

To carry out this research, data were collected for state road IB-12. The length of the
road is 276.70 km, divided into 23 sections. This road is primarily a two-lane, two-way
main road (approximately 90.85% of the total length, i.e., 251.38 km). The road passes
through an urban area, at a length of 70.28 km (25.4%), while the remaining part of the
road (length: 206.42 km (74.6%)) is located in a rural area. State road IB-12 is a flatland road
with a longitudinal slope of ±2.5%, connecting the eastern city of Subotica to the Romanian
border (Srpska Crnja) in the west; its entire length is in the area of the Autonomous
Province of Vojvodina. The starting and ending points are at nodes 1102 (X: 393,302.85 m E;
Y: 5,102,918.84 m N) and 1222 (X: 476,708.20 m E; Y: 5,066,386.42 m N), respectively.

For research purposes, data were collected from 3 databases:

• Accident data, collected and maintained by the Ministry of Internal Affairs of the
Republic of Serbia.

• Traffic data, collected and maintained by the Public Enterprise “Roads of Serbia”.
• Roadway geometrics, cross-sectional elements, and traffic signalization data; collected

and maintained by the Public Enterprise “Roads of Serbia”.

Three years of data (from 2015 to 2017) were observed for state road IB-12. During this
period, data on accidents, traffic flow, section lengths, posted speed limit, horizontal curves,
access roads, and IRI were collected. Accident data contained a large number of details
(place and time of an accident, type of accident, consequences, number of vehicles involved
in the accident, number of people involved in the accident, carriageway conditions, etc.). In
this study, only the total accident frequency was observed; in the observed period, a total
of 1216 accidents occurred. Traffic volume data were collected from automatic counters,
occasional automatic traffic counting, and interpolation of data, containing information
about the total traffic flow, passenger vehicles, buses, and heavy vehicles. From the reference
system of state roads, data on traffic nodes, section lengths, horizontal curves (number of
horizontal curves, length of the arc, angle of curvature, etc.), posted speed limits (with GPS
coordinates), and IRI were obtained. The data in the reference system are updated annually,
except for traffic signalization data, which are updated on a monthly basis. Access road
information was collected from the IB-12 road map available on Google Earth.

After data collection, the process of dynamic segmentation was carried out using ArsGIS
10.8. The four criteria for the dynamic segmentation were (1) traffic nodes, (2) traffic volume, (3)
posted speed limit, and (4) number of traffic lanes. Initially, in the segmentation process, 136
homogeneous segments were obtained. Then, segments for which there were no complete data
and segments that were located in the urban area were excluded. Segments that were shorter
than 100 m were associated with neighboring segments with similar characteristics. During the
segmentation process, accidents related to each segment were summarized. As a result of the
dynamic segmentation, 59 homogeneous segments in rural sections were obtained.

Table 1 shows information about the minimums and maximums, the means, and
the standard deviations of the selected variables from the database. The segment lengths
ranged from 0.23 to 13.31 km, with posted speed limits ranging from 40 to 80 km/h. A



Sustainability 2022, 14, 7704 5 of 14

low AADT was identified along the road, with a mean of 3384 veh/day. The number
of horizontal curves in the segments ranged from 0 to 7. The variable “Access roads
density” is a relative variable that measures the number of roads per km of a homogeneous
segment, ranging from 0 to 45.52. Although it is a rural road, a large number of access
roads are evident, which can be justified by the fact that it is an agricultural area, and that
in Vojvodina, the problems of linear settlements and uncontrolled access to the IB state
roads are expressed. The pavement conditions are represented by the IRI, ranging from
0 to 4.53. To analyze the temporal effect and solve the problem of temporal correlations,
the dummy variable “Year”, which takes values (0, 1), was introduced in accordance with
previous research conducted by Caliendo et al. [51].

Table 1. Summary statistics of the considered variables.

Variables Description Min Max Mean Std. Dev

Dependent variable
RTA Number of traffic accidents 0 20 2.16 3.00

Independent variables
L Segment length (km) 0.23 13.31 3.38 3.11

AADT Annual average daily traffic (veh/day) 760 15195 3785.72 2391.52
SPEEDLIMIT Posted speed limit (km/h) 40 80 74.07 10.94

NRCURVE Number of horizontal curves 0 7 1.64 2.04
DAR Access road density (no. roads/km) 0 42.52 7.46 8.11
IRI International roughness index 0 4.53 2.47 1.07

Year 2015 Year of occurrence indicator (1—if 2015, 0—otherwise)
Year 2016 Year of occurrence indicator (1—if 2016, 0—otherwise)
Year 2017 Year of occurrence indicator (1—if 2017, 0—otherwise)

After data collection and the dynamic segmentation process, a unique database was
created, containing 177 independent observations (n = 177 = 59 ∗ 3). The database only
included segments for which there were accidents and traffic volume data. The base
included 59 homogeneous segments, at a total length of 199.63 km. In the period 2015–2017,
regarding these segments, 382 accidents occurred. After the database was created, the
same was imported into statistical software STATA 13.0 where further processing and data
analysis was performed.

2.2. Statistical Models

The Poisson regression model is based on the assumption that the number of accidents
that occur on a road section i during an observed time period has a Poisson distribution
with a mean value µi. The probability distribution function of the Poisson regression model
is defined by equation [31]:

p(Yi = yi) = p(yi) =
µ

yi
i e−µi

yi!
; i = 1, 2, 3, . . . , n, (1)

where p(Yi = yi) is the probability of road section i having yi accidents during the observed
time period; Yi—is a random variable that represents the number of accidents on a road
section i during the observed time period; yi—represents a real observation of Yi on a
road section i during the observed time period; µi—Poisson parameter for road section i,
which is equal to the expected number of accidents (i.e., E(Yi)) on a road section i during
the observed time period. The basic assumption of the Poisson model is that mean and
variance are equal, E(Yi) = Var(Yi) = µi. If E(Yi) > Var(Yi) then there is underdispersion,
otherwise, if E(Yi) < Var(Yi), then there is overdispersion.

The NB model relaxes the assumption of the equality of the mean and the variance
by adding a random error, which has a gamma distribution. It is actually an extension of
the Poisson regression model, which allows the variance of the predicted coefficients to be
different from the mean and to overcome the possible overdispersion in the data. The NB
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model E(Yi) < Var(Yi). The NB distribution contains two parameters: the mean—µi and
the dispersion parameter—α or its inversion (θ = 1/α). The dispersion parameter is used
to “capture” an extra variation in the accident data. The probability distribution function
of the NB model is defined by equation [31]:

p(Yi = yi) =
Γ(θ + yi)

Γ(θ)yi!

(
θ

θ + µi

)θ( µi
θ + µi

)yi

; i = 1, 2, 3, . . . , n, (2)

where µi is the expected number of accidents on a road section i during the observed
time period; θ is inversely proportional to the dispersion parameter α (θ = 1/α); Γ(.) is a
gamma function.

The choice between the Poisson and the NB models can be largely determined by the
statistical significance of the estimated coefficient α. If α is not significantly different from 0
(as measured by t—statistics), the NB model simply reduces to a Poisson regression model
with Var(Yi) = E(Yi). If α is significantly different from 0, the NB model is the right choice,
and the Poisson regression model is inadequate [57].

If there is unobserved heterogeneity of the individual effects (assumed to be fixed,
while, in fact, they vary through observations), the model parameter estimates will be
inaccurate and lead to wrong conclusions. Solving the problem of unobserved heterogeneity
is achieved using the RENB model. It allows regression parameters to vary through
observations, counting on spatial and temporal correlations. The probability distribution
function of the RENB model is defined by equation [28]:

p(Yi = yi) =
Γ(a + b)Γ(a + ∑T µit)Γ(b + ∑T µit)

Γ(a)Γ(b)Γ(a + b + ∑T µit ∑T yit)
∏

T

Γ(µit + yit)

Γ(µit)Γ(yit + 1)
; i = 1, 2, 3, . . . , n, (3)

where a and b are distribution parameters for θ.
The ZIP model is used to count data sets (such as accident data), when there is an

excess zero in the data set. The problem with large numbers of zeros is solved by fitting
a mixed model, which combines different distributions. The ZIP model consists of two
parts: the “zero-inflated” and the Poisson part. The distribution of the dependent variable
in the ZIP model is approximated by mixing two models and two distributions. The ZIP
model produces two sets of coefficients. The first coefficient set estimates the probability
of zero (the zero-inflated part), and the second coefficient set estimates the mean µi (the
part “count”—Poisson model). The ZIP model assumes that events Yi = Y1, Y2, . . . , Yn
are independent. The probability distribution function of the ZIP model is defined by
equation [58]:

p(Yi = yi) = p(yi) =

{
pi + (1− pi)e−µi ; i f Yi = 0; i = 1, 2, 3, . . . , n

(1− pi)
µ

yi
i e−µi

yi!
; i f > 0; i = 1, 2, 3, . . . , n

(4)

where pi is the probability of the existence of the condition with the excess zero on-road
section i (the logistic link function is given by the term pi = λi/1 + λi, where λi is the
parameter of the logit link representing covariates); 1− pi is the probability that accidents
follow the Poisson distribution. If pi = 0, then there is no excess zero and the mean of the
ZIP model is equal to the mean of the Poisson model.

The ZINB model simultaneously solves the problem of excess zeros and overdispersion.
The model consists of two parts: the “zero-inflated” and the NB part. As with the ZIP
models, the distribution of the dependent variable in the ZINB model is approximated
by mixing two models and two distributions. The first model uses logistic distribution
to predict the non-occurrence of accidents on the road section. The second model uses a
negative binomial distribution to predict how often accidents occur on a road section. The



Sustainability 2022, 14, 7704 7 of 14

ZINB model also assumes that events Yi = Y1, Y2, . . . , Yn are independent. The probability
distribution function of the ZINB model is defined by equation [31]:

p(Yi = yi) = p(yi) =

 pi + (1− pi)
(

θ
θ+µi

)θ
; i f Yi = 0; i = 1, 2, 3, . . . , n

(1− pi)
Γ(θ+yi)
Γ(θ)yi!

(
θ

θ+µi

)θ( µi
θ+µi

)yi
; i f Yi > 0; i = 1, 2, 3, . . . , n

(5)
The estimation of the parameters in the models was conducted using the maximum

likelihood estimation (MLE) method; by maximizing the likelihood function, estimates
were obtained for the β, α, a and b.

There were several measures used to test the model, i.e., to verify that the devel-
oped model fit with the actual data. They summarized the differences between the
observed and predicted values of accidents. In this study, the log-likelihood ratio ex-
pressed through McFadden ρ2 (Equation (6)), the Akaike information criterion (AIC)
(Equation (7)), and the Bayesian information criterion (BIC) (Equation (8)), were used
to estimate the overall goodness-of-fit statistics. In addition, these measures were used to
compare competing models.

ρ2 = 1− lnL/ln0 (6)

AIC = −2lnL + 2k (7)

BIC = −2lnL + klnn (8)

where lnL is the log-likelihood at the converging of the “unrestricted“ model; ln0 is the
log-likelihood at the converging of the “restricted” model, which contains only a constant
term (with all parameters set to zero); k is the number of unknown parameters in the model
i.e., the number of parameters to be estimated; n is the sample size.

Additional testing was performed using the Vuong test, i.e., the choice between the
Poisson and the NB models with the ZIP and the ZINB models. More precisely, if it is
V > 1.96, the advantage is given to the ZIP and the ZINB models, and if it is V ≤ 1.96, the
advantage is given to the Poisson and the NB models [59].

In this study, two prediction-based model selection criteria were used, including (1)
mean absolute deviation (MAD) and mean squared predictive error (MSPE), which are
represented by the formula:

MAD =
1
n

n

∑
i=1
|ŷi − yi| (9)

MSPE =
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

were yi is the observed number of accidents, ŷi is the expected number of accidents, and n
is the number of observations. A model with a lower value of MAD and MSPE was chosen
as the superior model in terms of predictive ability.

Interpretation of the effects of the estimated parameters of the exploratory variables
on the accident frequency was conducted by expressing the elasticity. The elasticity
(Equation (11)) measures the effect of a 1% change in the exploratory variable on the
accident frequency. The elasticity is defined as the proportionate change in the accident
frequency resulting from a proportionate change in a given attribute and it is obtained by
taking the derivative of the accident frequency with respect to a given attribute, as follows:

Eλi
xitj =

∂λit
∂xitj

xitj

λit
(11)

were Eλi
xitj is the elasticity coefficient of the jth explanatory variable, xitj is the value of the jth

explanatory variable for road segment i in year t.
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3. Results

Table 2 presents the modeling results for five selected models. The values of the
coefficients of independent variables with standard errors are shown. Moreover, the values
of the goodness-of-fit statistics for all models are presented. Candidates for exploratory
variables are: L, AADT, SPEEDLIMIT, NRCURVE, DAR, and IRI. In addition to these
variables, dummy variables were made to take into account the annual changes in the
independent variables encoded by values of 1 (if the observed road segment was in the
year) and 0 (if the observed road segment was not in a certain year). The log-linear
regression model µi(xi; β) = exp(∑n

i=1 βixi) was assumed for the expected number of
accidents on the road segment i. The analysis was conducted using five statistical models,
i.e., Poisson, NB, RENB, ZIP, and ZINB models. When applying Poisson, NB, ZIP, and
ZINB models, it was assumed that there were 177 independent observations of the accident
frequency. When we applied the RENB model, it was assumed to have 59 independent
clusters, with 3 observations in each cluster. In all models, almost all the coefficients
of independent variables had the expected signs. In addition, in the ZIP model, the
independent variables NRCURVE and DAR had opposite signs. In addition to these
variables, in the ZINB model, the AADT had an opposite sign than expected. The dummy
variable “Year2017“ was omitted because of the multicollinearity in all models, while the
dummy variables ”Year2015“ and “Year2016“ were not statistically significant, indicating
the absence of temporal correlations in this data set. In accident frequency modeling, the
Poisson regression model was first applied, in which there were (statistically significant)
six independent variables: L, AADT, SPEEDLIMIT, NRCURVE, DAR, and IRI (Table 2).
After the Poisson model, the NB model was applied, for which there were also (statistically
significant) six independent variables. Overdispersion in data (α = 0.12) indicates that the
NB model is more appropriate than the Poisson model. Zero-inflated models were tested,
i.e., ZIP and ZINB models. In the inflated part of ZIP and ZINB models, no independent
variable was statistically significant, indicating the inadequacy of the zero-inflated model
for this data set. This is the consequence of a small number of zeros in the data set (31.07%).
The last was applied to the RENB model. It was found that there were (statistically
significant) four independent variables: L (β = 0.1151; p < 0.05), AADT (β = 0.0001; p < 0.05),
NRCURVE (β = 0.1039; p < 0.05), and DAR (β = 0.0315; p < 0.05). Unlike the NB model
in which the dispersion parameter was constant and did not change between different
road segments over time, and had a value of 0.12, the RENB model determined that the
dispersion parameter was not constant between different road segments over time and that
it followed the beta distribution with the parameters a (61.17) and b (9.02).

The results indicate that the RENB model had the best overall goodness-of-fit statistics.
McFadden ρ2 had the lowest value in the zero-inflated models, i.e., ZIP (0.255) and ZINB
(0.277) models, which increased to 0.336 and 0.338 in the Poisson and NB models, respec-
tively. The highest value of McFadden ρ2 had a RENB model (0.348), which indicated the
best fit of the model with the actual data. The Vuong test showed that the data set (with the
Poisson and NB models) was superior to the ZIP and ZINB model, with the values of the
tests being V = 1.71 and V = 1.60, respectively. To compare the competition models based on
information criteria, the same set of independent variables had to be applied to all models.
The lowest value of the information criteria had the RENB model, i.e., AIC (594.50) and BIC
(629.44); then, the NB (AIC = 604.78; BIC = 635.54) and the Poisson model (AIC = 607.61;
BIC = 636.20). The highest value of AIC and BIC had zero-inflated models. Based on the
above tests, it has been determined that the RENB model has the best performance and the
best goodness-of-fit statistics.

A comparison between the observed and predicted accident frequencies for the five
statistical models is depicted in Figure 1. Based on the values of MAD and MSPE, it has
been established that the RENB model has the greatest predictive power compared to the
other tested models. The value of the MAD in the RENB model was the smallest (0.16),
followed by the NB model (0.20), the Poisson model (0.22), and the zero-inflated models
(ZIP = 3.87 and ZINB = 3.97). Similarly, with MSPE, the RENB model has the lowest value
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(4.41), followed by the NB model (7.23) and the Poisson model (8.34). Zero-inflated models
were far more inaccurate compared to the previous three models, so the ZIP model had a
value of MSPE at 2657.42, and the ZINB model was 2793.77. Figure 1 shows the apparent
adequacy of the RENB model in terms of predictive accuracy compared to the other models.
Although the results indicate that the RENB model has the best performance compared
to the other tested models, it should be noted that the performance difference between
the RENB and NB models is very low. The performance of the RENB model was slightly
improved compared to the NB model, e.g., at McFadden ρ2 by only 1%.

Table 2. Model estimation results and goodness-of-fit statistics.

Variables Poisson (S.E) NB (S.E) RENB (S.E) ZIP (S.E.) 2 ZINB (S.E.) 2

Intercept −3.0234 (0.7328) 1 −2.8188 (0.7770) 1 −0.7516 (0.5065) 1 4.7542 (4.9658) 8.3044 (4.6790)
L 0.0877 (0.0221) 1 0.1014 (0.0268) 1 0.1151 (0.0348) 1 −1.4961 (1.4624) −2.3008 (1.7572)

AADT 0.0001 (0.00002) 1 0.0001 (0.00003) 1 0.0001(0.00003) 1 −0.00002 (0.0002) 0.00003 (0.0001)
SPEEDLIMIT 0.0236 (0.0089) 1 0.0216 (0.0095) 1 0.0231 (0.0119) −0.0693 (0.0616) −0.1138 (0.0652)

NRCURVE 0.1332 (0.0300) 1 0.1171 (0.0358) 1 0.1039 (0.0465) 1 0.5901 (0.7187) 0.2767 (0.9915)
DAR 0.0336 (0.0060) 1 0.0319 (0.0070) 1 0.0315 (0.0090) 1 0.0304 (0.0727) 0.0751 (0.0751)
IRI 0.1589 (0.0613) 1 0.1502 (0.0671) 1 0.1339 (0.0822) −0.1986 (0.5081) −0.5073 (0.4828)

Year2015 0.0927 (0.1295) 0.0997 (0.1545) 0.0811 (0.1402) 0.2768 (1.1022) 0.0939 (1.2694)
Year2016 0.2126 (0.1253) 0.1797 (0.1510) 0.2175 (0.1345) 0.1720 (1.1126) −0.2815 (1.2653)

Dispersion parameter 0.122 1 0.060
a 61.16802
b 9.02539

Summary statistics
McFadden ρ2 0.336 0.338 0.348 0.255 0.277

MAD 0.22 0.20 0.16 3.87 3.97
MSPE 8.34 7.23 4.41 2657.42 2793.77

Vuong test 1.71 1.60 - 1.71 1.60
AIC 607.61 604.78 594.50 609.48 608.69
BIC 636.20 635.54 629.44 666.65 660.04

No of observations 177 177 177 177 177
No of parameters 8 8 8 8 8

1 means significant at a 0.05 significance level, 2 inflated part.
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Table 3 shows the results of the elasticity analysis based on the RENB model. Four
independent variables were statistically significant in the RENB model. The elasticity
coefficient of the independent variable AADT was 0.18, indicating that an increase of
10% in AADT led to an increase of 1.8% in the accident frequency. L was also positively
related to the accident frequency, indicating that as L increased by 10%, accidents increased
by about 1.5% in the accident frequency. Elasticity estimates suggest that an increase in
DAR by 10% was associated with an increase in accident frequency by 1%. The elasticity
coefficient of the independent variable NRCURVE was 0.06, suggesting that an increase of
10% in the NRCURVE led to an increase of 0.6% in the accident frequency.

Table 3. Elasticity analysis (RENB model).

Independent Variable Mean Coefficient Elasticity Coefficient

L 3.384 0.0927 0.15
AADT 3785.72 0.0001 0.18

NRCURVE 1.644 0.1278 0.06
DAR 7.462 0.0336 0.10

4. Discussion and Conclusions

Traffic accidents on flat rural roads are linked to a wide range of factors, including
traffic volume, road geometric elements, and the road’s environment. In this paper, an
accident frequency predictive model of flat rural roads was developed, based on the selected
set of independent variables, using appropriate statistical regression tools. In addition, the
relative influences of selected independent variables on the accident frequencies on flat
rural roads were investigated.

Selecting the most suitable statistical tool is challenging for researchers because re-
searchers need to select (from a large number of statistical models) the one that best
describes the given data set. In this study, we started with the Poisson regression model,
which proved inadequate for this data set due to overdispersion. The results confirmed the
findings of earlier research [15,17] that the existence of overdispersion in the data, in the
application of the Poisson regression model, causes inaccurate parameter estimates and
leads to the erroneous interpretation of the conclusions. The application of the NB model
has shown that the existence of overdispersion in the data (α = 0.12) justifies the use of this
model [24], and—compared with the Poisson model—has better overall goodness-of-fit
statistics, which is in agreement with previous research [22,49]. The poorest performances
in the accident frequency modeling of flat rural roads were from the zero-inflated models
(i.e., ZIP and ZINB). There was a particularly large deviation of the MSPE compared to the
other models. It should be emphasized that this outcome was expected—given a small
number of zeros in the observed data set (31.07%), contrary to the earlier research in which
the percentage of zeros was greater than 80% [29] and, therefore, the zero-inflated models
were superior compared to the Poisson and NB models. However, Lord et al. [30] claimed
that the excess zeros in a data set can be the consequence of (1) the existence of sites with
a combination of low exposures and high heterogeneities, (2) analyses conducted with
too small spatial or time scales, (3) data with relatively high percentages of missing or
unreported accidents, or (4) the application of a model with important predictive variables
omitted. The conclusion was made that zero-inflated models are not suitable for modeling
events such as accidents. The last model tested was the RENB model, which improved the
performance of the NB model. The RENB model had the best value of overall goodness-
of-fit statistics, and the best predictive power—i.e., the best fit with the actual accident
frequency, which is in line with previous research [27,28]. The RENB model was chosen
for the accident frequency predictive model on flat rural roads, which had the highest
McFadden value of ρ2 (0.35), and the smallest information criteria value (AIC = 594.50;
BIC = 629.44). The developed model took into account the intuitive and credible traffic and
geometrical factors that affected the accident frequency.
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In all, six independent variables were statistically significant in the Poisson and NB
models; with the introduction of the RENB model, this number was reduced to four
independent variables. As expected, the segment length was statistically significant in
all three specified models and was positively correlated to the accident frequency. These
results are supported and confirmed by numerous previous studies [21,24,28,32,37]. Hou
et al. [27] revealed that the effect of the segment length on the accident frequency, regarding
the function of exposure, was also positive, and that the relationship was almost linear to
the homogeneous segment lengths. Moreover, for the AADT variable, it has been found that
it is consistently statistically significant and has a positive effect on the accident frequency.
Rusli et al. [37] observed the effect of the ADT in the function of exposure on the accident
frequency for a particular type of accident (single-vehicle accidents); they determined
that this connection was positive and nonlinear. The results of this study confirm these
findings and the findings of other research [28,32,35], which claim that the increase in
the AADT leads to an increase in accident frequencies. The factor NRCURVE presents
the effect of horizontal curves on the accident frequency. It has been found that with the
increase in horizontal curves, the probability of the total number of traffic accidents is
higher. The positive sign followed by this variable has also been reported by other authors.
Shankar et al. [60] argued that the number of horizontal curves with a design speed of up to
112.60 kph positively affects the accident frequency. Venkataraman et al. [61] reported that
the number of horizontal curves in a segment is associated with the increase in property
damage accident frequency and accident frequency with possible or evident injury. On the
other hand, Milton et al. [62] argued that the higher the horizontal curve density decreases,
the more likelihood of injury accidents. These results can be the consequences of risk
compensation (on the part of the drivers). Namely, if there are a large number of horizontal
curves on a road segment, especially with a smaller radius, it is expected that a lower
speed limit will be posted on the road segment and that drivers will drive at a lower speed,
resulting in a reduction in the accident severity rather than accident frequency. A positive
sign of the coefficient of the independent variable DAR is that the accident frequency will
increase if there is a higher density of access roads on a road segment. These results confirm
the findings of earlier studies that a higher density of access roads [55], number of access
roads [18], or access points [41] increase the accident frequency. The number of access
roads on a road segment increases the number of conflict points, and it is expected that the
accident frequency will be higher. The independent variables SPEEDLIMIT and IRI were
statistically significant in the Poisson and NB models. However, the RENB model showed
that these variables were not statistically significant predictors in this data set. The influence
of the posted speed limit on the accident frequency is complex. The authors [53] showed
that a higher speed limit leads to a higher number of accidents, while another group of
researchers [29,38,39] claimed it led to a reduction in the accident frequency. Differences
in the results obtained can be interpreted as a consequence of unobserved heterogeneity.
However, in this study, similar to the study by Ahmed et al. [63], it has been revealed that
the posted speed limit is not significantly related to the accident frequency. Although the
independent variable SPEEDLIMIT is not statistically significant, the positive sign of its
coefficient indicates that it tends to affect the increase in the accident frequency. In contrast,
research by [27,52], concerning the IRI coefficient, indicates that it tends to influence the
increase in the accident frequency.

It is necessary to emphasize certain limitations in this study. A number of property
damage accidents were not reported and they were not included in the accident database.
Yamamoto et al. [64] found that unreported accidents lead to an inaccurate assessment of the
parameters of independent variables. In addition, some accidents were incorrectly entered
into the Unique Information System, which could not be included in the analysis. On the
other hand, the statistical models themselves produced certain limitations in the modeling
of accidents. Lord and Mannering [7] systematized the potential problems and limitations
that modelers can encounter when modeling and analyzing the accident frequency.
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The results of this research can help road authorities make decisions about interven-
tions and investments in road networks, designing new roads, and reconstructing existing
ones. The developed model is a particularly useful tool in the implementation of the Road
Safety Impact Assessment because it represents a new method for predicting accident
frequency, which can help when choosing the design variants. In addition, it has been
established that it is necessary to reduce the number of horizontal curves whenever pos-
sible. However, if the number of horizontal curves cannot be reduced, it is necessary to
design curves with more favorable geometric elements or to design additional traffic signs.
Moreover, the results of the impact of access road density on accident frequency support the
implementation of modern procedures, i.e., road safety audits and road safety inspections.
More precisely, they support the reduction of the number of access roads to the main roads
when possible, to reduce the number of conflict points.

Further research should be directed to developing road accident prediction models by
taking into account different terrain characteristics besides flat environments. In addition,
due to the problems that often exist in urban areas, such as traffic management, road
geometry, etc., it is necessary to develop a suitable evaluation method for urban roads.
Contemporary tools and techniques, such as machine learning or alternative regression
models for count data (e.g., the Conway–Maxwell–Poisson model), offer the potential for
accident frequency modeling, and an opportunity for further research in this area.
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