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Abstract: Root anchoring provides nonnegligible assistance to prevent soil erosion and stabilize
slopes. The anchoring ability of plants suffers a tremendous impact from the soil conditions and the
root characteristics. To reveal the root reinforcement effect, a group of pullout tests was conducted on
five different tree root systems (Pinus tabulaeformis, Betula platyphylla, Larix gmelinii, Quercus mongolica,
and Ulmus pumila) with different soil moisture contents and soil dry weights. The results indicate that
the root property (species, diameter, and tensile strength) and soil condition (water content 9.72%,
12.72%, 15.72%, 18.72%, and dry weight 1.32 g/cm3, 1.42 g/cm3, 1.52 g/cm3) had a significant effect
on the anchoring effect of the soil. The anchoring effect is more obvious for the roots with a larger
diameter and higher tensile strength. With the increase in the soil water content and the dry weight,
the root system is more prone to failure but the root anchoring effect of soil with an optimum soil
water content performs the best. Among the five different tree species, Pinus tabulaeformis roots were
the least effective in anchoring the soil and Betula platyphylla roots performed the best.

Keywords: anchorage mechanics of roots; pullout test method; soil properties; tree species

1. Introduction

Plant roots play an important role in reinforcing the soil, preventing harmful soil
movement, and stabilizing the plant itself. A proper understanding of root reinforcement
and anchoring mechanisms is important to prevent soil erosion and stabilize slopes and
riverbanks [1–5].

Root reinforcement of the soil is divided into two types: fine-root reinforcement [6]
and large-root anchoring [7]. Studies on root anchoring have shown that vertical roots can
penetrate deep into the soil and enhance soil stability through friction between the primary
and lateral roots and the soil body [8–10]. The root system pullout resistance in soil plays
a critical role in root anchorage and has received much attention in past studies [11–13].
The anchoring effect of root systems in the soil is mainly verified by root pullout tests
and numerical simulations [14,15]. The major factors influencing it include soil physical
properties, soil shear strength, root distribution, root morphological characteristics, and root
tensile properties [16–19]. Some scholars analyzed root pullout resistance and displacement
curves by root pullout tests and studied the characteristics of mechanical processes and
damage modes of roots being pulled out of the soil [20–22]. The physical properties of
the soil have a significant effect on the anchoring effect of the root system [23]. According
to pullout tests on tree and shrub roots, the maximum pullout force of plant roots in soil
decreases with increasing soil water content [24,25]. The tensile strength of roots in soils
with low water content increases significantly [26,27]. At the same time, plant roots have a
significant enhancement of soil shear strength under high water content soil conditions,
which improves soil stability [28,29]. In addition, the different soil types (freely draining
mineral soils, gleyed mineral soils, peaty mineral soils, and deep peat soils) had an obvious
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effect on the anchorage of the roots [30]. The results of numerical simulations showed that
the soil type (clay soils, sandy soils, clay loam soils) had a strong influence on the resistance
to uprooting [31]. Therefore, soil properties have an important effect on root anchorage
performance, but the effect of different dry weight soils on root anchorage performance is
less reported.

Regarding the influence of plant roots on the anchorage effect. Enno et al. [32] proposed
a critical root length (Lcrit) to define the fracture and slip of the root system in the soil
during pullout, a value proportional to the root diameter. There is a positive correlation
between root tensile properties and maximum pullout force in pullout tests [33], and
Young’s modulus also plays an important role in root anchorage [34,35]. Different root
diameters and root water content of different tree species have a significant effect on
tensile strength [36]. The results of some root pullout tests showed that branching and
bending of roots increased the anchorage force [13,37], and the branch angle and branch
root diameter of the branch root system affected the anchorage characteristics between the
root system and the soil [35,38]. The root pullout force increased with the loading rate and
the depth of root addition [39,40]. In addition, some scholars have constructed theoretical
models of root anchorage through numerical simulations to investigate the mechanisms
of root configuration, soil properties, root branching patterns, and root distribution on
root anchorage to soil [15,41–43]. However, the numerical models must be based on
in situ or laboratory experimental data on root anchoring. Several past scholars have
discussed the anchoring effect of roots of many different tree species through in situ and
indoor pullout tests, such as Pinus sylvestris L. [44], Brassica apus L. [10], Eugenia grandis
Wight [45], Chamaecyparis obtuse [46], Salix babylonica, and Juglans ailanthifolia [14]. Kurniatun
et al. discussed the differences in root distribution of five tree species (Swietenia mahogani,
Gmelina arborea, Toona sureni, Coffea canephora, and Bambusa arundinacea) on the soil anchoring
effect [47]. The root anchorage properties of many tree species widely planted in northern
China have been less reported.

In summary, previous scholars have conducted numerous studies on the anchoring
effect of root systems on soils. However, less attention has been paid to the relationship
between soil dry weight and different tree species on root reinforcement of soil in previous
studies. The roots anchorage properties of five tree species (Pinus tabulaeformis, Betula
platyphylla, Larix gmelinii, Quercus mongolica, and Ulmus pumila) widely planted in northern
China were investigated in this study. The pullout test method in the laboratory to test
the anchorage mechanics on the root–soil interface was used. The effect of tree species,
roots diameter, water content, and dry weight of soils on the roots anchorage properties are
discussed based on the experimental test results.

2. Materials and Methods
2.1. Study Area

The roots and soil for tests were obtained in the Beigou forestry field (800–1600 m
altitude, 40◦54′33′′ N, 117◦27′38′′ E) located in Hebei province in northeastern China. The
region has cold-temperate and medium-temperate, semi-arid and semi-humid transition
continental monsoon climate, with an annual average temperature of −1.4–4.7 ◦C. In this
region, the rainfall is mainly concentrated in June–September with an annual average
rainfall of 390–570 mm. The soil in the area is a representative sandy soil of the Rocky
Mountain region in the north of China, a fine sandy loam with dark brown and light-colored
grains. As the climate of Beigou Forest is humid all year round, the topography and soil
conditions are suitable for the growth of Pinus tabulaeformis, Betula platyphylla, Larix gmelinii,
and other plants.

2.2. Soil and Root Collection

Five species of trees commonly found in the study area were selected for this exper-
iment, three trees were excavated for each species. All the trees were located on sunny
slopes. The mean slope angle was 8◦. The mean tree age and mean height at breast height
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were 25 years and 9.2 cm (Pinus tabulaeformis), 24 years and 10.3 cm (Betula platyphylla),
21 years and 13.3 cm (Larix gmelinii), 22 years and 8.5 cm (Quercus mongolica), and 27 years
and 12 cm (Ulmus pumila), respectively. All the roots were sampled with the whole root
system excavating method. The chosen trees were cut 30 cm above the ground. The soil
around the trunk was cleaned out carefully until the root system was entirely exposed as
shown in Figure 1. Then, the roots were taken out, being careful to avoid any root damage
or stress. The excavated roots were put in sealed bags and transported to the laboratory
then stored in the refrigerator at 4 ◦C. To ensure the freshness of the roots, the roots were
subjected to pullout tests within 1 month after sampling. After collecting the roots, the
soil near the roots of the plants in the soil pit shown in Figure 1 was collected and the top
layer of soil (0–20 cm) discarded. The collected soil was sieved through a 2 mm mesh and
then sent to the laboratory for analysis of the physical properties of the soil. The following
section describes the soil and root system properties in detail.

Figure 1. Root morphology of five tree species, i.e., (a) Pinus tabulaeformis (b) Betula platyphylla
(c) Larix gmelinii (d) Quercus mongolica, and (e) Ulmus pumila.

2.3. Test Methods

Based on the indoor pullout test method, we designed a test apparatus independently,
as shown in Figure 2. The test apparatus consists of a drive system, a loading system, a
specimen system, and a data acquisition system. Among them, the driving system is mainly
composed of two synchronous self-servo motors and vertical linear motion units. The
loading system mainly consists of a portal frame, motion beam, and fixture. The specimen
system mainly consists of a sample box and a liftable sample table. The sample box is a cube
made of steel plate with dimensions of 200 mm× 200 mm× 200 mm. There is a narrow gap
(2 cm × 5 cm) in the center of the upper surface, and the upper narrow gap and one side of
the plate are removable. The sample table is fixed to the bottom of the rigid frame. The
data acquisition system mainly consists of a load cell (CYB-S-10, Beijing Zhongke Mingwei
Technology Co., Beijing, China), a precision displacement transducer LVDT (ZKL-A-300,
Beijing Zhongke Mingwei Technology Co., Beijing, China), a data acquisition instrument,
and data acquisition and analysis software (DAQ, Beijing Zhongke Mingwei Technology
Co., Beijing, China).
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Figure 2. Structure of the pullout test.

The test procedure was as follows: first, soil preparation was performed according to
the soil water content of the experimental design. The soil was added to the sample box in
five layers and then laterally compacted in layers using a removable cube. After filling half
of the third layer with soil, a single stand was placed in the soil through a pre-drilled hole
in the steel plate at a set burial depth and then the other half of the third layer was added
for compaction. Finally, the last two layers of soil were added. After soil compaction, the
roots were in the center, thus ensuring uniform root stress. The final specimen system is
shown in Figure 3. The test was designed with a single root burial depth of 150 mm, a free
end of 50 mm, and a collet clamping length of 120 mm for each tree species, for a total of
320 mm. It was also ensured that the diameter of the entire root system did not vary more
than 0.5 mm along the root length. A pullout load speed of 10 mm/min was set and the
data were collected through the data acquisition system.

Figure 3. Specimen system of soil–root anchorage.
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In this paper, first, the physical properties and root properties of the soil were deter-
mined. Second, five tree species were divided into 10 sets for root pulling tests, as shown in
Table 1. The factors influencing the tests included soil water content (9.72%, 12.72%, 15.72%,
18.72%), soil dry weight (1.32 g/cm3, 1.42 g/cm3, 1.52 g/cm3), root property (diameter and
tensile strength), and five tree species (Pinus tabulaeformis, Betula platyphylla, Larix gmelinii,
Quercus mongolica, and Ulmus pumila). Based on the results of pullout tests, two failure
modes were found, root breakage failure and pullout failure. Breakage failure refers to
the root system breaking during the pullout process, and pullout failure refers to the root
system being completely pulled out of the soil. Finally, the L-S (Pullout load–Slippage)
curve was plotted, and the L-S curve showed the variation process of pullout load with
the amount of root system slip during the pullout process. The L-S curve was used to
analyze the effects of soil properties, root property, and tree species on root–soil anchorage
characteristics. The regression equation of maximum bond force (Fbmax) and root system
diameter (Dr) with different moisture contents and tree species was also established using
Matlab (R2019b, MathWorks USA, Inc., Natick, MA, USA) software.

Table 1. Pullout test scheme and two failure modes for five tree species.

Tsrn Tree Species Ws (%) ρs (g/cm3) Drmax (mm) Drmin (mm)
Nr

Breakage Pullout

1 Pinus tabulaeformis 9.72 1.52 9.52 1.41 2 16
2 Pinus tabulaeformis 12.72 1.52 9.56 1.45 4 13
3 Pinus tabulaeformis 15.72 1.52 9.34 1.35 4 14
4 Pinus tabulaeformis 18.72 1.52 9.26 1.43 4 14
5 Pinus tabulaeformis 12.72 1.42 9.51 1.27 4 14
6 Pinus tabulaeformis 12.72 1.32 9.42 1.43 2 16
7 Betula platyphylla 12.72 1.52 9.59 1.47 5 14
8 Larix gmelinii 12.72 1.52 9.34 1.55 8 10
9 Quercus mongolica 12.72 1.52 8.11 1.39 3 13
10 Ulmus pumila 12.72 1.52 9.19 1.69 4 15

Tsrn—root group number; Ws—water content of soil of sample; ρs—dry weight of soil of sample; Drmax—the
maximum diameter of root tested; Drmin—the minimum diameter of root tested; Nr—the number of the root tested
with different failure mode.

3. Soil and Root Properties
3.1. Soil Physical Properties

The soil is a representative sandy soil of the Rocky Mountain region of northern China
with dark brown and light-colored grains. Five in-situ soil samples were collected with a
ring knife, and the water content and dry density of the soil were measured using the oven-
drying method (drying at 105 ◦C). A measure of 200 g of soil samples was weighed and a
combined liquid limit and plastic limit tester (LP-100D, Beijing Aerospace Huayu Testing
Instruments Co., Beijing, China) was used to measure the liquid limit and plastic limit of the
soil. Based on the measured results, the plastic index of the soil was calculated and the soil
type was determined to be sandy clay. The particle gradation of the soil was analyzed using
a laser particle size analysis instrument (Mastersizer 3000E, Sage Technology Co., Beijing,
China). The physical properties of the soil in the test area are summarized in Table 2.

Table 2. Physical properties of the slope soil in the test area.

Indicator
Items

Dry
Weight/g/m3

Water
Content /%

Liquid
Limit (%)

Plastic
Limit (%)

Soil Grain Size (mm) Distribution (%)

<0.001 mm 0.001–0.005 mm 0.005–0.01 mm 0.01–0.05 mm

/ 1.52 12.72 24.12 9.51 6.53 3.47 4.08 36.73
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3.2. Root Traits of Five Tree Species

The root traits of the five tree species were carefully measured in the field after digging
the roots. The parameters, such as root diameter along the root length, root length in each
soil layer, and the dry weight of roots were measured. The mean root length of the five tree
species with different root diameter groups was calculated after measuring the root lengths
as shown in Table 3. The roots were divided into five groups based on the root diameters:
1–3 mm (C1), 3–5 mm (C2), 5–10 mm (C3), and 10–20 mm (C4), and >20 mm (C5).The
soils around the tree were divided into five layers along the depth direction: 0–20 cm (S1),
20–40 cm (S2), 40–60 cm (S3), 60–80 cm (S4), and 80–100 cm (S5). The mean root length of
five tree species in different layers was calculated as shown in Table 4. The biomass of roots
is one of the important factors of root morphology. The root biomass of the five tree species
with different root diameter groups was measured after sampling as shown in Table 5.

Table 3. Mean root length of five tree species with different root diameter groups (mm).

Tree Species C1 C2 C3 C4 C5

Pinus tabulaeformis 1784.3 ± 130.4 1038 ± 97.5 1819 ± 158.1 460.7 ± 39.2 359.7± 31.1
Betula platyphylla 1904.0 ± 110.7 1982.7 ± 156.8 2054.7 ± 186.3 667.0 ± 131.6 331.0 ± 42.7

Larix gmelinii 1909.0 ± 27.5 1357.0 ± 133.9 1645.3 ± 88.0 971.0 ± 89.1 472.1 ± 44.5
Quercus mongolica 1859 ± 304.0 1033.0 ± 237.1 1607.7 ± 137.0 603.0 ± 93.4 243.7 ± 42.5

Ulmus pumila 1488.7 ± 115.1 1278.7 ± 25.7 1442.7 ± 149.2 608.7 ± 69.8 372.0 ± 59.9

Table 4. Mean root length of five tree species in different soil layers (mm).

Tree Species S1 S2 S3 S4 S5

Pinus tabulaeformis 1448.0 ± 120.2 2571.3 ± 85.2 848.0 ± 76.2 346.0 ± 60.2 185 ± 29.1
Betula platyphylla 2310.7 ± 271.3 3263.3 ± 182.2 862.0 ± 138.5 349.3 ± 88.5 155.3 ± 15.9

Larix gmelinii 2456.3 ± 70.1 2752.3 ± 143.8 795.3 ± 179.9 233.0 ± 55.7 168.0 ± 45.7
Quercus mongolica 1676.3 ± 159.6 2527.3 ± 647.2 976.3 ± 141.1 340.3 ± 51.0 188.7 ± 34.0

Ulmus pumila 1438.0 ± 99.1 2264.7 ± 107.9 884.3 ± 129.6 437.3 ± 85.9 196.7 ± 26.3

Table 5. Mean biomass of five tree species with different root diameter groups (g).

Tree Species C1 C2 C3 C4 C5

Pinus tabulaeformis 30.2 ± 3.9 53.8 ± 5.8 277.0 ± 12.1 273.5 ± 87.4 852.1 ± 63.6
Betula platyphylla 51.2 ± 4.1 170.1 ± 23.7 419.2 ± 45.1 622.7 ± 50.1 979.9 ± 122.4

Larix gmelinii 52.1 ± 10.7 116.7 ± 21.2 536.4 ± 56.8 698.9 ± 55.5 2309.2 ± 247.9
Quercus mongolica 24.5 ± 14.1 66.8 ± 5.6 300.4 ± 41.4 584.7 ± 60.2 1385.9 ± 92.6

Ulmus pumila 29.7 ± 7.4 111.4 ± 11.3 365.1 ± 15.7 501.4 ± 27.1 968.4 ± 137.5

3.3. Root Tensile Resistance of Five Tree Species

The root tensile properties of the five tree species were tested using a universal testing
machine with a range of 100 kN (WDE-100). The root resistance of the five tree species
is shown in Table 6. Many roots were tested (the minimum number of samples was 27
(Ulmus pumila), the maximum number of samples was 250 (Betula platyphylla)) and the
root diameter ranged from 0.5 mm (Pinus tabulaeformis) to 9.57 mm (Betula platyphylla).
The tensile test data were imported into Matlab software for fitting the equations. The
regression equation for the relationship between root diameter and root tensile strength
was established, as shown in Table 6. As shown by the correlation coefficient R2 (the
minimum value of the correlation coefficient was 0.7327 (Ulmus pumila) and the maximum
value reached 0.9627 (Pinus tabulaeformis)), the regression equation was in good agreement
with experimental results. Thus, the root tensile resistance had a marked exponent relation
to the root diameter for each tree species. The larger the diameter of the root system, the
greater the tensile strength.
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Table 6. Root tensile resistance of five tree species.

Tree Species D (mm) Dm (mm) fm (N) N Regression Equation R2

Pinus tabulaeformis 0.5~7.75 2.864 ± 1.53 118.809 ± 124.4 152 F = 5.312D1.7513 0.9627
Betula platyphylla 0.6~9.57 3.203 ± 1.93 250.06 ± 326.04 250 F = 19.912D1.881 0.9469

Larix gmelinii 1.86~7.17 4.395 ± 1.12 181.161 ± 87.27 81 F = 17.753D1.552 0.8534
Quercus mongolica 1.99~6.5 3.686 ± 1.07 255.807 ± 149.53 31 F = 23.879D1.7638 0.9471

Ulmus pumila 2.5~6.69 4.113 ± 1.19 250.778 ± 109.11 27 F = 45.694D1.1813 0.7327

D—root diameter; Dm—the mean root diameter; fm—the mean root tensile resistance; N—the number of samples
tested; Regression equation—the equation of relationship between root diameter and root tensile resistance;
R2—correlation coefficient.

4. Results and Discussion
4.1. Root Pullout Test Pullout Load–Slippage Curves

The root–soil pullout test L-S (Pullout load–Slippage) curves are shown in Figure 4
and correspond to the results of the 10 sets of tests in Table 1. The curves showed multiple
peaks with a clear dominant peak. The root slip value increases with increasing pullout
load, and after the pullout load reaches its maximum value, the pullout load decreases
with increasing slip and then shows a fluctuating decrease until the end of the test. Each set
of curves contains pullout test curves with the same test conditions but different diameters.
From each set of curves, it can be found that many curves do not start from the coordinate
origin. When the root system started to slip, a certain magnitude of pullout load was
already applied to the root system. We define the pullout load as when the root system
starts to slip as the initial pullout load. Therefore, from the L-S curve obtained from the
pullout test, we can directly obtain the maximum frictional anchorage load at the root
system–soil interface, the peak slip, and the initial pullout load.

As shown in Figure 4, the maximum pullout load increases with increasing root system
diameter. However, due to the biological characteristics of the forest tree root system, the
different surface conditions of the root system itself, the number of nodes, etc. all have an
effect on the anchoring performance of the root system to the soil [23,47]. As a result, some
root curves with larger diameters were instead below the curves with smaller diameters,
although the general trend is that the maximum pullout load increases as the diameter
increases. The slope of the curve also tends to increase with the diameter, and the slope
of the curve represents the stiffness of the action of the frictional anchorage between the
root system and the soil. The greater the stiffness, the greater the ability of the interface
frictional anchorage to resist slippage. As seen from the 10 sets of pullout curves, the larger
the diameter of the root system under the identical pullout load, the smaller the amount of
slip that occurred. Therefore, the root anchoring effect on soil increases with the increase of
root diameter.

4.2. Failure Mode of the Roots

For Pinus tabulaeformis roots, the anchorage mechanical properties under different soil
water content and different soil dry weights were tested with the pullout test method in the
lab. The water content of the soil used in the pullout test specimen as designed was 9.72%,
12.72%, 15.72%, and 18.72%. The dry weight of the soil used in the pullout test specimen as
designed was 1.52 g/cm3, 1.42 g/cm3, and 1.32 g/cm3. The test results showed that there
were two types of failure modes of the roots during the pullout test for the five tree species.
One is the root breakage failure, which is when the root is broken during the pullout test.
The other type is pullout failure, that is, the root was pulled out from the soil completely
during the pullout test. Table 1 shows the failure mode of the single root of five tree species
after the pullout test. The failure mode of all the roots tests with different diameters is
shown in Figure 5.
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Figure 4. Cont.
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Figure 4. Curves of pullout load–root slippage, i.e., (a) Pinus tabulaeformis L-S curve
(ρs = 1.52 g/cm3,Ws = 9.72%) (b) Pinus tabulaeformis L-S curve (ρs = 1.52 g/cm3, Ws = 12.72%)
(c) Pinus tabulaeformis L-S curve (ρs = 1.52 g/cm3,Ws = 15.72%) (d) Pinus tabulaeformis L-S curve
(ρs = 1.52 g/cm3,Ws = 18.72%) (e) Pinus tabulaeformis L-S curve (ρs = 1.42 g/cm3, Ws = 12.72%)
(f) Pinus tabulaeformis L-S curve (ρs = 1.32 g/cm3, Ws = 12.72%) (g) Betula platyphylla L-S curve
(ρs = 1.52 g/cm3, Ws = 12.72%) (h) Larix gmelinii L-S curve (ρs = 1.52 g/cm3, Ws = 12.72%) (i) Ulmus
pumila L-S curve (ρs = 1.52 g/cm3, Ws = 12.72%) (j) Quercus mongolica L-S curve (ρs = 1.52 g/cm3,
Ws = 12.72%).

For roots that undergo breakage failure mode, when anchored in the soil, one end in
the soil can be equated to being clamped. When the other end is stressed, the force required
for the root to undergo breakage failure is equal to the maximum tensile strength of the
root system. Therefore, the maximum pullout force was the maximum tensile resistant
force that the root could bear. Figure 5 shows the maximum pullout force of the Pinus
tabulaeformis roots with breakage failure mode under different experimental conditions.
Table 5 gave the regression equation of the tensile resistance of the Pinus tabulaeformis roots.
The calculated root resistance of the roots with breakage failure mode could be obtained
based on the regression equation as shown in Figure 6. The calculated root resistance of the
root with breakage failure mode was close to the maximum pullout force of the root.
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Figure 5. The failure mode of the roots with different diameter.

Figure 6. The maximum pullout force of roots with breakage failure.

There were two types of failure modes for the roots tested using the pullout test
method. This result is consistent with previous studies [12,40]. The previous studies
showed that the tree was broken on the stem or uprooted when the interaction between
soil and root could not counteract the effect of wind load or flood load. When the tree was
broken on the stem, the root did not fail. When the tree was uprooted, the root was broken
or pulled out, indicating that the real failure mode of the root also had two types: pullout
failure and breakage failure.

4.3. Effect of Soil Water Content on Anchoring Action

The physical properties of the soil had a significant effect on the failure mode of the
root pullout test, as shown in Table 1 and Figure 5. Firstly, the water content of the soil
influenced the root failure mode. Table 7 shows the situation when breakage failure occurs
in roots at different soil water contents. As seen in Table 7, the maximum root diameter
with breakage failure mode increased with the soil water content. The root was more easily
broken during the pullout test when the level of the water content of the soil increased. With
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increasing soil water content, the roots were more easily broken because of the increasing
pullout force reaching the larger diameter roots’ tensile resistance. As mentioned above,
based on the principle of force equilibrium, the maximum bond force between root and
soil should be equal to the maximum pullout force recorded by the computer during the
pullout test. As shown in Table 8, the regression equation of the maximum bond force
(Fbmax) and root diameter (Dr) under different soil water content could be established based
on the experimental data.

Fbmax = 50.411Dr − 77.266
(

R2 = 0.991, Ws = 9.72%
)

;

Fbmax = 39.491Dr − 14.891
(

R2 = 0.954, Ws = 12.72%
)

;

Fbmax = 58.908Dr − 71.812
(

R2 = 0.961, Ws = 15.72%
)

;

Fbmax = 58.223Dr − 83.417
(

R2 = 0.963, Ws = 18.72%
)

.

Table 7. Root breakage failure under different soil water content.

Ws (%) Dr (mm) ρs (g/cm3) Nr

9.72
1.41 1.52 Broken
1.52 1.52 Broken

12.72

1.45 1.52 Broken
1.47 1.52 Broken
2.42 1.52 Broken
2.57 1.52 Broken

15.72

1.35 1.52 Broken
1.57 1.52 Broken
2.46 1.52 Broken
2.54 1.52 Broken

18.72

1.43 1.52 Broken
1.50 1.52 Broken
2.44 1.52 Broken
2.77 1.52 Broken

Table 8. Comparison of the maximum pulling force of Pinus tabulaeformis and its corresponding
displacement data under different soil water content.

Dr (mm) ρs (g/cm3) Ws (%) Nr Pulling Force (N) Displacement (mm)

1.41 1.52 9.72 Broken 26.44 6.82
1.45 1.52 12.72 Broken 28.42 6.83
1.35 1.52 15.72 Broken 31.51 7.03
1.43 1.52 18.72 Broken 30.65 10.87
3.27 1.52 9.72 Pullout 73.91 12.83
3.17 1.52 12.72 Pullout 85.11 13.46
3.25 1.52 15.72 Pullout 89.68 13.19
3.19 1.52 18.72 Pullout 69.78 10.93
5.05 1.52 9.72 Pullout 156.33 10.63
5.00 1.52 12.72 Pullout 181.78 11.27
5.03 1.52 15.72 Pullout 242.12 12.50
5.07 1.52 18.72 Pullout 227.40 11.06
7.24 1.52 9.72 Pullout 243.96 10.00
7.25 1.52 12.72 Pullout 283.37 10.87
7.20 1.52 15.72 Pullout 377.34 11.63
7.23 1.52 18.72 Pullout 352.90 11.91

From the four equations above and from Figure 7, we can see that there was very
significant linear positive correlation between Fbmax and Dr under different levels of soil
water content. Based on Figure 7 and Table 8, the maximum bond force of the roots under
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Ws of 15.72% was larger than under other levels of Ws. That is, under a soil water content
of 15.72%, the maximum bond force between soil and root reached the highest value. When
the root diameters were similar, the Fbmax under Ws of 15.72% could be 10–30% higher than
under other three levels of Ws. Based on these results, if the specimens tested in this study
were more numerous, the largest root diameter with breakage failure mode should be in the
testing group under soil water content of 15.72%. As shown in Figure 8, the water content
does not have a very obvious effect on the peak slip even under the same conditions. From
the mean value, the mean value of peak slip is 10.17 mm for 9.72% water content, 12.26 mm
for 12.72% water content, 11.82 mm for 15.72% water content, and 11.06 mm for 18.72%
water content, which is close to the mean value of peak slip. Therefore, we can say that the
water content of the soil has no significant effect on the peak slip.

Figure 7. Maximum pullout force of the root system of Pinus tabulaeformis under different soil
water content.

Figure 8. Peak slip of Pinus tabulaeformis root system under different soil water content.

Fan and Su investigated the effect of soil water content on the deformation of root-
reinforced soil and found a significant correlation between the shear strength of root-
reinforced soil and soil water content [48]. The maximum pullout force and root–soil
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friction coefficient of the sea buckthorn root system decreased with increasing soil water
content [24], and the pullout resistance of the paper mulberry root system decreased
significantly with increasing soil water content [25]. Our study found that there is a
reasonable soil water content which made the bond force between roots and soils reach
the maximum value. Based on this study condition, the soil water content which made the
bond force reach maximum value was close to 15.72%.

4.4. Effect of Soil Dry Weight on Anchorage Action

The effect of the dry weight of the soil on the failure mode of the root system is quite
evident. The higher the dry weight, the easier the root system is to be broken, and the lower
the dry weight, the easier the root system is to be pulled out. This can indicate that the soil
dry weight is high and the soil is in closer contact with the root system. The greater the
anchoring force between the root system and the soil under the pullout load, the less likely
the root system will be pulled out. Under the level of soil dry weight of 1.52 g/cm3, there
were four roots with breakage failure mode (1.45 mm, 1.47 mm, 2.42 mm, 2.57 mm). Under
the level of soil dry weight of 1.42 g/cm3, there were four roots with breakage failure mode
(1.27 mm, 1.39 mm, 2.40 mm, 2.53 mm). Under the level of soil dry weight of 1.32 g/cm3,
there were two roots with breakage failure mode (1.43 mm, 1.57 mm). From the test results,
we found that the roots were easier to break at the higher level of soil dry weight.

Table 9 shows the pullout force and displacement obtained from root pullout tests with
pine trees at 12.72% soil moisture content and dry densities of 1.52, 1.42, and 1.32 g/cm3.
Four root systems of similar diameters were selected for each soil dry weight. As shown
in Table 9 and Figure 9, the pullout force when the root system was broken with a small
diameter did not show a monotonic trend with decreasing dry weight of the soil. The
pullout force when the root system was pulled out decreased with the decrease of soil
dry weight. The effect of soil dry weight on root–soil relative displacement showed a
clear pattern. As shown in Table 9 and Figure 10, the displacement when the root system
was pulled off with a small diameter was smaller than the displacement when the root
system was pulled out, and the displacement of the pullout root system decreased with the
increase of the root system diameter. The displacement of the root system at each diameter
level decreased with the decrease of the dry weight of the soil. Because the greater the
dry weight of the soil, the closer the contact between the roots and soil, the greater the
friction between the roots and soil, and the load on the root system in the soil exceeds the
maximum net friction to produce sliding. The displacement values listed in Table 9 and
Figure 10 are the partial elongations of the root system before it slides relative to the soil as
a whole. This elongation increases as root–soil friction increases when the root system is
deformed by elongation.

Table 9. Comparison of the maximum pulling force of Pinus tabulaeformis and its corresponding
displacement data under different soil dry weight.

Dr (mm) Ws (%) ρs (g/cm3) Nr Pulling Force (N) Displacement (mm)

1.45 12.72 1.52 Broken 28.42 6.83
1.39 12.72 1.42 Broken 26.91 6.42
1.43 12.72 1.32 Broken 27.36 6.41
3.17 12.72 1.52 Pullout 85.11 13.46
3.21 12.72 1.42 Pullout 80.60 12.87
3.21 12.72 1.32 Pullout 72.43 12.11
5.00 12.72 1.52 Pullout 181.78 11.27
5.07 12.72 1.42 Pullout 172.95 10.70
5.10 12.72 1.32 Pullout 154.15 10.41
7.25 12.72 1.52 Pullout 283.37 10.87
7.31 12.72 1.42 Pullout 269.02 10.23
7.23 12.72 1.32 Pullout 240.68 9.87
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Figure 9. Maximum pullout force of Pinus tabulaeformis roots under different soil dry weight.

Figure 10. Peak slip of single roots of Pinus tabulaeformis at different soil dry weight.

As the dry weight of soil decreases, the contact between root and soil is loosened by
the increase of soil particle spacing, and the contact area between soil particles and the root
system is reduced, which leads to a decrease in root–soil friction. Su et al. predicted by
numerical simulation that the maximum pullout force of the cedar root system increased
slowly with the increase of soil dry weight [43]. This conclusion is similar to the test
results in this paper, and the increase in soil dry weight has a positive effect on the root
anchorage effect.

4.5. Effect of Root Species on Anchoring Action

Based on the data in Table 3, the root length of Betula platyphylla was the longest of the
five root species, reaching 6928 mm. The root length of Ulmus pumila was the shortest of
the five root species and was only 5154 mm. For the five species, most of the roots were
fine (root diameter < 10 mm, c1, c2, and c3). For the five species, the percentage of the
length of fine roots in the length of the total root reached 85.0% (Pinus tabulaeformis), 85.6%
(Betula platyphylla), 77.3% (Larix gmelinii), 84.2% (Quercus mongolica), and 81.1%mm (Ulmus
pumila). Thus, we mainly studied the anchorage properties of roots with a diameter ranging
from 1 mm to 10 mm. Although the percentage of the length of fine roots in the length of
the total root was high, the percentage of biomass of fine roots in total roots biomass was
small. For the five species, the percentage of biomass of fine roots in the total roots biomass
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was 24.3% (Pinus tabulaeformis), 28.6% (Betula platyphylla), and 19.0% (Larix gmelinii), 16.6%
(Quercus mongolica), and 25.6% mm (Ulmus pumila). The Betula platyphylla root system had
more biomass and a longer length of fine roots among the five species. Based on the data in
Table 4, most of the roots were found in the S1 and S2 soil layers (0–40 cm under the earth
surface). For the five species, the percentage of root length found in layers S1 and S2 of the
length of the total root reached 74.4% (Pinus tabulaeformis), 80.3% (Betula platyphylla), 81.3%
(Larix gmelinii), 73.6% (Quercus mongolica), and 70.9% mm (Ulmus pumila).

As shown in Figure 5 and Table 1, the species of the root had a significant effect on the
root failure mode. The maximum root diameter with breakage failure mode for the five
species was 2.57 mm (Pinus tabulaeformis), 3.2 mm (Betula platyphylla), and 4.13 mm (Larix
gmelinii), 4.21 mm (Quercus mongolica), and 2.89 mm (Ulmus pumila). For the Larix gmelinii
roots, the root with a diameter of 4.21 mm got a breakage failure mode as an exception,
because the roots with diameters ranging from 2.28 mm to 4.17 mm all got a pullout failure
mode. The Larix gmelinii roots should be the easiest to be broken during the pullout test of
the five root species. The Pinus tabulaeformis roots should be the most difficult to be broken
during the pullout test under the same experimental conditions for the five root species.

Based on the data in Figure 11, the regression equation of the maximum bond force
and root diameter of the five species is as follows.

Pinus tabulaeformis Fbmax = 39.491Dr − 14.891
(

R2 = 0.954
)

Betula platyphylla Fbmax = 47.558Dr − 28.877
(

R2 = 0.889
)

Larix gmelinii Fbmax = 44.843Dr − 1.904
(

R2 = 0.831
)

Quercus mongolica Fbmax = 30.909Dr + 52.219
(

R2 = 0.887
)

Ulmus pumila Fbmax = 36.871Dr + 35.244
(

R2 = 0.884
)

Figure 11. The maximum pullout force of the different tree species roots.

For the five species, the maximum bond force had a significant positive correlation
with the root diameter. Based on the data in Figure 11, the maximum bond force between
Pinus tabulaeformis root and soil was the smallest in the five root species. The maximum
bonding force of the Betula platyphylla root system is the highest. As shown in Figure 12,
when the root system of each tree species reached the maximum frictional anchorage,
the greatest peak slip occurred in Larix gmelinii, while the least slip occurred in Quercus
mongolica. In summary, among the five different tree species, Pinus tabulaeformis roots were
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the least effective in anchoring the soil, and Betula platyphylla had the best anchoring effect.
There was no significant effect of different tree species on the peak slip of the root system.

Figure 12. Peak slip of root system of different tree species.

Nicoll et al. believed that complex differences among species and their interactions
with site conditions would affect the anchorage properties of conifer species [30]. As
Figure 1 showed, the root architecture of the different tree species had large differences.
The root architecture influenced the root anchorage properties [21]. The root test in this
study was single root and the branching roots were cut down. The roots chosen were
straight and less bent for ease of comparison. From Figure 2, the roots of Pinus tabulaeformis
were straighter with fewer nodes than the roots of the other four species. The friction force
between the root of Pinus tabulaeformis and soil should be smaller than that of the other
four species because of the smoother surface. This should be the major reason why pine
root systems experience pullout failure patterns in pullout tests. Meanwhile, the tensile
strength of the root system can significantly affect the anchoring effect of the root system
on the soil [24,36]. As shown in Table 5, the tensile strength of the Betula platyphylla root
system was significantly higher than the other four species. This should be the reason why
the Betula platyphylla root system has the best anchoring effect on soil. Finally, in this paper,
only single root pullout tests of root systems were conducted. The analysis of the root
distribution of different tree species on the soil anchoring effect needs to be supplemented
and analyzed in future experiments.

5. Conclusions

This paper investigated the effects of root diameter, soil water content, soil dry weight,
and different tree species on root–soil anchorage properties through indoor single root
pullout tests. The major conclusions drawn from this study are summarized as follows.

(1) The maximum pullout force of the root system increased with increasing root diameter
and tensile strength. The peak sliding decreases with the increase of root system
diameter.

(2) As the soil water content increases, the root system is more susceptible to breakage
failure. An optimum soil water content exists that allows for the best anchoring of the
root system roots. Soil water content has no significant effect on peak sliding.

(3) Root systems are more susceptible to breakage failure as the dry weight of the soil
increases. The maximum tension of the root system decreases with decreasing soil
dry weight. As the soil dry weight decreased, the root displacement also decreased.

(4) In the root pullout test of five species, the root system of Larix gmelinii was the most
susceptible to breakage failure, while the root system of Pinus tabulaeformis was the
least susceptible to breakage. The root system of Pinus tabulaeformis was the least
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effective in anchoring the soil, while the root system of Betula platyphylla was the most
effective in anchoring.
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