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Received: 11 May 2022

Accepted: 22 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Demand Response Analysis Framework (DRAF):
An Open-Source Multi-Objective Decision Support Tool
for Decarbonizing Local Multi-Energy Systems
Markus Fleschutz 1,2 , Markus Bohlayer 2 , Marco Braun 2 and Michael D. Murphy 1,*

1 Department of Process, Energy and Transport Engineering, Munster Technological University,
T12 P928 Cork, Ireland; markus.fleschutz@h-ka.de

2 Institute of Refrigeration, Air-Conditioning, and Environmental Engineering, Karlsruhe University of
Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany; markus.bohlayer@h-ka.de (M.B.);
marco.braun@h-ka.de (M.B.)

* Correspondence: michaeld.murphy@mtu.ie

Abstract: A major barrier to investments in clean and future-proof energy technologies of local
multi-energy systems (L-MESs) is the lack of knowledge about their impacts on profitability and
carbon footprints due to their complex techno-economic interactions. To reduce this problem, decision
support tools should integrate various forms of decarbonization measures. This paper proposes
the Demand Response Analysis Framework (DRAF), a new open-source Python decision support
tool that integrally optimizes the design and operation of energy technologies considering demand-
side flexibility, electrification, and renewable energy sources. It quantifies decarbonization and cost
reduction potential using multi-objective mixed-integer linear programming and provides decision-
makers of L-MESs with optimal scenarios regarding costs, emissions, or Pareto efficiency. DRAF
supports all steps of the energy system optimization process from time series analysis to interactive
plotting and data export. It comes with several component templates that allow a quick start without
limiting the modeling possibilities thanks to a generic model generator. Other key features are
the access and preparation of time series, such as dynamic carbon emission factors or wholesale
electricity prices; and the generation, handling, and parallel computing of scenarios. We demonstrate
DRAF’s capabilities through three case studies on (1) the DR of industrial production processes,
(2) the design optimization of battery and photovoltaic systems, and (3) the design optimization and
DR of distributed thermal energy resources.

Keywords: open-source; decarbonization; decision support; demand response; flexibility; electricity
market; energy system modeling; multi-energy systems; optimization; smart energy technologies

1. Introduction

Following the Paris Agreement 2015 [1] and the Glasgow Climate Pact 2021 [2] there is
an urgent need for decarbonization worldwide. With the European Green Deal approved
in 2020, the European Union (EU) aims to achieve carbon neutrality by 2050 [3]. Energy
system modeling is essential to driving the rapid adoption of smart energy services and
clean innovative technologies needed to decarbonize energy systems [4]. Powerful energy
system modeling frameworks have been presented as proprietary and open-source soft-
ware. Most open-source frameworks, though, were developed with large-scale energy
systems in mind, and only a few focus on decision support for local multi-energy systems
(L-MESs). However, significant adoption of clean technologies and demand response (DR)
programs are required in individual L-MESs, as the success of the energy transition depends
on decentralization. According to the International Energy Agency, 70% of clean energy
investments over the next decade will have to be made by private developers, consumers,
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and financiers [5]. Industrial and commercial electricity consumers can contribute to the ex-
pansion of renewable energy sources (RES), e.g., through on-site photovoltaic systems. At
the same time, they can help to integrate the RES through the smart use of flexible loads and
energy storage through DR, which additionally offers cost-saving potential for companies.
This demand-side flexibility is needed, as the flexibility demand of the electricity system
is expected to quadruple by 2050, even though the availability of conventional flexibility
sources will decrease due to the decommissioning of fossil power plants [6]. Therefore,
in this paper, we focus on how cost and emission reductions that arise from applying DR
to L-MESs, especially in the industrial and commercial sectors, can be quantified using
the Demand Response Analysis Framework (DRAF).

Decarbonization of L-MESs are often considered by minimizing greenhouse gas emis-
sions and costs within multi-objective modeling [7]. E.g., in [8], an efficient energy man-
agement model based on a multi-objective optimal power flow problem is proposed that
considers flexibility of storage units of industrial networks. In [9], the contributions of en-
ergy storage systems, production buffer stocks, and smart transformers to a net zero energy
factory were analyzed. Andiappan [10] reviewed mathematical optimization approaches
for energy system synthesis and identified the concept of eco-industrial parks to be a future
research direction.

1.1. Demand Response

Due to temporal variability, uncertainty, and location constraints, the integration of
high shares of RES is demanding and requires high operational flexibility of the power
system, which could lead to integration costs of RES [11]. In DR, final consumers provide
demand-side flexibility to the electricity system by voluntarily changing their load profiles
in reaction to price signals (price-based DR) or specific requests (incentive-based DR) [12].
It is widely acknowledged that DR is a key element of the transformation to a carbon-free
energy system enabling cost-efficient integration of fluctuating RES [13]. Gils [14] identified
a significant DR potential in Europe; the minimum aggregated hourly averages of load
reduction and increase were 61 and 68 GW, respectively. For a general overview of demand
response, the reader is referred to [15].

1.1.1. DR in the Industrial and Commercial Sector

In recent years, several research projects investigating the DR potentials in the in-
dustrial and commercial sectors have been funded at the European and national level.
Examples on European level are: demand response in industrial production (DRIP) [16],
demand response integration technologies (DRIvE) [17], using the flexibility potential in en-
ergy intensive industries to facilitate further grid integration of variable renewable energy
sources (IndustRE) [18]. Examples on national level are: SynErgie [19], Pilot Project DSM
Bavaria [20], refrigerated warehouses store energy for smart energy grid (FlexLast) [21].
Commercial and industrial enterprises have large DR potentials [22], which can be divided
into cross-sectional technologies [23] and energy-intensive production processes [24]. How-
ever, in order to exploit the full environmental and economic DR potential in the industrial
and commercial sectors, aspects such as dynamic pricing [25], sector coupling, onsite gen-
eration, and onsite energy storage need to be considered in an integral analysis. Due to
this complexity, there is still a lack of knowledge about existing flexibility, which is a major
barrier to participation in DR programs [26]. To address this complexity, mathematical
optimization, which has already been long proven in the analysis of large international
power systems, can be applied to distributed energy systems. However, data preparation,
model formulation, scenario definition, and result presentation require relevant experience
and expertise to which the decision-makers in the companies often do not have access.

The aim of this study was, therefore, to develop and demonstrate the DRAF, which
automates these process steps as far as possible to make the methodology of mathematical
optimization accessible to a broader user group. DRAF is meant to supply insights and
decision support for academics in applied sciences, consulting engineers, and decision-



Sustainability 2022, 14, 8025 3 of 38

makers in companies. Hence, it needs to be portable, easy-to-use, maintainable, editable,
and extensible.

1.1.2. DR and Investments

The consideration of DR within optimal design planning generally results in higher ca-
pacities for assets and storage coupled to the electricity demand, since the associated lower
average utilization rate is over-compensated for by the revenue or cost reductions from
DR. Many analyses of DR potentials are limited to the potential of flexibility derived from
existing assets. However, investment options that alter the existing flexibility, e.g., product
storage extension for a flexible production process, or electrification measures, should
also be considered when assessing the flexibility potential of L-MESs. E.g., Liu et al. [27]
found synergistic effects when energy storage and DR of cooling, heating, and power
were combined.

1.1.3. DR and Carbon Emissions

Electricity carbon emission factors (CEFs) can be categorized into grid-mix emission
factors (XEFs) and marginal emission factors (MEFs). While XEFs are suitable for cal-
culating carbon emission balances of energy consumption, MEFs are superior if the real
carbon emission effects of a short-term demand change are to be approximated. Summer-
bell et al. [28] studied the cost and carbon reduction potentials of a cement plant through
price-based DR using real-time prices (RTP). Although the carbon reduction potential was
calculated from dynamic XEFs, they were not part of an objective function, so the carbon
emissions could not be minimized. Baumgärtner et al. [29] calculated dynamic XEFs and
MEFs for Germany and the year 2016 with an economic dispatch model and used them
in the objective function of a multi-objective problem to design low-carbon L-MESs. They
concluded that at the same costs, emissions can be reduced by 6% when using dynamic
XEFs instead of annual XEFs and by up to 60% when using dynamic MEFs, which high-
lights the significance of using dynamic CEFs. In [30], optimization models considering DR
have been reviewed. A lack of research on DR modeling for commercial and industrial con-
sumers exists. Additionally, we strongly recommend the consideration of environmental
effects by placing the carbon emissions in the objective function. In [31], dynamic XEFs and
MEFs for 20 European countries were calculated, and a stylized price-based DR simulation
was conducted. The results show that looking at national electricity systems, the effect
of price-based DR on operational carbon emissions differs substantially from country to
country and is dependent on the energy demand, generation mix, fuel costs, and carbon
emission prices.

1.2. Energy System Optimization
1.2.1. Multi-Objective Mixed Integer Linear Programming

We focus on multi-objective optimization, which combines two or more individual
objective functions, e.g., the minimization of costs and carbon emissions, to gain a set
of Pareto-optimal solutions [32]. These solutions are the best possible compromises and
can be visualized as Pareto points on a scatter chart to give the user the option to choose
from them.

The two most popular types of optimization methods are metaheuristics and mathe-
matical programming [33]. Both types are used to optimize the operation and design of
complex energy systems. Simplified, one can say that metaheuristics offer advantages for
black-box models or for non-convex problems. In contrast to metaheuristics, mathematical
programming can guarantee the achievement of a global optimal solution if an explicit
equation-based model exists. Among the mathematical programming methods, mixed-
integer linear programming (MILP) has shown to be effective for a wide range of cognate
analyses. For instance, Zhang and Grossmann [34] listed 42 works with mathematical
optimization models for industrial DR, among which, 35 were formulated as MILP models.
For most energy-related components, the system behavior is nonlinear. However, the litera-
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ture largely approximates this system behavior via MILP models where binary variables
are used within the piecewise linear approximations of nonlinear system dynamics [35].
Besides the approximation through formulating a MILP for a nonlinear system, there are
further complexity reduction methods, such as time series aggregation, that can be applied
to MILP models for energy system optimization [36].

In this work, we chose MILP, since the formulated optimization problems can be solved
with global optimality within reasonable time frames. We assume that an explicit equation-
based model exists and that all occurring non-linear phenomena can be approximately
modeled as piecewise linear phenomena.

1.2.2. Open-Source

In the scientific context, the open-source idea is also becoming increasingly prevalent
in the field of energy system analysis [37]. Publishing source code under an open-source
license that is approved by the Open Source Initiative and listed under https://opensource.
org/licenses (accessed on 29 June 2022) not only increases transparency and reproducibility,
but also the quality of the software due to the increased incentive for collaboration [38].
In contrast to models intended for large geographic scales, models for potential analyses
and planning of L-MESs are often created by consulting firms, where the release of source
code is often not in line with current corporate practices [39]. As a consequence, tools for
the analysis of L-MESs are less often published as open-source.

1.2.3. Other Energy System Frameworks/Models

In recent years, the scientific community has produced some comprehensive energy
system modeling frameworks. In [40], 75 modeling tools were reviewed. A review of 24 en-
ergy system models and model generators was presented in [41]. Kriechbaum et al. [42]
reviewed open-source modeling frameworks for grid-based multi-energy systems. A
review on the concepts and validation models of multi-energy systems was conducted
in [43]. Based on the reviews above, Table 1 presents a comparison between DRAF and
other existing frameworks and model generators capable of building bottom-up models for
operation and investment decision support of L-MESs. Note that the table contains some
full-fledged frameworks, such as oemof, whose wide range of functions and aspects cannot
be presented here.

https://opensource.org/licenses
https://opensource.org/licenses
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Table 1. Comparison of DRAF with other bottom-up model frameworks for operation and investment
decision support of L-MESs divided by whether they are open-source. All links were last accessed on
25 November 2021. Sources: Based on [40] and own research as of 25 November 2021.

Framework Open-Source
Model DRAF Focus DRAF Features

Methodology MO Purpose DR MTL IPP TSA MG PP SG IP MD

EnergyPLAN
(https://www.energyplan.eu) [44] 7 Simulation - LTS/IDS 3 7 7 7 - 7 3 3 3

HOMER Pro (https:
//www.homerenergy.com) [45] 7 Simulation a - IDS, ODS 3 7 7 7 - (3) 3 3 3

TOP-Energy
(https://www.top-energy.de) [46] 7 Simulation+(MI)LP 3 IDS, ODS 3 3 7 3 - (3) 3 3 3

Calliope
(https://www.callio.pe) [47]

3 (https:
//github.com/calliope-project/calliope) (MI)LP 3 IDS, ODS 3 3 7 7 3 7 7 3 7

COMANDO (https:
//comando.readthedocs.io) [48]

3 (https://jugit.fz-juelich.de/iek-10/public/
optimization/comando) NLP 3 LTS?, ODS 3 3 3 7 3 7 3 7 7

ficus
(https://ficus.readthedocs.io) [49] 3 (https://github.com/tum-ewk/ficus) (MI)LP 7 IDS, ODS 7 7 3 7 7 7 7 3 7

oemof (https:
//oemof.readthedocs.io) [50] 3 (https://github.com/oemof/oemof) (MI)LP 3

LTS, IDS,
ODS 3 3 3 3 3 (3) 3 3 7

OpenTUMFlex (https:
//opentumflex.readthedocs.io) [51]

3 (https:
//github.com/tum-ewk/OpenTUMFlex) (MI)LP 7 IDS b 3 7 7 3 7 7 7 7 7

OSeMOSYS
(http://www.osemosys.org) [52]

3 (https:
//github.com/OSeMOSYS/OSeMOSYS) LP 7 IDS 7 7 7 c 7 3 7 7 3 7

Temoa
(https://temoacloud.com) [53]

3 (https:
//github.com/TemoaProject/temoa) LP 7 LTS 7 7 7 7 7 7 3 7 7

urbs
(https://urbs.readthedocs.io) [54] 3 (https://github.com/tum-ens/urbs) LP 7 IDS, ODS 3 7 7 7 3 7 7 3 7

DRAF (our approach) 3 (https://github.com/DrafProject/draf) (MI)LP 3 IDS, ODS 3 3 3 3 3 3 3 3 3

3: Applicable; 7: Not Applicable; (3): Partly applicable; a: Optimization through automatic sensitivity analysis;
b: focus on residential sector; c: focus on developing countries; Simulation: computer simulation; LTS: long term
scenarios; IDS/ODS: investment/operation decision support; MO: multi-objective; TSA: time series analysis;
MG: model generator; PP: parameter preparation; SG: scenario generator; IP: interactive plotting; DR: demand
response; MTL: multiple temperature levels; IPP: industrial production processes; MD: metadata handling.

A powerful and versatile framework is the open energy modeling framework
(oemof) [55]. More specifically, oemof is an organizational framework that bundles software
for energy (system) modeling, such as the model generator oemof-solph [56]. However,
oemof-solph uses Pyomo for the model generation, which builds models slower than
the Gurobi Python interface GurobiPy [57]. Metadata such as units, parameter descriptions,
and parameter value sources are not handled by the framework. While oemof cosmos offers
several packages for parameter preparation, such as the load curve generation package
demandlib [58], the preparation of important data for the modeling of price-based DR
in L-MESs, such as dynamic CEFs, is not included. Very recently, Langiu et al., proposed
the framework for component-oriented modeling and optimization for nonlinear design
and operation (COMANDO) [48]. It focuses on nonlinear optimization; however, parameter
preprocessing, interactive plotting, and metadata handling are not included in the pack-
age. There are also efforts to exploit the speed of the relatively new Julia programming
language within energy system modeling, e.g., next energy modeling system for opti-
mization (NEMO) [59], which was informed by the open source energy modelling system
(OSeMOSYS). However, Julia is still a young programming language that lacks the massive
community support needed for our target group, namely, programming beginners [60].

Some frameworks can be used in a flexible manner for manifold analyses (temporal
and geographic resolutions) due to their modular structure and the clear separation be-
tween program logic and data, such as oemof [50]. This generic approach offers crucial
advantages for large-scale power system analyses in terms of transparency, reusability,
and maintainability. However, in order for the software to be used as decision support
in an L-MES, it must be adapted to the specific problem with the following additional steps:

• Model adaptation to industry-specific conditions;
• Research and processing of market data, such as dynamic CEFs (depending on the coun-

try, year, and temporal resolution) and cost functions;

https://www.energyplan.eu
https://www.homerenergy.com
https://www.homerenergy.com
https://www.top-energy.de
https://www.callio.pe
https://github.com/calliope-project/calliope
https://github.com/calliope-project/calliope
https://comando.readthedocs.io
https://comando.readthedocs.io
https://jugit.fz-juelich.de/iek-10/public/optimization/comando
https://jugit.fz-juelich.de/iek-10/public/optimization/comando
https://ficus.readthedocs.io
https://github.com/tum-ewk/ficus
https://oemof.readthedocs.io
https://oemof.readthedocs.io
https://github.com/oemof/oemof
https://opentumflex.readthedocs.io
https://opentumflex.readthedocs.io
https://github.com/tum-ewk/OpenTUMFlex
https://github.com/tum-ewk/OpenTUMFlex
http://www.osemosys.org
https://github.com/OSeMOSYS/OSeMOSYS
https://github.com/OSeMOSYS/OSeMOSYS
https://temoacloud.com
https://github.com/TemoaProject/temoa
https://github.com/TemoaProject/temoa
https://urbs.readthedocs.io
https://github.com/tum-ens/urbs
https://github.com/DrafProject/draf
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• Generation of weather-dependent energy-relevant time series, such as energy yield
time series for photovoltaics (PVs) or thermal load profiles;

• Preparation, analysis, and plausibility checking of project-specific data, such as electri-
cal load profiles,

• Model parameterization;
• Adaptation of result output functions, such as plots and tables to the particular data

structure.

Commercial tools, such as the first three in Table 1, have addressed this need and
can speed up the modeling process by specializing in specific application areas. A cor-
responding open-source alternative that leverages the potentials of the open-source idea
(see Section 1.2.2) is currently not available.

1.3. Contributions

The main contributions of this paper are the development and demonstration of DRAF,
an easy-to-use open-source Python decision support framework for optimizing DR-related
design and operation of L-MESs. DRAF uses multi-objective MILP optimization to enable
the user to quantify the cost and carbon emission reduction potential of existing and future
flexibility options of L-MESs. The target groups of DRAF are researchers in the energy field
and decision-makers in the commercial and industrial sectors. The source code of DRAF
can be found at https://github.com/DrafProject/draf [61] (accessed on 28 June 2022). A
secondary contribution of this study is the concise review of the current state of the art
in open-source energy optimization software for DR.

The remainder of this paper is organized as follows. First, the most important ele-
ments and components of DRAF are described in Section 2, while referring to the extensive
appendix with screenshots (Appendix A) and component templates (Appendix B). Second,
the application of DRAF to three different simplified real-world case studies is demon-
strated in Section 3. This is followed by a discussion, conclusion, and future research
in Section 4.

2. The Demand Response Analysis Framework (DRAF)
2.1. Overview

Figure 1 shows the main functional elements of DRAF. One can see that DRAF provides
a toolbox for every step of typical energy system analysis and the optimization process
of an L-MES decision maker. More specifically, DRAF is designed to answer the three
questions illustrated in Figure 2.

Energy system analysis 
& optimization process

External  
resources / data

Parameter Preparation Tools
Scenario Generation Tools

Electricity prices 

Model Generator

Interactive Plotting Tools

Time Series Analysis Tools

Export Tools

Weather data

Electricity 
market 
data

Standard load profiles

Multi-objective Optimization

Electricity / thermal 
load profiles
PV profiles 

Solver

Electricity CEFs 
Model definition
Parametrization

Scenario definition

Result visualization

Data validation

Data export

Mathematical optimization

TimeSeriesPrepper
DataBase

Paretoplots
ScenarioPlotter Violins
CaseStudyPlotter

DemandAnalyzer
PeakLoadAnalyzer

Heatmaps
Tables

Example classes Example outputToolboxes

Matplotlib
Plotly 

Elmada

Figure 1. Schematic depiction of DRAF’s toolboxes, including examples and how they relate to the en-
ergy system analysis and optimization process and the used external resources/data. For example,
parameterization is supported by DRAF through the parameter preparation tool TimeSeriesPrepper,
which, e.g., provides electricity prices using the tool Elmada as an external resource.

https://github.com/DrafProject/draf
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Time Series 
Analyser!
Operation 
decision support!
Investment 
decision support!

 
Decision

maker How to decrease future cost and
emissions through informed
investment decisions

?

How much cost and emission can 
I save through flexible operation ?

What characteristica does my
current electricity demand have ?

Figure 2. Key questions answered by DRAF.

The general architecture of DRAF is presented in Figure 3. A typical use case is
described in the following. First, a user imports and analyzes time series data of, e.g., elec-
tricity and natural gas historically purchased by the analyzed L-MES operator using Deman-
dAnalyzer. Informed by the findings of the analyses, the user then instantiates a CaseStudy
object of the desired analysis year and the country/address/coordinates of the L-MES.
Subsequently, a first reference scenario that includes a model is added to the case study
using component templates and the model generator. While DataBase is used here to pro-
vide and describe default parameters, the TimeSeriesPrepper prepares relevant time series,
such as the day-ahead market prices, dynamic CEFs, or PV profiles. Different scenarios are
then added by duplicating the reference scenario and changing specific parameters. After
the model is solved by an external MILP solver, the results are stored in the cenario object.
Finally, all parameters and results can be visualized either for each scenario (ScenarioPlot-
ter) or for all scenarios in the case study (CaseStudyPlotter). The interconnected classes
and modules allow for a fluent, explorative analysis process using the dot operator. E.g., cs.
scens returns an overview of all defined scenarios; cs.scens.sc2.res.P_PV_fi_T.plot()
plots the feed-in PV power of the scenario sc2. DRAF handles metadata, i.e., parameters
can be stored together with descriptions, units, and sources. This motivates the input
of metadata which can be used in plotting and exporting, prevents misunderstandings,
and helps to document the meaning of an optimization model.

CaseStudy ScenarioScenarioScenario

Literature

 
User

CaseStudy 
Plotter ScenarioPlotter

Solver

Internet TimeSeries 
Prepper

Juypter 
note- 
book

Technology 
parameters

Time 
series data

Optimizer

DemandAnalyzer PeakLoadAnalyzer

Component 
templates

Model 
generator

Scenario definitions

User-defined components

DataBase

Scenario 
generator

Data

Model

Results

Dimensions
Parameters
Variable
definitions
Collectors

Meta 
data

Logic

Obj. func.
Constraints
Variables

Figure 3. Software architecture of DRAF. The user interacts with DRAF via Jupyter notebooks. To carry out
an analysis, the user initiates a CaseStudy and defines scenarios using the scenario generator, component
templates, and parameter preparation tools (DataBase and TimeSeriesPrepper). The model generator
builds optimization models from the model definition consisting of data and logic. After the optimization,
the results can be plotted either via CaseStudyPlotter or via ScenarioPlotter using convenient dot notation
(e.g., cs.plot.tables(); see Figure A3).

There are other energy modeling frameworks that also consider flexible demand.
However, they do not focus on the modeling of L-MESs, such as individual commercial
or industrial DERs. Since they are very generic, they technically allow the modeling
of individual industrial sites; however, this abstraction comes with the cost of higher
computational complexity and increased familiarization time with the tool for the user.
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Additionally, they do not provide easy access to necessary market information, such as
wholesale prices, dynamic emission factors, and technology investment costs. Versatility
and portability are important aspects of DRAF. Both are ensured through a modular
structure of DRAF that can be used as a generalized framework that can easily be adapted
to specific applications.

2.2. Python as a High Level Programming Language

For the development of DRAF, the open-source, general-purpose programming lan-
guage Python [62] 3.9 was chosen. A general-purpose programming language allows
all steps of the analysis process from market data acquisition to data preparation, model
building, scenario definition, and result visualization to be defined and reproducibly docu-
mented in a single environment. Since 2010, Python became the standard for new energy
system models [41]. At the time of writing, Python is the most popular easy-to-use high-
level programming language [63]. It has rich libraries for data handling and visualization
(e.g., Pandas [64], Matplotlib [65], and Plotly [66]). The open-source optimization modeling
language Pyomo [67] provides access to important MILP solvers, such as Gurobi [68]. How-
ever, most importantly, Python has a vibrant community that supplies help and solutions
to almost any problem that might occur.

2.3. Time Series Analysis Tools

As can be seen in Figure 1, the Time Series Analysis Tools refer to a DRAF toolbox. The
included tools, DemandAnalyzer and PeakLoadAnalyzer, are described in the following.

2.3.1. DemandAnalyzer

Often, DR analyses are based on a time series of historic energy demands, e.g., the
electricity demand of the year before. Before starting the modeling process, an analysis of
this time series is helpful to validate the correct time-series length and to get key metrics,
such as the peak-to-average ratio, load percentiles, and usage patterns. DRAF provides
such an analysis with DemandAnalyzer. Figure A1 shows a screenshot of an example time
series analysis.

2.3.2. PeakLoadAnalyzer

Based on the DemandAnalyzer object, the PeakLoadAnalyzer can be used; see screen-
shot in Figure A2. It shows the peak loads above a user-defined threshold and the cost
reduction potential that originates from a given peak load price.

2.4. Parameter Preparation Tools

The Parameter Preparation Tools is a toolbox (cf. Figure 1) that supports the prepara-
tion of parameters for the optimization model.

2.4.1. TimeSeriesPrepper

DRAF’s TimeSeriesPrepper allows the user to prepare time series such as the ambient
air temperature; renewable electricity generation profiles; CEFs; and day-ahead market
prices from basic input data, such as an address that converts to geographic coordinates,
the analyzed year, and the time step width.

Carbon Emission Factors (CEFs) and Electricity Prices

In DRAF, CEFs and day-ahead prices for most European national electricity systems
are automatically calculated for the given year and frequency with the open-source tool
Elmada [69], as described in [31]. The latest Elmada version, v0.1.0 [70], supplies hourly
and quarter-hourly time series for 30 European countries, mainly using data from the Euro-
pean Network of Transmission System Operators for Electricity (ENTSO-E) transparency
platform [71]. For the CEFs, the user can choose between XEFs and MEFs, depending
on the analysis question. For the electricity prices, the user can choose between day-ahead
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spot market prices which are referred to as RTP, time-of-use (TOU) pricing, and a flat price.
In TOU, if not stated otherwise, time steps are grouped into high price and low price times;
high price times apply between 8 a.m. to 8 p.m. during workdays. The high/low price is
defined by the mean of RTP during high/low price times, respectively. The flat price is
the annual mean of the RTPs.

Photovoltaic Power Profiles

If the user does not provide PV profiles for the analyzed location, DRAF uses the Global
Solar Energy Estimator (GSEE) [72] to generate PV profiles from the geographic coordinates
(or a valid address), global and diffuse radiation, and ambient temperature time series. For
Germany only, DRAF checks for available weather data from the nearest weather station
from [73] and downloads it in the background. This functionality may be extended to other
countries as data become available.

Electrical and Thermal Load Profiles

The TimeSeriesPrepper module of DRAF also provides functions to create electrical
and thermal load time series. In the electrical case, standard load profiles from [74] are
used while considering public holidays from the given region with the Python holidays
package [75]. For thermal load profiles, ambient temperature data from [73] are used to
approximate heating and cooling demand time series.

2.4.2. DataBase

The reasoning behind the DataBase is to pragmatically provide the user with an ex-
pandable library of technical and market-related parameters, together with metadata such
as units, descriptions, and scientific sources. Some of the values are used in the component
template definitions in Appendix B.

2.5. Component-Based Model Generator

To avoid code repetition, and to make DRAF and the code written by the user maintain-
able, extensible, and adaptable, the toolbox Model Generator (cf. Figure 1) is implemented
that creates model constructs in a lazy fashion; see Algorithm 1. Furthermore, the model
generator keeps the model as light as possible, creating only the dimensions, parameters,
optimization variables, and constraints that are needed. This allows the provision of adapt-
able and extensible component templates without limiting the user’s freedom to build any
other MILP model.

A component class consists of the two functions that define the component, param_func
and model_func. The param_func defines dimensions, parameters, variables, and collec-
tors for a given scenario. The model_func later uses these objects to build constraints and
to connect the component to other components by contributing linear expressions to their
collectors. The listings in Figure 4 show examples of these functions. The first listing defines
a simple PV component. Note that dimensions and collectors are not needed for this simple
PV component. The second listing shows relevant parts of the Main component, which
defines general relationships that do not originate from a specific technical component.

For adding constraints and objective functions, the user can choose between Pyomo
and GurobiPy syntax. While Pyomo supports different solvers, GurobiPy is limited to
the commercial solver Gurobi but builds models with less computational effort.

Component interdependencies are considered using so-called collectors, which collect
linear expressions across components and aggregate them in another component. For
example, the collectors for investment costs are defined in the Main component with sc
.collector("C_inv_"); then, the components PV and fuel cell (FC) contribute to it with
c.C_inv_["PV"] = ... and c.C_inv_["FC"] = .... Finally, the Main component uses
the collector to aggregate the investment costs with sum(c.C_inv_.values()). Collectors
can collect scalar values, e.g, to aggregate investment costs of different components to total
costs, or collect functions to access multi-dimensional vectors, e.g., to build an electricity



Sustainability 2022, 14, 8025 10 of 38

balance for each time step; see Figure 5. If a component uses a collector, the constraints of
that component must be built after the constraints of all components that contribute to that
collector. This dependency restricts the order of submodel creation, which is resolved by
executing a topological sort. This makes components reusable, so the user can conveniently
choose from different storage and conversion technology components and modeling op-
tions, such as the consideration of investments or minimal part-load behavior, without
inflating the model with overhead constructs. The user defines optimization models by
using component templates (see Appendix B) and/or self-written technology components.

Algorithm 1: Model generation.
Input : Case study configuration Ω including year, frequency, modeling horizon,

geo coordinates, if investment is considered, etc.; User-selected
components C; Scenario definitions D

Output : Case study S including scenarios and parametrized optimization models
1 Initialize case study S with configuration Ω
// Build scenarios with defined parameters and variables:

2 for each scenario definition d in D do
3 if d is based on a base scenario then
4 Initialize scenario s as a copy of the respective base scenario
5 else
6 Initialize a new scenario s

7 Define and/or update parameters and variables in s using C, Ω, and d
8 Add s to case study S
// Build optimization model for each scenario:

9 Sort components C topologically considering component interdependencies
10 for each scenario s in case study S do
11 Initialize optimization model m and add to scenario s
12 Initialize optimization variables from variable definitions of s
13 for each component c in C do
14 Set objective function and constraints of component c to model m using

parameters, optimization variables and collectors of s
15 Register linear expressions to collectors

class PV(Component):

def param_func(self , sc:Scenario):
# sc.dim (...) (Dimensions could be defined here if applicable)
sc.param("c_PV_inv_", data=460 , doc="Inv. costs", unit="EUR/kW_peak")
sc.param("P_PV_max_", data=500 , doc="Max. peak power", unit="kw_peak")
sc.param("P_PV_profile_T", data=getProfile (), unit="kW_el",

doc="Elec. power of 1kW_peak per time step")
sc.var("P_PV_CAPn_", doc="New capacity", unit="kW_peak")
sc.var("P_PV_OC_T", doc="Own consumption", unit="kW_el")
sc.var("P_PV_FI_T", doc="Feed -in", unit="kW_el")
# sc.collector (...) (Collectors could be defined here if applicable)

def model_func(self , sc, m:Model , d:Dims , p:Params , v:Vars , c:Collectors):
m.addConstr(v.P_PV_CAPn_ <= p.P_PV_max_)
m.addConstrs ((p.P_PV_profile_T[t] * v.P_PV_CAPn_

== v.P_PV_FI_T[t] + v.P_PV_OC_T[t]
for t in d.T))

# The PV component submits to three different collectors:
c.C_inv_["PV"] = v.P_PV_CAPn_ * p.c_PV_inv_
c.P_EL_source_T["PV"] = lambda t: v.P_PV_OC_T[t]
c.P_EG_feedin_T["PV"] = lambda t: v.P_PV_FI_T[t]

Figure 4. Cont.



Sustainability 2022, 14, 8025 11 of 38

class Main(Component):

def param_func(self , sc:Scenario):
sc.collector("C_inv_", doc="Total investment costs", unit="EUR")
sc.collector("P_EL_source_T", doc="Power sources", unit="kW_el")
sc.collector("P_EL_sink_T", doc="Power sinks", unit="kW_el")
...

def model_func(self , sc, m:Model , d:Dims , p:Params , v:Vars , c:Collectors):
# Investment cost aggregation using a collector:
m.addConstr(v.C_inv_ == sum(c.C_inv_.values ()))

# Electricity balance using two collectors:
m.addConstrs ((sum(f(t) for f in c.P_EL_source_T.values ())

== sum(f(t) for f in c.P_EL_sink_T.values ())
for t in d.T))

...

Figure 4. Listings of example components.

Main

Inv. 
Costs

Objective function

(t) (t)
Sources Sinks

Electricity balance 
(for each time step t)

Component interdependencies

eDem
1.

eDEM
2. 
PV

4. 
EG

5.
Main

Model creation order

Topology 
sort

FC

PVEG
feed-in (t)

3. 
FC

"Build collecting 
components only 

after their contributors"
Operating 

Costs

Collector

Contribution

Figure 5. An example where collectors (circles) induce component interdependencies. The Main
component collects operating and investment costs and the two sides of the electricity balance for
each time step. The electricity grid (EG) component collects for each time step electricity that is fed
into the grid—here, the contributors are the fuel cell (FC) and the photovoltaic system (PV). This
separate feed-in collector is important for the reusability of the EG component. The electricity demand
(eDem) only affects the electricity balance sinks. The component interdependencies are considered
within model generation through topology sort. This ensures that all submodels contributing to
a collector are built before that collector is executed.

2.6. Component Templates

DRAF provides a set of component templates so that users do not need to start from
scratch. The model is assembled from the Main component and multiple technology compo-
nents. The Main component includes the objective function and all general sets, parameters,
variables, and balances. Technology components are, e.g., energy demands, conversion and
storage technologies, and interfaces to external entities, such as the electricity grid.

2.6.1. The Component Template Main

The Main component is a special component template that consists of the definition of
the objective function and general balances and constraints. The Main component yields
a deterministic multi-objective combined design and operation problem, which is described
in the following. The formulation is partly based on previous work [76,77]. By default,
DRAF works with equidistant time steps and assumes perfect foresight. The temporal reso-
lution is defined by the user and not restricted; however, hourly or quarter-hourly resolution
is required if the functionality of the TimeSeriesPrepper module is used; see Section 2.4.1.
The default modeling horizon is one year, but can be customized. General sets are discrete
time steps t ∈ T := {t1, . . . , t|T |}, components j ∈ J := {eDem, EG, PV, BES, . . . }, and
flow types i ∈ I := {electricity, heat 1, heat 2, cool 1, cool 2, product 1, . . . }. In the follow-
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ing, optimization variables are denoted with bold symbols and are non-negative continuous
variables unless stated differently.

The objective function of the MILP is to minimize the weighted sum of the total
annualized cost (TAC) Ctot and the annual carbon emissions CEtot:

minimize Z := (1− α)πCCtot + απCECEtot + ∑
j

Xpenalty
j (1)

where α is the Pareto weighting factor ∈ [0..1] and πC, πCE are the Pareto normalization
factors which can be identified by a simple algorithm to enable a more even distribution of
the Pareto points; cf. Figure 14. Xpenalty

j is a general penalty term which is only used in rare
cases when there is an incentive that is not related to costs or emissions, e.g., to model
uncontrolled battery electric vehicle (BEV) charging (in Appendix B.6), where the incentive
is to charge based on time constraints.

The annualized total costs Ctot are the sums of the annual operating costs, the annual-
ized investment costs, and the maintenance costs of all components j ∈ J :

Ctot = ∑
j

Cop
j︸ ︷︷ ︸

operation costs

+ ∑
j

CinvAnn
j︸ ︷︷ ︸

annualized investment costs

+ ∑
j

Crmi
j︸ ︷︷ ︸

maintenance costs

Ctot ∈ R, Cop
j ∈ R|J|

(2)

The total carbon emissions CEtot are the sums of yearly operating carbon emissions of
all components j ∈ J :

CEtot = ∑
j

CEj

CEtot ∈ R, CEj ∈ R|J|
(3)

Time-step average flow values, such as electrical power, the thermal energy flow of
a specific temperature level, or a product flow, are generically denoted with Φi,j,t. Balances
are defined by equating the sum of all input flows Φsource

i,j,t with the sum of all output flows

Φsink
i,j,t , for all flow types i ∈ I :

∑
j

Φsource
i,j,t = ∑

j
Φsink

i,j,t ∀t ∈ T , i ∈ I (4)

2.6.2. Technology Component Templates

Appendix B contains the mathematical formulation of all component templates. Note
that besides conversion and storage technologies, demands, and market interfaces of
commodities, such as electricity (Appendix B.1) or fuels (Appendix B.2), are also individual
component templates.

Most of the collectors exist within the Main component templates, and a few in others;
e.g., in the EG component (Appendix B.1):

Peg,sell
t = ∑

j
Psell

t,j (5)

or in the Fuel component (Appendix B.2):

Ffuel
f = ∑

j
Ff ,j ∀ f ∈ F (6)
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The total annualized investment costs CinvAnn
j and the maintenance costs Crmi

j are
usually defined within storage and conversion components:

CinvAnn
j = kj,af(r, N j)cj,invPj,capn (7)

Crmi
j = kj,rmicj,invPj,capn (8)

where j stands for the component j, cj,inv are the specific investment costs, and Pj,capn the new
capacities. kaf

j (r, N j) are the component-specific annuity factors defined in Equation (9) fol-

lowing, e.g., [78], where r is the calculated interest rate and N j is the operation life in years for
component j.

kaf
j (r, N j) =

r(1 + r)N j

(1 + r)N j − 1
(9)

For the component templates, additional sets are defined: Fuel types f ∈ F :=
{biogas, naturalgas}, condensing temperature levels c ∈ C := {1, . . . , |C|}, heating temper-
ature levels h ∈ H := {1, . . . , |H|}, cooling temperature levels n ∈ N := {1, . . . , |N|}, and
thermal demand temperature levels l ∈ L := H∪N .

2.7. Scenario Generation and Optimization

The scenario generator in DRAF provides convenient scenario generation. Scenarios
can either be created manually or created in batches. For manual scenario creation, an ex-
isting object is cloned with sc = cs.add_scen(based_on=<scen_id>), whose parameters
can be subsequently updated with sc.update_params(param1=value1, param2=value2
, ...); see also Algorithm 1. The batch scenario creation using cs.add_scens() can be
seen as sensitivity analysis, which automatically creates a scenario for each combination of
given parameters and parameter values. This is useful, e.g., for optimizing the system for
different energy and carbon emission prices. When solving optimization models for a case
study, the user can choose to solve the scenarios in parallel (cs.optimize(parallel=True))
using the distributed execution framework Ray [79] or serially to rely on the parallelization
of the solver.

2.8. Visualization

DRAF provides a rich interactive visualization toolbox built into the CaseStudy and
Scenario classes (cf. Figure 1). The dot notation allows convenient plotting since the data
and metadata are internally fetched. E.g., after optimizing multiple scenarios, cs.plot.
pareto() plots the Pareto front of all scenarios in the case study, similarly to Figure 14, and
cs.scens.sc3.plot.sankey() plots the Sankey diagram of scenario sc3; see Figure A4.
Interactive parameter and result exploration are available thanks to the diverse capabilities
of Ipython [80] and Plotly [66]; see also Figure A5.

3. Case Studies

In the following, DRAF’s features are demonstrated in three case studies that we con-
sider to be of interest to the reader. The case studies are based on real companies in southern
Germany with modified values for data protection reasons. In Case Study 1, the pro-
duction schedule of a cement plant is optimized considering price-based DR. This case
study was selected as it illustrates DRAF’s support for flexible industrial production
processes. In Case Study 2, the design of a battery energy storage (BES) and a PV sys-
tem at an industrial site is optimized considering multiple flexibility applications and
differentiating between existing and new technologies. Case Study 3 covers a more
sophisticated superstructure for a greenfield L-MES. This last case study demonstrates
multi-objective optimization, the value of the scenario generator, and the consideration
of multiple temperature levels. The code for the presented case studies is available at
https://github.com/DrafProject/draf_demo_case_studies (accessed on 28 June 2022). The
calculations were performed using DRAF v.0.2.0 [61].

https://github.com/DrafProject/draf_demo_case_studies
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3.1. Case Study 1: Price-Based DR Potential of an Industrial Production Process

In the first case study, which is based on the previous work [81,82], we apply DRAF to
the problem of quantifying the cost and carbon emission reduction potential of price-based
DR of a cement milling process.

The setup of the case study is shown in Figure 6. In it, there are two electric cement
mills that turn cement clinker into three different cement sorts which are stored in separate
silos to serve a given cement demand. For each time step, the cement mills can either
be powered down or produce one compatible cement sort in full-load with a sort and
machine-specific production efficiency; see Figure 7 left. Machine 1 is compatible with sorts
1 and 3, and machine 2 is compatible with sorts 2 and 3; see Figure 6. The cement clinker
supply is not a bottleneck in the production process, so it was modeled as unrestricted.
The cement demand was generated by breaking down the total monthly demand into
the working hours of the plant; see Figure 7 right. A MILP model was built using DRAF’s
component-templates Main, EG, pDEM, PP, and PS (see Appendices B.1,B.12–B.14) to
minimize the TAC Ctot of the system for 8760 hourly time steps from the year 2019. Therein,
cement mills are represented by machines, cement clinker by raw material, and cement
silos by product storage. Dynamic TOU and RTP pricing schemes and XEFs were prepared
by DRAF’s TimeSeriesPrepper, described in Section 2.4.1. The peak power price was
e50 kW−1

p . A standard load profile for continuous production was scaled to the annual
energy of 5 GWh and used as fixed electricity demand. The cement mills have nominal
capacities of 3.5 MW each and a minimum part-load factor of 1. Each machine start-up
and sort-change costs e10.00 due to the inefficient operation associated with it. Cement
mill 1 was unavailable due to revisions from the 15th to 16th of March, and the cement
mill 2 from the 15th to 16th of February. Each cement silo had a capacity and initial filling
of 5 kt and a minimum filling level of 1 kt. Since part-load operation was not possible,
the deviation between the last and the initial filling level was evaluated with a factor k
and penalized via the operating costs. k was composed of the worst efficiency and three
times the average electricity price of the year. Thus, the deviation was minimized without
introducing infeasibility. For brevity, investment in storage extension was not allowed,
even though this would be possible with the model and would be an interesting analysis.

sort 1 silo

sort 2 silo

sort 3 silo

sort 1 demand

sort 2 demand

sort 3 demand

model boundary

cement  
mill 1

cement 
mill 2

cement clinker
storage

electricity grid
fixed electricity demand

Figure 6. Setup of cement case study.
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Figure 7. Left: Machine and cement-sort specific production efficiencies. Right: Cement demand and
fixed electricity demand.
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Despite the technical constraints and the small price spreads of 2019 the load shifting
led to savings of e149,000, (1.9% of electricity costs) and 1.4 ktCO2eq (9.2% of operating
carbon emissions) per year. However, these are theoretical values, as complete foresight
was assumed. The results for ten of the 365 optimized days are shown in Figure 8. The
plots show that while the silo filling levels look similar, the scheduling of the cement
sorts between the two scenarios differs substantially on an hourly basis. The electricity
price is the main factor in the production decision. Exceptions are due to sort-switching
and start-up costs. The Pearson correlation coefficient r between the electricity price and
the purchased electricity for the whole year is −0.29 with a TOU pricing scheme and
−0.58 with RTP; see Figure 9. Since machine 1 is more efficient than machine 2, the most
energy-intensive sort 1 is only produced on machine 1. Sort 1 is only produced on machine
1 and sort 2 only on machine 2. The electrical peak demand was not lowered.

35
40
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( /MWh)
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Machine
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Apr
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Figure 8. Results of Case Study 1: Resulting production plans, price schemes, and silo filling levels
for ten sample days in April. Top: Reference scenario with the time-of-use pricing scheme. Bottom:
Scenario with hourly German day-ahead market prices.
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Figure 9. Correlations between purchased electricity and real-time-prices for both scenarios.

3.2. Case Study 2: Design Optimization of a Multi-Use BES and PV System

Figure 10 shows the setup and problem of Case Study 2.
For the inflexible electricity demand, anonymized real industrial data of the year 2020

were used, which are analyzed in Figure A1. Further input parameters were dynamic
day-ahead market prices plus e62.3 MWh−1 electricity taxes and levies and e100 kW−1

peak electricity price. Specific investment cost forecasts for 2022 for PV and BES were taken
from [83] with the values e384 kW−1

p and e209 kWh−1, respectively.
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Four scenarios were modeled: REF (reference scenario), optBES (allows BES), optPV
(allows new PV), and optBesPv (allows both). Tables 2 and 3 and Figure A3 show the results
of Case Study 2. Figure 11 shows the resulting electricity balance and the RTP of scenario
optBesPv for one exemplary week (Monday–Sunday).

new BES

Electricity grid

Wholesale prices

GHG-intensities
Inflexible

electricity
demand

Peak-load price Time series

existing PV
300 kWp

new PV
(max. 1.000 m²

roof area)Optimal design Optimal operation

Optimal control

Figure 10. Setup and problem of Case Study 2. Setup: A company that can buy electricity from
the grid and sell it to the grid has an existing 300 kWpeak PV system, 1000 m2 additionally available
rooftop space for the installation of a new PV system, and an inflexible electricity demand. Problem:
The design (nominal capacity/power) of the BES and the new PV is to be optimized assuming optimal
charging and discharging of the BES considering peak shaving, RTPs through hourly wholesale
prices, and the optimization of self-consumption.

Table 2. Capacities and investment costs of Case Study 2.

Scenario
CAPx CAPn Cinv [ke] Cinv,ann [ke/a]

BES PV BES PV BES PV BES PV

REF 0 300 0.0 0.0 0.0 0.0 0.0 0.0
optBes 0 300 233.4 0.0 48.8 0.0 4.3 0.0
optPV 0 300 0.0 153.8 0.0 59.1 0.0 4.6

optBesPv 0 300 265.6 153.8 55.5 59.1 4.8 4.6

Table 3. Peak reductions of Case Study 2.

Scenario Pmax Pmax,reduction Wbuy Wsell

REF 1445 kW 0 kW 0.0% 7.122 GWh/a 0.000 GWh/a
optBes 1330 kW 115 kW 0.1% 7.130 GWh/a 0.000 GWh/a
optPV 1445 kW 0 kW 0.0% 6.952 GWh/a 0.000 GWh/a

optBesPv 1320 kW 125 kW 0.1% 6.960 GWh/a 0.000 GWh/a

−1

0

1

Jun 15
2020

Jun 16 Jun 17 Jun 18 Jun 19 Jun 20 Jun 21

20

40

P_BES_out_T
P_PV_OC_T
P_EG_buy_T

P_PV_FI_T
P_BES_in_T
P_eDem_T

c_EG_RTP_T

El
ec

tr
ic

 P
ow

er
(M

W
)

Pr
ic

e
(€

/M
W

h)

Figure 11. Top: Stacked area plot of electricity balance. Energy sources are positive. Energy usages
are negative. Bottom: Real-time prices.
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3.3. Case Study 3: Multi-Objective Design and Operational Optimization of Thermal-Electric
Sector Coupling

The third case study demonstrates the optimization of the design and operation of
a more sophisticated industrial L-MES. This time it is a greenfield project—i.e., there are no
existing technologies. Besides the inflexible electricity demand, the L-MES incorporates
cooling and heating demands at different temperature levels. Figure 12 shows an overview
and the superstructure of the analyzed L-MES. Up to 20 MWh/h of electricity can be bought
from and sold to the grid with hourly prices and XEFs. Assuming plant-wide optimization
with perfect foresight of XEFs, electricity prices, and PV yield profiles, Pareto-optimal
design and operational configurations were to be identified that fulfilled the thermal
and electrical energy demands. The following component templates from Appendix B
were used: cDem, hDem, eDem, EG, Fuel, PV, BES, CHP, HOB, HP, P2H, H2H1, TES,
and Main. The scheme in Figure 13 provides details on the modeling of the different
temperature levels.

Plant-wide optimization

External energy 
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Electricity 
grid

Plant availability
Optimal control

Process heating
demand

90°C / 70°C (H2)

Cooling demand
7°C / 12°C (N1)

Electricity market

Storage levels

Ambient heat

Optimal
operation

Ambient air
recooling

Optimized schedules
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Space heating 
demand

60°C / 40°C (H1)
TES

TES

TESHP

Wholesale prices

GHG-intensities

PV BES

Inflexible
electricity

demand

Production

Peak-load price

Time series

CHP
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Cooling demand
30°C / 35°C (N2)TES

HOB
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Figure 12. Setup and superstructure of Case Study 3.
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Figure 13. Scheme with details on modeling different temperature levels for Case Study 3. The HPs
could choose between three source and sink temperature levels. The evaporation and condensation
temperatures were calculated assuming a 5 K temperature difference for heat exchange. The coefficient
of performance was calculated from the evaporation and condensation temperatures. Assuming
the installation of multiple HPs, multiple parallel operation modes, i.e., temperature combinations
between evaporation and condensation, can exist; however, for the calculation of the annualized
investment costs, the capacities of all HPs are aggregated, which significantly reduces the model’s
complexity. For more details on HP modeling, see Appendix B.10.

We modeled seven scenarios: The reference scenario REF and the six scenarios sc2–sc7.
REF only allows heat-only-boilers (HOBs) and cooling machines that are modeled using
the HP component by allowing only heat transfers from the cooling demands to the ambient
temperature.

Scenarios sc2 to sc7 allow all technologies of the superstructure and all HP operating
modes. They differ from each other only by the Pareto weighting factor α. The α values for
the scenarios sc2 to sc7 were 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively; i.e., sc2 optimized TAC
(α = 0), scenarios sc3 to sc6 optimized Pareto efficiency (0 < α < 1), and sc7 optimized
carbon emissions (α = 1).

Figure 14 shows the TAC and annual carbon emissions of the resulting scenarios;
and Figure 15 shows the resulting capacities, cost types, and distribution of the electricity
exchange with the electricity grid. Due to the multi-objective optimization, scenarios sc3 to
sc7 are Pareto-efficient—i.e., one objective value cannot be decreased without increasing
the other. One can see that with increasing α values, i.e., increasing the focus on carbon
emissions within the objective function, the investment cost and the annualized investment
cost increase too. Compared to REF, sc2 and sc3 have lower TACs than REF by 36% and 9%,
respectively, since higher annualized investment and maintenance costs are overcompen-
sated by savings in operating costs. Additionally, sc2 and sc3 can reduce carbon emissions
by 49% and 66%, respectively, compared to REF. Comparing sc2 and sc3 to REF produces no
conflict of objectives, since REF is not on the Pareto frontier. The scenarios sc4 to sc7 have
no economic advantage over REF; however, they do have an environmental advantage
over REF. Scenarios sc3 and sc5 can be regarded as good trade-offs when looking at all
available Pareto-efficient solutions. Scenario sc7 represents the highest possible carbon
emission savings with 87%; however, the TACs are 41 times higher than in REF. Since in sc7
TACs are not considered, capacities were set to the highest possible values that are in place
for each technology, e.g., 1 GWh for BES and 100 MWh for each TES. This is an unrealistic
behavior that could be avoided by considering scope 3 emissions, which include the carbon
emissions of the production of the energy technologies that are analogous to the annualized
investment costs within the calculation of TACs. However, it demonstrates how scope 1
and scope 2 emissions can be reduced by increasing the system flexibility. As can be seen
in Figure 15 bottom, in sc7 the technical upper limit of 20 MW of electrical power drawn
from the grid is exploited during hours of low CEFs, which would stabilize the grid when
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there is a surplus of renewable energy. Screenshots of Sankey diagrams for REF and sc3 are
shown in Figure A4.

Compared	to	REF:
	 TACs Emissions
sc2 -36% -49%
sc3 -9% -66%
sc4 28% -72%
sc5 81% -75%
sc6 294% -80%
sc7 4090% -87%

Figure 14. Pareto-optimal configuration scenarios of Case Study 3. The dotted line approximates
the Pareto frontier. REF is not on the Pareto front, since both objectives can be improved as, e.g., in
sc2 or sc3. The broken y-axis was used to fit in the minimal-emission scenario sc7 (α = 1), which has
a more than 41 times higher TAC than REF. Scenario sc3 has 9% less TAC than the REF whilst also
reducing carbon emissions by two thirds.
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Figure 15. Results per scenario of Case Study 3. Top: Capacities, investment costs, and operating
costs. Middle left: Thermal energy storage (TES) capacities per temperature level. Middle right:
TAC per cost type: operating costs (op), maintenance costs (RMI), and annualized investment costs
(ann_inv). Bottom: Distribution of the electricity bought from the grid (negative = sold electricity).

4. Conclusions

We developed, described, and demonstrated DRAF, an open-source multi-objective
decision support tool for L-MESs. By providing vital information about the environmental
and economical potential of innovative energy technologies and services, DRAF lowers
investment barriers of L-MES decision-makers. It considers load flexibility, energy efficiency,
electrification, and their interdependencies in an integrated model without neglecting
critical aspects, such as multiple temperature levels or DR of production processes. DRAF
considers flexible electricity sources and sinks across the whole energy conversion chain of
an L-MES, such as an industrial site. While providing useful pre-configured components
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that allow complex DR analyses with just a few lines of code, the tool setup does not restrict
the users’ freedom to build any possible MILP model. DRAF is needed since the existing
software for potential identification of multi-energy systems is either (a) too generic to be
practicably applied to L-MESs, (b) leaves out essential aspects such as temperature levels
or the access to dynamic emission factors, or (c) is not open-source.

Three case studies demonstrate how different settings and applications can be mod-
eled within DRAF. Case Study 1 shows how price-based DR of a production process
can reduce costs and operating carbon emissions. Case Study 2 demonstrates a simple
design and operational optimization problem for a PV and multi-use BES system. The
more sophisticated design optimization of Case Study 3 demonstrates the consideration
of multiple temperature levels, the selection of heat sources and sinks for the HP, and the
results of a multi-objective Pareto analysis to select the optimal trade-off between economic
considerations and the reduction of carbon emissions.

This paper shows only a small sample of the possibilities of DRAF. Future work is,
therefore, the application of the framework for a detailed analysis and optimization of
a real L-MES, such as an industrial company. The implementation of myopic and stochastic
modeling in a rolling horizon fashion, tools for scenario generation and reduction, and the
selection of typical days are also future work.
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Nomenclature
For a description of component-related symbols including units, please see description tables

in Appendix B.

Acronyms
CEF Carbon emission factor
COP Coefficient of performance
DR Demand response
DRAF Demand response analysis framework
HP Electric heat pump
L-MES Local multi-energy system
MEF Marginal emission factor
MILP Mixed-integer linear programming
PBDR Price-based demand response
RES Renewable energy sources
RTP Real-time prices
TAC Total annualized cost
TOU Time of use
XEF Grid mix emission factor
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Component Labels
bes Battery energy storage
bev Battery electric vehicle
cdem Cooling demand
chp Combined heat and power
edem Electricity demand
eg Electricity grid
fuel Fuels
h2h Heat downgrading
hdem Heat demand
hob Heat-only boiler
hp Electric heat pumps
p2h Power-to-heat
pp Production process
ps Product storage
pv Photovoltaic system
tes Thermal energy storage
Symbols
A Area
C Costs
c Specific costs
CE Carbon emissions
ce Specific carbon emissions
cop Coefficient of performance
Ġ Product flow
∆t Time step
Q̇ Heat flow
E Electrical energy
η Efficiency
F Fuel flow
G Product
k A ratio
n A natural number
N Operation life
P Electrical power
Q Thermal energy
T Temperature
y Binary indicator
Superscripts
capn New capacity
capx Existing capacity
cond Condensation
eva Evaporation
fi Feed-in
minpl Minimal part load
oc Own consumption
rmi Repair, maintenance, and inspection
Indices and Sets
c ∈ C Condensation temperature levels
f ∈ F Fuel types
h ∈ H Heating temperature levels
i ∈ I Flow types
j ∈ J Technology components
l ∈ L Thermal demand temperature levels
n ∈ N Cooling temperature levels
t ∈ T Time steps
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Appendix A. Screenshots of DRAF Output

Appendix A.1. DemandAnalyzer

Figure A1. Demonstration of DemandAnalyzer.



Sustainability 2022, 14, 8025 23 of 38

Appendix A.2. PeakLoadAnalyzer

Figure A2. Demonstration of PeakLoadAnalyzer.

Appendix A.3. Result Visualization

Figure A3. Screenshot of draf with overview of results of Case Study 2.
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Figure A4. Screenshots of interactive Sankey diagrams. Data: Results of scenarios REF (top) and sc3
(bottom) of Case Study 3.
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Figure A5. Screenshot of interactive heat map plotting of Case Study 3.
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Figure A6. Output of cs.scens.sc3.plot.collectors(filter_etype="C") of Case Study 3.

Appendix B. Component Templates Definitions

This section presents the mathematical formuation of component templates which can
be classified as storages, conversion technologies, demands, interfaces, and a combination
of them. For each technology, it contains an entity description table, the constraints, and the
registrations to collectors. In the entity description table, all entities (parameters and
variables) are listed with a source, unit, description, and default value(s) in the case of
a scalar parameter. Thanks to consistent usage of naming conventions, the tables could
programmatically be generated from the DRAF components, which also ensures consistency
between the software and the paper. Furthermore, it demonstrates DRAF’s possibilities
in handling metadata such as units, data source information, and docstrings.

General parameters are: ∆t is the width of the according time step in hours.
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ini

Figure A7. Relationship between time steps and time points.

Appendix B.1. Electricity Grid (EG)

Symbol Default Src Unit Description

ceeg
t - kgCO2eq/kWhel

Carbon emission factors (via elmada using year,
freq, country, and CEF-method)

ceg,addon 0.131 e/kWhel Electricity taxes and levies
ceg,buypeak 50.000 e/kWel/a Peak price

ceg,flat
t - e/kWhel

Flat-electricity tariff (calculated from
Real-time-price)

ceg,rtp
t - e/kWhel

Day-ahead-market-prices (via elmada using year,
freq, and country)

ceg,tou
t - e/kWhel

Time-Of-Use-tariff (calculated from
Real-time-price)

ceg
t - e/kWhel Chosen electricity tariff

Peg,buypeak - kWel Peak electrical power

Peg,buy
t - kWel Purchased electrical power

Peg,sell
t - kWel Selling electrical power

Peg,buypeak ≥ Peg,buy
t (A1)

Peg,sell
t = ∑

j
Φsource

i=elSell,j,t (A2)

Φsource
i=el,j=eg,t = Peg,buy

t

Φsink
i=el,j=eg,t = Peg,sell

t

Cop
j=eg = 10−3 ∑

t
∆t

(
Peg,buy

t (ceg
t + ceg,addon)− Peg,sell

t ceg
t

)
Cop

j=egPeak = 10−3Peg,buypeakceg,buypeak

CEj=eg = ∑
t

∆t(P
eg,buy
t − Peg,sell

t )ceeg
t

Appendix B.2. Fuels (Fuel)

Symbol Default Src Unit Description

Ffuel
f - kW Total fuel consumption

Ffuel
f = ∑

j
Ff ,j (A3)

Cop
j=fuel = 10−3 ∑

f
Ffuel

f cfuel
f

CEj=fuel = ∑
f

Ffuel
f cefuel

f
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Cop
j=fuelTax = 10−3CEj=fuelc

fuelTax

Appendix B.3. Battery Energy Storage (BES)

Symbol Default Src Unit Description

Ebes,capx 0.000 kWhel Existing capacity
Nbes 20.000 [84] a Operation life
ηbes,ch 97.468 [85] % Charging efficiency
ηbes,dis 97.468 [85] % Discharging efficiency
ηbes,time 99.998 [86] %/h Efficiency due to self-discharge rate
cbes,inv 720.000 [87] e/kWhel CAPEX
kbes,ini 0.000 % Initial and final energy filling share
kbes,inpercap 70.000 [88] % Maximum charging power per capacity
kbes,outpercap 70.000 [88] % Maximum discharging power per capacity

kbes,rmi 2.000 [84] % Repair, maintenance, and inspection per year and
investment cost

Ebes,capn - kWhel New capacity
Ebes

t - kWhel Electricity stored
Pbes,in

t - kWel Charging power
Pbes,out

t - kWel Discharging power

Ebes
t = ηbes,time

{
kbes,ini(Ebes,capx + Ebes,capn) if t = t0

Ebes
t−1 otherwise

d + ∆t(ηbes,chPbes,in
t − 1

ηbes,dis Pbes,out
t )

(A4)

Ebes
t ≤ Ebes,capx + Ebes,capn (A5)

Pbes,out
t ≤ kbes,outpercap(Ebes,capx + Ebes,capn) (A6)

Pbes,in
t ≤ kbes,inpercap(Ebes,capx + Ebes,capn) (A7)

Ebes
t|T | = kbes,ini(Ebes,capx + Ebes,capn) (A8)

Φsource
i=el,j=bes,t = Pbes,out

t

Φsink
i=el,j=bes,t = Pbes,in

t

CinvAnn
j=bes = 10−3Ebes,capncbes,invkaf(r, Nbes)

Crmi
j=bes = 10−3Ebes,capncbes,invkbes,rmi

Battery degradation is not considered. Please see [89] for more details regarding
battery degradation in DR scenarios. A feed-in from the BES is not allowed. Following [90],
ηbes,ch and ηbes,dis are calculated as the square root of the cycle efficiency, assuming them to
be symmetrical.
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Appendix B.4. Thermal Energy Storage (TES)

Symbol Default Src Unit Description

Ntes 30.000 [78] a Operation life
Qtes,capx

l - kWhth Existing capacity
ηtes,time 99.500 % Storing efficiency
ctes,inv 28.709 [91] e/kWth CAPEX
ktes,ini

l - % Initial and final energy level share
ktes,inpercap 50.000 % Ratio loading power/capacity
ktes,outpercap 50.000 % Ratio loading power/capacity

ktes,rmi 0.100 [91] % Repair, maintenance, and inspection per year and
investment cost

Qtes,capn
l - kWhth New capacity

Qtes
t,l - kWhth Stored heat

Q̇tes,in
t,l - kWth Storage input heat flow

Qtes
t,l = ηtes,time

{
ktes,ini

l (Qtes,capx
l + Qtes,capn

l ) if t = t0

Qtes
t−1,l otherwise

+∆t(ηtes,cycleQ̇tes,in
t,l − Q̇tes,out

t,l )

(A9)

Qtes
t,l ≤ Qtes,capx

l + Qtes,capn
l (A10)

Q̇tes,in
t,l ≤ ktes,inpercap(Qtes,capx

l + Qtes,capn
l ) (A11)

Q̇tes,out
t,l ≤ ktes,outpercap(Qtes,capx

l + Qtes,capn
l ) (A12)

Qtes
t,l = ktes,ini

l (Qtes,capx
l + Qtes,capn

l ) ∀t ∈ {t1, t|T |} (A13)

Q̇tes,in
t,l ∈ R|T|×|L|

Φsource
i,j=tes,t = Q̇tes,out

t,l ∀i, l ∈ L

Φsink
i,j=tes,t = Q̇tes,in

t,l ∀i, l ∈ L

CinvAnn
j=tes = 10−3 ∑

l
Qtes,capn

l ctes,invkaf(r, Ntes)

Crmi
j=tes = 10−3 ∑

l
Qtes,capn

l ctes,invktes,rmi

Appendix B.5. Photovoltaic System (PV)

Symbol Default Src Unit Description

Apv,avail 100.000 m2 Area available for new PV
Apv,perpeak 6.500 m2/kWpeak Area efficiency of new PV
Npv 25.000 [92] a Operation life
Ppv,capx 0.000 kWpeak Existing capacity

Ppv,profile
t - [72] kWel/kWpeak Produced PV-power for 1 kWpeak

cpv,inv 460.000 [83] e/kWpeak CAPEX

cpv,oc 0.028 [93] e/kWhel
Renewable Energy Law (EEG) levy on own
consumption

kpv,rmi 2.000 [92] % Repair, maintenance, and inspection per year
and investment cost

Ppv,capn - kWpeak New capacity

Ppv,fi
t - kWel Feed-in

Ppv,oc
t - kWel Own consumption
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(Ppv,capx + Ppv,capn)Ppv,profile
t = Ppv,fi

t + Ppv,oc
t (A14)

Ppv,capn ≤ Apv,avail

Apv,perpeak (A15)

Φsource
i=el,j,t = Ppv,oc

t

Psell
t,j=pv,t = Ppv,fi

t

Cop
j=pv = 10−3cpv,oc ∑

t
∆tP

pv,oc
t

CinvAnn
j=pv = 10−3Ppv,capncpv,invkaf(r, Npv)

Crmi
j=pv = 10−3Ppv,capncpv,invkpv,rmi

Appendix B.6. Battery Electric Vehicle (BEV)

Symbol Default Src Unit Description

Ebev,cap1bat
b

- kWhel Capacity of one battery

Ebev,capx
b

- kWhel Capacity of all batteries

Pbev,drive
t,b - kWel Power use

ηbev,ch 97.468 [85] % Charging efficiency
ηbev,dis 97.468 [85] % Discharging efficiency

ηbev,time 100.000 % Storing efficiency. Must be 1.0 for the uncontrolled
charging in REF

kbev,empty
b

- % Minimum state of charge

kbev,full
b - % Maximum state of charge

kbev,ini
b - % Initial and final state of charge

kbev,inpercap
b

- [88] % Maximum charging power per capacity

kbev,v2xpercap
b

- [88] % Maximum v2x discharging power per capacity

nbev,nbats
b - - Number of batteries

ybev,avail
t,b - - If BEV is available for charging at time step

zbev,smart 0.000 - If smart charging is allowed
zbev,v2x 0.000 - If vehicle-to-X is allowed
Ebev

t,b - kWhel Electricity stored in BEV battery

Pbev,in
t,b - kWel Charging power

Pbev,v2x
t,b - kWel Discharging power for vehicle-to-X

Xbev,penalty - - Penalty to ensure uncontrolled charging in REF

Ebev
t,b = ηbev,time

{
kbev,ini

b Ebev,capx
b if t = t0

Ebev
t−1,b otherwise

+∆t(ηbev,chPbev,in
t,b − 1

ηbev,dis (Pbev,drive
t,b + Pbev,v2x

t,b ))

(A16)

Ebev
t,b ≤ kbev,full

b Ebev,capx
b (A17)

Ebev
t,b ≥ kbev,empty

b Ebev,capx
b (A18)

Ebev,capx
b = nbev,nbats

b Ebev,cap1bat
b (A19)

Pbev,in
t,b ≤ ybev,avail

t,b kbev,inpercap
b Ebev,capx

b (A20)

Pbev,v2x
t,b ≤ zbev,v2xybev,avail

t,b kbev,v2xpercap
b Ebev,capx

b (A21)

Ebev
t|T | ,b

= kbev,ini
b Ebev,capx

b (A22)
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Xbev,penalty = (1− zbev,smart)∑
t,b

tPbev,in
t,b (A23)

Xpenalty
j=bev = Xbev,penalty

Φsource
i=el,j=bev,t = ∑

b
Pbev,v2x

t,b

Φsink
i=el,j=bev,t = ∑

b
Pbev,in

t,b

Appendix B.7. Combined Heat and Power (CHP)

Symbol Default Src Unit Description

Nchp 25.000 [94] a Operation life
Pchp,capx 0.000 kWel Existing capacity

Pchp,max 100,000.000 kWel
Big-M number (upper bound for CAPn +
CAPx)

ηchp,el 40.000 [95] % Electric efficiency
ηchp,th 45.000 [95] % Thermal efficiency
cchp,inv 589.458 [96] e/kWel CAPEX

cchp,oc 0.028 [93] e/kWhel
Renewable Energy Law (EEG) levy on own
consumption

kchp,minpl 50.000 % Minimal allowed part load

kchp,rmi 18.000 [94] % Repair, maintenance, and inspection per year
and investment cost

Fchp
t, f

- kW Consumed fuel flow

Pchp,capn - kWel New capacity

Pchp,fi
t - kWel Feed-in

Pchp,oc
t - kWel Own consumption

Pchp
t - kWel Producing power

Ychp
t - - Binary: If in operation

Q̇chp
t - kWth Producing heat flow

Pchp
t = ηchp,el ∑

f
Fchp

t, f (A24)

Q̇chp
t = ηchp,th ∑

f
Fchp

t, f (A25)

Pchp
t ≤ Pchp,capx + Pchp,capn (A26)

Pchp
t = Pchp,fi

t + Pchp,oc
t (A27)

Pchp
t ≤ Ychp

t Pchp,max (A28)

Pchp
t ≥ kchp,minpl(Pchp,capx + Pchp,capn)− Pchp,max(1− Ychp

t ) (A29)

Ychp
t ∈ {0, 1}

Φsource
i=heat2,j=chp,t = Q̇chp

t

Φsource
i=el,j=chp,t = Pchp,oc

t

Psell
t,j=chp = Pchp,fi

t

Ff ,j=chp = ∑
t

∆tF
chp
t, f
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Cop
j=chp = 10−3cchp,oc ∑

t
∆tP

chp,oc
t

CinvAnn
j=chp = 10−3Pchp,capncchp,invkaf(r, Nchp)

Crmi
j=chp = 10−3Pchp,capncchp,invkchp,rmi

Appendix B.8. Heat-Only Boiler (HOB)

Symbol Default Src Unit Description

Nhob 15.000 [94] a Operation life
Q̇hob,capx 0.000 kWth Existing capacity
ηhob 90.000 [94] % Thermal efficiency
chob,inv 57.133 [97] e/kWth CAPEX

khob,rmi 18.000 [94] % Repair, maintenance, and inspection per year and
investment cost

Fhob
t, f - kW Input fuel flow

Q̇hob,capn - kWth New capacity
Q̇hob

t - kWth Ouput heat flow

Q̇hob
t = ηhob ∑

f
Fhob

t, f (A30)

Q̇hob
t ≤ Q̇hob,capx + Q̇hob,capn (A31)

Φsource
i=heat2,j=hob,t = Q̇hob

t

Ff ,j=hob = ∑
t

∆tFhob
t, f

CinvAnn
j=hob = 10−3Q̇hob,capnchob,invkaf(r, Nhob)

Crmi
j=hob = 10−3Q̇hob,capnchob,invkhob,rmi

Appendix B.9. Power-to-Heat (P2H)

Symbol Default Src Unit Description

Np2h 30.000 a Operation life
Q̇p2h,capx 0.000 kWth Existing capacity
ηp2h 90.000 [98] % Efficiency
cp2h,inv 100.000 [99] e/kWth System CAPEX

kp2h,rmi 0.000 % Repair, maintenance, and inspection per year and
investment cost

Pp2h
t - kWel Consuming power

Q̇p2h,capn - kWth New capacity

Q̇p2h
t - kWth Producing heat flow

Q̇p2h
t = ηp2hPp2h

t (A32)

Q̇p2h
t ≤ Q̇p2h,capx + Q̇p2h,capn (A33)

Φsource
i=heat2,j=p2h,t = Q̇p2h

t

Φsink
i=el,j=p2h,t = Pp2h

t

CinvAnn
j=p2h = 10−3Q̇p2h,capncp2h,invkaf(r, Np2h)
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Crmi
j=p2h = 10−3Q̇p2h,capncp2h,invkp2h,rmi

Appendix B.10. Electric Heat Pump (HP)

Symbol Default Src Unit Description

Nhp 18.000 [100] a Operation life
Q̇hp,capx 0.000 kWth Existing heating capacity

Q̇hp,max 100,000.000 kWth
Big-M number (upper bound for CAPn +
CAPx)

ηhp 50.000 [101] % Ratio of reaching the ideal COP (exergy
efficiency)

ϑ
hp,cond
c - ◦C Condensation side temperature

ϑ
hp,eva
e - ◦C Evaporation side temperature

chp,inv 285.788 [102] e/kWel CAPEX

khp,rmi 2.500 [100] % Repair, maintenance, and inspection per year
and investment cost

nhp 1.000 - Maximum number of parallel operation
modes

Php
t,e,c - kWel Consuming power

Yhp
t,e,c - - Binary: If source and sink are connected at

time-step
Q̇hp,capn - kWth New heating capacity

Q̇hp,cond
t,e,c - kWth Heat flow released on condensation side

Q̇hp,eva
t,e,c - kWth Heat flow absorbed on evaporation side

Q̇hp,cond
t,c,n = cophp

t,c,nPhp
t,c,n (A34)

Q̇hp,cond
t,c,n = Q̇hp,eva

t,c,n + Php
t,c,n (A35)

Q̇hp
t,c,n ≤ Yhp

t,c,nQ̇hp,max (A36)

∑
c,n

Q̇hp
t,c,n ≤ Q̇hp,capx + Q̇hp,capn (A37)

∑
c

∑
n

Yhp
t,c,n ≤ nhp (A38)

cophp
t,c,n =

{
100 if ϑ

hp,cond
t,c ≤ ϑ

hp,eva
n

ηhpcophp,carnot
t,c,n otherwise

(A39)

cophp,carnot
t,c,n =

ϑ
hp,cond
t,c + 273

ϑ
hp,cond
t,c − ϑ

hp,eva
n

(A40)

Yhp
t,c,n ∈ {0, 1}

Φsource
i,j=hp,t = Q̇hp,cond

t,c,n ∀i, c ∈ H

Φsink
i,j=hp,t = Q̇hp,eva

t,c,n ∀i, n ∈ N

Φsink
i=el,j=hp,t = Php

t,c,n

CinvAnn
j=hp = 10−3Q̇hp,capnchp,invkaf(r, Nhp)

Crmi
j=hp = 10−3Q̇hp,capnchp,invkhp,rmi
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Appendix B.11. Heat Downgrading (H2H1)

Symbol Default Src Unit Description

Q̇h2h1
t - kWth Heat down-grading

Φsource
i=heat1,j=h2h1,t = Q̇h2h1

t

Φsink
i=heat2,j=h2h1,t = Q̇h2h1

t

Appendix B.12. Product Demand (pDem)

Formulation partly based on [81].

Symbol Default Src Unit Description

Ġpdem
t,s - t/h Product demand

Φsink
i=prod,j=pdem,t = Ġpdem

t,s

Appendix B.13. Production Process (PP)

Symbol Default Src Unit Description

Ppp,capx
m - kWel

η
pp
s,m - % Production efficiency

cpp,sc 10.000 e/change Costs per sort change
cpp,su 10.000 e/SU Costs per start up
kpp,minpl

m - % Minimum part load

ypp,avail
t,m - - If machine is available at time step

ypp,compat
s,m - - If machine and sort is compatible

Cpp,sc - ke Total cost of sort change
Cpp,su - ke Total cost of start up
Ppp

t,s,m - kWel Nominal power consumption of machine
Ypp,op

t,s,m - - Binary: If machine is in operation
Ypp,sc

t,s,m - - Binary: If sort has just changed
Ypp,su

t,m - - Binary: If machine just started up
Ġpp

t,s,m - t/h Production of machine

Ġpp
t,s,m = η

pp
s,mypp,compat

s,m ypp,avail
t,m (A41)

Ppp
t,s,m ≤ Ypp,op

t,s,m Ppp,capx
m (A42)

Ppp
t,s,m ≥ Ypp,op

t,s,m kpp,minpl
m Ppp,capx

m (A43)

Cpp,su = 10−3 ∑
t,m

Ypp,su
t,m cpp,su (A44)

Ypp,su
t,m ≥∑

s
Ypp,op

t,s,m −∑
s

Ypp,op
t−1,s,m (A45)

Cpp,sc = 10−3 ∑
t,m

Ypp,sc
t,m cpp,sc (A46)

Ypp,sc
t,s,m ≥ Ypp,op

t,s,m − Ypp,op
t−1,s,m ∀t ∈ T \ {t0} (A47)

∑
s

Ypp,op
t,s,m ≤ 1 (A48)

Φsource
i=prod,j=pp,t = ∑

m
Ġpp

t,s,m
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Psink
i=prod,j=pp,t = ∑

s,m
Ppp

t,s,m

Cop
j=pp = Cpp,sc + Cpp,su

Appendix B.14. Product Storage (PS)

Symbol Default Src Unit Description

Gps,capx
s - t Existing storage capacity of product

Nps 50.000 a Operation life
cps,inv 1000.000 e/t Investment cost
kps,ini

s - % Initial storage filling level

kps,min
s - % Share of minimal required storage filling level

Eps,delta - kWhel Energy equivalent
Gps,capn

s - t New capacity

Gps,delta
s - t Final time step deviation from init

Gps
t,s - t Storage filling level

Gps
t,s ≤ (Gps,capx

s + Gps,capn
s ) (A49)

Gps
t,s ≥ kps,min

s (Gps,capx
s + Gps,capn

s ) (A50)

Gps
t|T | ,s

= kps,ini
s (Gps,capx

s + Gps,capn
s )−Gps,delta

s (A51)

Eps,delta = ∑
s

Gps,delta
s max

m

1
η

pp
s,m

(A52)

Φsink
i=prod,j=ps,t =

1
∆t


(

kps,ini
s (Gps,capx

s + Gps,capn
s )−Gps

t,s

)
if t = t0(

Gps
t−1,s −Gps

t,s

)
otherwise

Cop
j=ps = 3× 10−3(

∑t ceg
t

|T | + ceg,addon)Eps,delta

CinvAnn
j=ps = 10−3 ∑

s
Ġps,capn

s cps,invkaf(r, Nps)

Appendix B.15. Cooling Demand (cDem)

Symbol Default Src Unit Description

Q̇cdem
t,n - kWth Cooling demand

ϑcdem,in
n - ◦C Cooling inlet temperature

ϑcdem,out
n - ◦C Cooling outlet temperature

Φsource
i,j=cdem,t = Q̇cdem

t,n ∀i, n ∈ N

Appendix B.16. Heating Demand (hDem)

Symbol Default Src Unit Description

Q̇hdem
t,h - kWth Heating demand

ϑhdem,in
h - ◦C Heating inlet temperature

ϑhdem,out
h - ◦C Heating outlet temperature

Φsink
i,j=hdem,t = Q̇hdem

t,h ∀i, h ∈ H
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Appendix B.17. Electricity Demand (eDem)

Symbol Default Src Unit Description

Pedem
t - kWel

Electricity demand from standard load profile G3:
Business continuous

Φsink
i=el,j=el,t = Pedem

t
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