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Abstract: This study developed an efficient evolutionary hybrid optimization technique based on
chaotic sand cat optimization (CSCO) and pattern search (PS) for the evaluation of the minimum
safety factor of earth slopes under static and earthquake loading conditions. To improve the sand
cat optimization approach’s exploration ability, while also avoiding premature convergence, the
chaotic sequence was implemented. The proposed hybrid algorithm (CSCPS) benefits from the
effective global search ability of the chaotic sand cat optimization, as well as the powerful local
search capability of the pattern search method. The suggested CSCPS algorithm’s efficiency was
confirmed by using mathematical test functions, and its findings were compared with standard SCO,
as well as some efficient optimization techniques. Then the CSCPS was applied for the calculation
of the minimum safety factors of the earth slope exposed to both static and seismic loads, and
the objective function was modeled based on the Morgenstern–Price limit equilibrium method,
along with the pseudo-static approach. The CSCPS’s efficacy for the evaluation of the minimum
safety factor of slopes was investigated by considering two case studies from the literature. The
numerical experiments demonstrate that the new algorithm could generate better optimal solutions
via calculating lower values of safety factors by up to 10% compared with some other methods in the
literature. Furthermore, the results show that, through an increase in the acceleration coefficient to
0.1 and 0.2, the factor of safety decreased by 19% and 32%, respectively.

Keywords: factor of safety; slope stability; optimization; hybridization

1. Introduction

Slope failure is a common cause of fatalities and property damage. As a result,
geotechnical engineers must determine the minimal slope safety factor and find the critical
slip surface [1,2]. In general, slope safety testing is performed while the slope is subjected
to static loads. In an earthquake-prone area, the stability assessment of a slope exposed to
dynamic loads should be thoroughly investigated. Various methods, such as finite element
analysis, limit equilibrium, limit analysis method, probabilistic analysis methods, and
others, have been developed for this analysis. However, limit equilibrium is the most
widely used analytical approach for geotechnical studies [3]. These methods function by
slicing the entire slide slope mass into a fixed number of vertical slices and evaluating the
probable slip surfaces and their associated safety factors in terms of various active forces.
In the limit equilibrium approach, the slope’s stability is determined by the lowest factor
of safety (FOS) connected to the major failure surface. For seismic slope safety analysis,
the pseudo-static technique is the most popular process. This concept has been used in
limit equilibrium methods, in which an equivalent static force (Fh) can be used to predict
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the outcome of an earthquake. The horizontal acceleration coefficient (Kh) and projected
sliding mass weight determine the magnitude of this force [4].

In the analysis of earth slopes, the main slip surface correlated to the lowest factor of
safety needs to be discovered among viable trial slip surfaces. This issue may be solved
by using either traditional deterministic or newer metaheuristic optimization techniques.
Slope-stability evaluation is essentially a nondeterministic polynomial-time complete (NPC)
problem and is one of the most difficult types of problems due to variation in soil properties,
ground conditions, and external forces [5]. When the search space comprises numerous
local minima and the computational complexity environment is high, traditional deter-
ministic techniques fail to provide a feasible solution. On the other hand, metaheuristic
algorithms have simple notions and structures, derivation-free methods, and are successful
for both continuous and discrete functions. Accordingly, several research efforts have
been attempted to implement various metaheuristic strategies for slope stability estima-
tion based on these benefits. Some of these studies include implementation of a genetic
algorithm [6,7], simulated annealing and harmony search [8], imperialistic competitive algo-
rithm [9], biogeography-based optimization [10], and particle swarm optimization [11,12].

Despite the fact that metaheuristic methods can produce acceptable results, no algo-
rithm outperforms another in solving all optimization problems. Furthermore, the objective
function in most geotechnical engineering optimization problems, such as slope stability,
foundation, and retaining structures optimization, has a lot of design variables and is dis-
continuous. Due to this, numerous investigations have been undertaken in order to improve
the effectiveness and robustness of the existing metaheuristics. These include modified
particle swarm optimization [13–15], modified harmony search algorithm [16], modified
gravitational search algorithm [17], modified sine cosine algorithm [18], improved salp
swarm algorithm [19], modified ant colony optimization [20], modified teaching-learning-
based optimization [21], improved tunicate swarm algorithm [22], and modified wild horse
optimization [23]. According to the effectiveness of the metaheuristics and their modified
versions, these methods have been widely used to solve several geotechnical engineering
problems, as presented in Table 1. In addition, a comprehensive review of slope stability
analysis methods can be found in References [24–27].

Table 1. Application of metaheuristic algorithms for geotechnical engineering problems.

Author, Year Reference Optimization Method Application

Goh, 2000 [28] Genetic algorithm Locate the critical circular slip surface in slope
stability analysis

Zolfaghari, Heath, and
McCombie, 2005 [6] Genetic algorithm In slope stability, look for critical non-circular

failure surfaces.
Cheng et al., 2007 [29] Particle swarm optimization Two-dimensional slope stability analysis
Cheng et al., 2008 [16] Improved harmony search algorithm Slope stability analysis
Chan, Zhang, and Ng, 2009 [30] Hybrid genetic algorithms Optimization of pile groups
Kahatadeniya, Nanakorn,
and Neaupane, 2009 [31] Ant colony optimization Determination of the critical failure surface of

earth slope

Khajehzadeh et al., 2011 [32] Modified particle swarm optimization Optimum design of spread footing and
retaining wall

Camp and Akin, 2012 [33] Big bang–big crunch optimization Optimum design of retaining wall
Camp and Assadollahi,
2013 [34] Hybrid big bang–big crunch algorithm Optimizing the cost and CO2 of concrete footings

Khajehzadeh, Taha, and
Eslami, 2013 [35] hybrid firefly algorithm

Minimize of total cost and CO2 emissions of the
foundation subjected to geotechnical and
structural requirements.

Kang, Li, and Ma, 2013 [36] Artificial bee colony algorithm In slope stability, finding the critical slip surface
Khajehzadeh, Taha, and
Eslami, 2014 [37] Adaptive gravitational search algorithm Multi-objective optimization of foundation

Kashani, Gandomi, and
Mousavi, 2016 [9] Imperialistic competitive algorithm Locating the critical slip surface of earth slope
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Table 1. Cont.

Author, Year Reference Optimization Method Application

Gordan et al., 2016 [38] Particle swarm optimization and neural network Prediction of seismic slope stability

Gandomi and Kashani, 2017 [39]

Accelerated particle swarm optimization, firefly
algorithm, levy-flight krill herd, whale
optimization algorithm, ant lion optimizer, grey
wolf optimizer, moth–flame optimization
algorithm, and teaching-learning-based
optimization algorithm

Construction cost minimization of shallow
foundation

Aydogdu, 2017 [40] Biogeography-based optimization algorithm Cost optimization of retaining wall

Gandomi et al., 2017 [10]
Genetic algorithm, differential evolution,
evolutionary strategy, and biogeography-based
optimization

Slope stability analysis

Mahdiyar et al., 2017 [41] Monte Carlo simulation technique Safety assessment of slope
Gandomi, Kashani, and
Zeighami, 2017 [42] Interior search algorithm Retaining wall optimization

Chen et al., 2019 [43] Hybrid imperialist competitive algorithm and
artificial neural network

Prediction of safety factor values of retaining
walls

Koopialipoor et al., 2019 [44]

Imperialist competitive algorithm, genetic
algorithm, particle swarm optimization, and
artificial bee colony combined with artificial
neural network

Predict the slope safety exposed to static and
dynamic conditions

Yang et al., 2019 [45] Neural network system Design retaining wall structures based on smart
and optimal systems

Xu et al., 2019 [46] Hybrid artificial neural network and ant colony
optimization Dynamic conditions of retaining wall structures

Himanshu and Burman,
2019 [11] Particle swarm optimization Determination of critical failure surface

considering seepage and seismic loading
Kalemci et al., 2020 [47] Grey wolf optimization algorithm Optimization of retaining walls
Kaveh, Hamedani, and
Bakhshpoori, 2020 [48] Eleven meta-heuristic algorithms Optimal design of cantilever retaining walls

Kashani et al., 2020 [49] Differential algorithm, evolution strategy, and
biogeography-based optimization algorithm Optimum design of shallow foundation

Wang et al., 2020 [50] Extreme gradient boosting method Evaluating the earth dam slopefailure
probability.

Moayedi et al., 2021 [51] Harris hawks’ optimization Predicting the factor of safety in the presence of
rigid foundations

Sharma, Saha, and Lohar,
2021 [52] Hybrid butterfly and symbiosis organism search

algorithm Optimization of retaining wall

Kaveh and Seddighian,
2021 [53]

Black hole mechanics optimization, firefly
algorithm, evolution strategy, sine cosine
algorithm

Slope critical surfaces optimization with seepage
and seismic effects

Temur, 2021 [54] Teaching-learning based optimization Optimization of retaining wall
Li and Wu, 2021 [55] Improved salp swarm algorithm Locating critical slip surface of slopes

Arabali et al., 2022 [56] Adaptive tunicate swarm algorithm Optimization of construction cost and CO2
emissions of shallow foundation

Khajehzadeh,
Keawsawasvong, and
Nehdi, 2022

[57] Artificial neural networks combined with rat
swarm optimization

Prediction of the ultimate bearing capacity of
shallow foundations and their optimum design

Khajehzadeh, Kalhor, et al.,
2022 [58] Adaptive sperm swarm optimization Optimum design of retaining structures under

seismic load

Kashani et al., 2022 [59]
Multi-objective particle swarm optimization,
multi-objective multi-verse optimization, and
Pareto envelope-based selection algorithm

Multi-objective optimization of mechanically
stabilized earth retaining wall

Proposing novel optimization strategies to solve real-world issues, as evidenced by
the literature analysis, is highly desirable. The sand cat optimization (SCO) approach is a
newly created bioinspired meta-heuristic optimization strategy inspired by the search and
hunting behavior of the sand cat. It was first suggested by Seyyedabbasi and Kiani [60]. The
low-frequency noise detection behavior of sand cats to find prey was the subject of the sand
cat algorithm development [60]. The SCO outperforms other competitive methods in terms
of identifying optimal solutions and is well suited to real-world optimization challenges.
The chaotic sand cat optimization (CSCO) is an improved variant of the original SCO
introduced in this study that uses chaotic sequences to enhance the algorithm’s searching
and exploration capabilities.
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A balance of exploitation and exploration must be maintained throughout the search
operation to achieve an optimum performance when utilizing any optimization technique.
Exploration is the process of investigating the search space as widely as possible and
visiting entirely new points in it. Conversely, exploitation is the process of refining those
points and the local search ability around the promising areas gained in the exploration
phase. Because CSCO is a global search strategy, it searches a large area and may not
provide the best result if used alone. Search engine techniques, such as pattern search (PS),
take advantage of the local but can perform a comprehensive search [61]. There is scope for
hybridizing these methods due to their separate capabilities.

Consequently, the following can be used to summarize the main contributions of
this work:

1. An efficient hybrid metaheuristic approach based on chaotic sand cat and pattern
search techniques, known as CSCPS, was developed.

2. The performance of CSCPS for numerical function optimization was assessed on thir-
teen common benchmarking functions, and the results were compared with existing
commonly used optimization algorithms.

3. To demonstrate the efficiency of the proposed technique in solving real-world prob-
lems, the new method was used to determine the minimum factor of safety of earth
slopes.

4. The objective function of a slope stability problem was modeled by using the Morgenst-
ern–Price limit equilibrium approach for the slip surface’s overall shape.

5. The efficiency of the proposed CSCPS for slope stability assessment was investigated
by using two benchmark problems based on the literature, and the obtained results
were compared with those evaluated previously by the other techniques.

2. Safety Factor Formulation

Geotechnical engineering includes the seismic performance of slopes, particularly
in earthquake areas. To assess the constancy of a slope, many traditional approaches are
used, such as finite elements, strength reduction, and the limit equilibrium [3]; the limit
equilibrium is the most widely used analytical method for geotechnical problems, and it
employs Mohr’s coulomb criteria to assess the factor of safety (FOS). Several procedures
of analysis derived from the limit equilibrium technique are available, and Duncan [62]
has thoroughly reviewed and summarized them. The simple or basic methods, such as the
ordinary method of slices and the Bishop method, are relevant to a particular sliding surface
shape, whereas the rigorous methodologies, such as the Spencer and Morgenstern–Price
approaches, are acceptable to any failure surface shape. The complexity of determining
the precise behavior of the soil slope increases when earthquake loads are applied. Conse-
quently, an effective pseudo-static process may be used to assess the reliability of the earth’s
steep hills exposed to earthquake stresses. The Morgenstern–Price method of slices and the
pseudo-static approach were implemented for seismological slope safety assessment in this
study.

Morgenstern and Price [63] established a holistic and robust approach for the general
form of failure surfaces that fulfils both the force and the moment equilibrium. In order to
accept the dynamic load inside the pseudo-static assessment, each slice’s center receives an
equivalent force (Fh) in the horizontal direction, which can be computed by the following
equation:

Fh =

(
ah
g
×W

)
= Kh ×W (1)

where Kh stands for horizontal acceleration coefficient, ah stands for lateral ground motions,
and g stands for gravity acceleration. The Morgenstern–Price model was used to analyze
the safety factor under seismic load in this study. This method divides the sliding mass
into a number of vertical segments, similar to other limit equilibrium techniques. Consider
the loads applied to a standard slice of a slope, as displayed in Figure 1, with the overall
shape of the slope.
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The scaling factor (λ) and FOS are two unknown factors in the Morgenstern–Price
method that are deduced from moment and vertical force equilibriums [63]. Because of the
complexity of the obtained equations, evaluating the FOS and λ is often complicated. In
order to solve the aforementioned challenges, Zhu et al. [64] developed a concise version
of the Morgenstern–Price approach. In this concise method, the inclination of a resultant
inter-slice pressure varies symmetrically with the mass of the slide, and the correlation
between the shear (T) and normal (E) inter-slice forces is offered as follows:

T = f (x).λ.E (2)

where f (x) denotes the assumed inter-slice force function, and λ denotes the scaling factor.
The following is a detailed description of the FOS evaluation procedure:

Step 1. Create a trial slip surface and divide it into n vertical segments.
Step 2. Determine Ri and Ti by using the equations below:

Ri = [Wi cos αi + Qi cos(δi − αi)− Fh sin αi −Ui]× tan∅′i + c′ibi sec αi (3)

Ti = Fh cos αi + Wi sin αi −Qisin(δi − αi) (4)

Step 3. Pick the function for inter-slice forces; f (x) = 1 is assumed in this study.
Step 4. Consider FOS and λ initial amounts according to the following criteria:

FOS > − sin αi − λ fi cos αi
cos αi + λ fi sin αi

tan∅′ (5)

The λ and FOS might be set to 0 and 1, respectively, as their initial values [64].
Step 5. Evaluate Φi and Ψi−1 based on Equations (6) and (7).

Φi = (cos αi + λ fi sin αi)× FOS + (sin αi − λ fi cos αi) tan∅′i (6)

Ψi−1 =
[
(sin αi − λ fi−1 cos αi) tan∅′i + (cos αi + λ fi−1 sin αi)× FOS

]
/Φi−1 (7)

Step 6. Calculate FOS based on Equation (8):

FOS =
∑n−1

i=1

(
Ri ∏n−1

j=1 Ψj

)
+ Rn

∑n−1
i=1

(
Ti ∏n−1

j=1 Ψj

)
+ Tn

(8)

Step 7. Compute Φi and Ψi−1 and calculate FOS once more by performing Steps 5 and 6
again.
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Step 8. Define Ei and λ based on the Equations (9) and (10).

EiΦi = FOS× Ti − Ri + Ψi−1Ei−1Φi−1 (9)

λ =
∑ [bi(Ei + Ei−1) tan αi + Fhhi + 2Q sin δihi]

∑ [bi( fiEi + fi−1Ei−1)]
(10)

Step 9. Reevaluate FOS by using the obtained λ, and this process ends when the distinction
between the found FOS and λ falls below 0.005 and 0.01, respectively. For the analysis
in this paper, the generation failure surface approach developed by Cheng et al. [65]
was implemented for the general form of the failure surface, which divides the
assumed failure soil mass into some vertical sections of equal width.

3. Proposed Chaotic Sand Cat and Pattern Search
3.1. Sand Cat Optimization

The sand cat optimization (SCO) method is named according to a unique feature
of sand cat behavior in the environment that is the capacity to identify low-frequency
sounds [60]. Foraging and attacking the prey are the two major behaviors of the sand
cat. Based on the scientific research, the sand cat’s frequency absorption for frequencies
below 2 kHz is amazing. Sand cats are around 8 decibels more sensitive than house cats
at this frequency [66]. Because of these unique traits, the sand cat can detect sound (prey
movement), follow prey, and hunt successfully based on prey position.

Each sand cat in the SCO algorithm represents a problem variable. To begin the SCO
method, the candidate matrix of the sand cat population is generated randomly between
the lower and higher limits of design variables. The dimension of the candidate matrix for
a d-dimensional optimization space with n sand cats is equal to Npop × Nd, (pop = 1, . . . , n),
as shown in Figure 2.
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Furthermore, the fitness value (i.e., cost) of each sand cat is calculated by using a
specific fitness function. Each sand cat (i.e., candidate solution) will produce a value for
the corresponding function. Once an iteration is completed, the sand cat with the lowest
value in that iteration is picked as the best solution, and the other candidates (i.e., sand
cats) strive to migrate toward this best-chosen cat in the following iteration.

Each sand cat’s solution is denoted by Xi = (xi1, xi2, . . . , xid), (i = 1, . . . , n). The
SCO algorithm takes advantage of the sand cat’s low-frequency hearing capabilities. As
previously stated, the sand cat can detect frequencies below 2 kHz. As a result, it is
hypothesized that the sensitivity range of a sand cat starts at 2 kHz and ends at 0 kHz when
searching for prey. To represent this mechanism, and in mathematical simulation of the
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algorithm, the vector
→
rG is introduced that will linearly decrease from two to zero as the

iterations increase according to the following equation [60]:

→
rG = SM −

(
SM × t

tMax

)
(11)

The SM value is supposed to be 2 since it is based on the hearing characteristics of sand
cats [60]. Moreover, t represents the current iteration, and tMax is the maximum number of
iterations.

During the search phase, the position of each search agent is updated by using the

following equation based on the best-candidate position (−−→Posb ), its current position (−−→Posc ),

and its sensitivity range (
→
r ).

−→
Pos (t + 1) =

→
r ·( −−→Posb (t)− rand(0, 1)·−−→Posc (t)) (12)

To escape the local optimal trap, each sand cat has a separate sensitivity range (
→
r ),

which is calculated by using Equation (13).

→
r =

→
rG × rand(0, 1) (13)

As a result,
→
rG denotes the general sensitivity range, which is linearly reduced from 2

to 0. Furthermore,
→
r shows the sensitivity range of each cat [60].

After searching, and in the attacking stage of SCO, each sand cat’s position is updated
based on the following equation [60]:

−→
Pos (t + 1) = −−→Posb (t)−→r ·−−−→Posrnd · cos(θ) (14)

where θ is a random angle between 0 and 360, and −−−→Posrnd indicates the position of a
randomly selected sand cat based on the following equation:

−−−→
Posrnd =

∣∣∣rand(0, 1)· −−→Posb (t)−−−→Posc (t)
∣∣∣ (15)

Finally, the R parameter, which is determined from Equation (16), is the last and most
important parameter of the algorithm in determining the transition between exploration
(searching) and exploitation (attacking) phases [60].

→
R = 2× →rG × rand(0, 1)− →rG (16)

When R is less than or equal to 1, the SCO algorithm pushes the search agents to exploit;
otherwise, they are driven to explore and discover prey [60]. Therefore, Equation (17)
represents the final updating position equation of the SCO algorithm [60].

→
X(t + 1) =


−−→
Posb (t)−−−−→Posrnd (t)· cos(θ)·→r |R| ≤ 1; exploitation
→
r ·
(−−→

Posb (t)− rand(0, 1)·−−→Posc (t)
)
|R| > 1; exploration

. (17)

As presented in Equation (17), sand cats are ordered to attack their victim when
|R| ≤ 1; otherwise, the cats are charged with seeking a new feasible solution in the global
region. Algorithm 1 contains the pseudocode for the sand cat optimization (SCO).
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Algorithm 1. Sand cat optimization algorithm.

Initialize the population
Calculate the fitness function based on the objective function
Initialize the r, rG, R
While (t ≤ tMax)

For each sand cat
Get a random angle θ (0

◦ ≤ θ ≤ 360
◦
)

If (|R| ≤ 1)

Update the search agent based on exploitation part of Equation (17);
−−→
Posb (t)−−−−→Posrnd (t)· cos(θ)·→r

Else

Update the search agent based on the exploration part of Equation (17);
→
r·
(
−−→
Posb (t)− rand(0, 1)·−−→Posc (t)

)
End

End
t = t+1

End

3.2. Chaotic Sand Cat Optimization

The present study’s goal is to put the SCO’s global search capability into practice.
Therefore, the chaotic series is employed in the sensitivity range parameter of Equation (13)
to achieve this goal and to expand the algorithm’s exploring capacity. Chaotic phenomena
are deterministic systems with unpredictability, irregularity, and stochastic features that are
influenced by the initial circumstances. Chaotic parameters have the capability to fluctuate
across certain limits due to their inherent irregularity without repeating. A chaotic record
is one that displays some sort of chaotic pattern and can generate chaotic movement. The
well-known logistic map is used in this work, which is in accordance with the following
equation:

µ (t+1) = a × µ (t) × (1 − µ (t)) (18)

where µ (t) denotes the chaotic map; t shows the iteration number; a represents a constant
equivalent to 4; and µ (0) should be between 0 and 1 and not equal to 0, 0.25, 0.5, 0.75, or 1.

In the chaotic SCO (CSCO), the chaotic map µ is utilized instead of a simple random
number in the sensitivity range (

→
r ) evaluation equation (i.e., Equation (13)) to enhance the

algorithm’s stochastic behavior while preventing premature convergence. Therefore, the
position of a sand cat will be updated based on the following equation:

→
X(t + 1) =


−−→
Posb (t)−−−−→Posrnd (t)· cos(θ)·→rG × µ |R| ≤ 1; exploitation
→
rG × µ·

(−−−→
Posbc (t)− rand(0, 1)·−−→Posc (t)

)
|R| > 1; exploration

(19)

Furthermore, in the suggested CSCO, to enhance the algorithm’s exploration and
search capability, at every iteration, the poorest sand cat offering the highest fitness value
(in minimization problems) will be changed by a new one, as presented in the following
equation:

xworst =

{
rand1 ×−−→Posb (t) i f rand3 ≤ 0.5

xi min + rand2 × (xi max − xi min) i f rand3 > 0.5
(20)

where xworst is a sand cat with the highest fitness value; and rand1, rand2, and rand3 are
random values between 0 and 1. The procedure of the proposed chaotic sand cat is depicted
in Figure 3.
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3.3. Pattern Search (PS)

PS is a gradient-free approach for fine-tuning local search that can be easily imple-
mented. The PS method produces a group of locations that may or may not be near the
ideal point [67]. A mesh (a combination of elements) is formed around an existing element
in the first round. In the next round, if a new element in the mesh has a smaller fitness, it
becomes the current element.

The PS commences the investigation with a user-defined initial location, P0. The mesh
level is taken as 1 in the first round, and the pattern elements are generated as [0 1] + P0, [1 0] +
P0, [−1 0] + P0, and [0 −1] + P0, and novel mesh elements are added as depicted in Figure 4.
The fitness function is then computed for each created sample element until a value less
than P0 is discovered. The poll is successful if there is such an element (f (P1) < f (P0)), and
the PS method assumes this element as the basis point.
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After a positive poll, the technique advances to the second round and doubles the
current mesh size by two (known as the expanding factor) with the following new elements:
2 × [0 1] + P1, 2× [1 0] + P1, 2 × [−1 0] +P1, and 2 × [0 −1] + P1. Then P2 is established if a
value less than P1 is discovered, the mesh size is expanded by two, and iterations proceed.

The existing element is left alone, and the mesh size is decreased by a contraction
factor if the poll is unsuccessful at any round. These steps were continued until the lowest
value was reached or the termination criteria were fulfilled.

A hybrid approach is one that solves the same issue by combining two or more
methods. The goal of hybridization is to integrate the benefits of each method to improve
the result’s precision [68]. In the current research, the chaotic sand cat—pattern search
(CSCPS) approach, which combines chaotic sand cat and pattern search methods, was
developed. The chaotic sand cat is a global optimization technique that investigates the
solution space effectively and is likely to provide an optimum or near-optimal solution. As
a result, it may be used in conjunction with local optimization approaches such as pattern
search. Pattern search is useful for exploiting a small area, but it is rarely useful for exploring
a larger area. The suggested hybrid approach may take the CSCO’s powerful global
searching capabilities, as well as the PS algorithm’s strong local searching capabilities.

3.4. Chaotic Sand Cat–Pattern Search

The global optimum performance of chaotic sand cat optimization (CSCO) is excellent,
and it is easy to get out of local minima. The CSCO can increase the precision of the results
by raising the number of iterations. However, CSCO seems unable to enhance the precision
of the findings when the number of epochs is sufficiently high. Consequently, CSCO’s local
investigation power remains poor. The starting point significantly affects the results of
the pattern search algorithm, which uses a local optimization methodology and different
initial points resulting in significant differences in the outcomes. However, even so, pattern
search will be a quick and efficient tactic if a great starting point is selected. In this study,
we successfully combined the benefits of CSCO as a global optimization and pattern search
as a local optimization to identify the best answer. Because the PS is dependent on the
first solution, the suggested hybrid method starts with the CSCO. The CSCO is used to
keep searching for a certain number of iterations. The PS is then enabled to perform a local
search utilizing the CSCO’s best solution as an initial point. Figure 5 shows the process
flow of the suggested hybrid algorithm.
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4. Model Verification

In this section, we recount how a set of numerical reference test functions was used
to compare and confirm the effectiveness of the proposed chaotic sand cat–pattern search
algorithm (CSCPS). In the empirical-evidence literature, these functions are commonly
used to determine the performance of optimization algorithms [69,70]. The mathematical
model and characteristics of these test functions are shown in Tables 2 and 3. This standard
set is divided into two categories: the exploitation ability of an algorithm was examined
by using unimodal functions with a single global best; and the multi-modal functions
were examined with multiple local minimums for testing an algorithm’s capability for
exploring and avoiding local optima. MATLAB R2020b (Natick, MA, USA) was used to
create the suggested algorithms. All of these functions should be minimized. Furthermore,
all functions have a dimension of 30. Three-dimensional drawings of these benchmark
functions are illustrated in Figures 6 and 7.
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Table 2. Unimodal functions.

Function Range fmin n (Dim)

F1(X) = ∑n
i=1 x2

i [−100, 100]n 0 30

F2(X) = ∑n
i=1|xi|+ ∏n

i=1|xi| [−10, 10]n 0 30

F3(X) = ∑n
i=1

(
∑i

j=1 xj

)2
[−100, 100]n 0 30

F4(X) = max
i
{|xi|, 1 ≤ i ≤ n } [−100, 100]n 0 30

F5(X) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−30, 30]n 0 30

F6(X) = ∑n
i=1([xi + 0.5])2 [−100, 100]n 0 30

F7(X) = ∑n
i=1 ix4

i + random[0, 1) [−1.28, 1.28]n 0 30

Table 3. Multimodal functions.

Function Range fmin n (Dim)

F8(X) = ∑n
i=1−xi sin

(√
|xi|
)

[−500, 500]n 428.9829 × n 30

F9(X) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]n 0 30

F10(X) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e [−32, 32]n 0 30

F11(X) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]n 0 30

F12(X) =
π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+

∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+4
4 u(xi, a, k, m) =


k(xi − a)m xi > a

0 a < xi < a

k(−xi − a)m xi < −a

[−50, 50]n 0 30

F13(X) =

0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi, 5, 100, 4)

[−50, 50]n 0 30

The proposed CSCPS is compared to the original SCO, as well as some well-known
optimization methods, such as particle swarm optimization (PSO) proposed by Refer-
ence [71], firefly algorithm (FA) introduced by Reference [72], multi-verse optimizer (MVO)
developed by Reference [73], tunicate swarm algorithm (TSA) introduced by Reference [70],
and salp swarm algorithm (SSA). For all methodologies, the size of solutions (N) and the
maximum number of iterations (tmax) are set to 30 and 1000, respectively, in order to make
a fair comparison between them.

Because the results of a single run of metaheuristic methods are stochastic, they may
be incorrect. As a result, statistical analysis should be performed in order to provide a fair
comparison and evaluate the algorithms’ efficacy. To address this issue, 30 time runs for
the mentioned methods were performed, with the results presented in Tables 4 and 5.
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Table 4. Results comparison of unimodal functions.

F Index CSCPS SCO PSO FA MVO SSA TSA

F1 Mean 0.00 2.42 × 10−97 4.98 × 10−9 7.11 × 10−3 2.81 × 10−1 3.29 × 10−7 8.31 × 10−56

SD 0.00 7.22 × 10−97 1.40 × 10−8 3.21 × 10−3 1.11 × 10−1 5.92 × 10−7 1.02 × 10−58

F2 Mean 0.00 1.16 × 10−52 7.29 × 10−4 4.34 × 10−1 3.96 × 10−1 1.9111 8.36 × 10−35

SD 0.00 2.55 × 10−52 1.84 × 10−3 1.84 × 10−1 1.41 × 10−1 1.6142 9.86 × 10−35

F3 Mean 0.00 7.84 × 10−81 1.40 × 10 1.66 × 103 4.31 × 10 1.50 × 103 1.51 × 10−14

SD 0.00 3.49 × 10−80 7.13 6.72 × 102 8.97 707.05 6.55 × 10−14

F4 Mean 0.00 4.57 × 10−46 6.00 × 10−1 1.11 × 10−1 8.80 × 10−1 2.44 × 10−5 1.95 × 10−5

SD 0.00 9.98 × 10−46 1.72 × 10−1 4.75 × 10−2 2.50 × 10−1 1.89 × 10−5 4.49 × 10−4

F5 Mean 7.22 × 10−8 2.80 × 10 4.93 × 10 7.97 × 10 1.18 × 102 136.56 28.4
SD 4.78 × 10−9 8.73 × 10−1 3.89 × 10 7.39 × 10 1.43 × 102 154.00 0.842

F6 Mean 0.00 2.15 6.92 × 10−2 6.94 × 10−3 2.02 × 10−2 5.72 × 10−7 3.67
SD 0.00 4.47 × 10−1 2.87 × 10−2 3.61 × 10−3 7.43 × 10−3 2.44 × 10−7 0.3353

F7 Mean 1.39 × 10−5 1.51 × 10−4 8.94 × 10−2 6.62 × 10−2 5.24 × 10−2 8.82 × 10−5 0.0018
SD 2.65 × 10−5 1.33 × 10−4 0.0206 4.23 × 10−2 1.37 × 10−2 6.94 × 10−5 4.62 × 10−4

Table 5. Results comparison of multimodal functions.

F Index CSCPS SCO PSO FA MVO SSA TSA

F8 Mean −1.25 × 104 −1.01 × 104 −6.01 × 103 −5.85 × 103 −6.92 × 103 −7.46 × 103 −7.89 × 103

SD 0.00 1.70 × 103 1.30 × 103 1.61 × 103 9.19 × 102 634.67 599.26
F9 Mean 0.00 0.00 4.72 × 10 1.51 × 10 1.01 × 102 55.45 151.45

SD 0.00 0.00 1.03 × 10 1.25 × 10 1.89 × 10 18.27 35.87
F10 Mean 8.88 × 10−16 8.77 × 10−16 3.86 × 10−2 4.58 × 10−2 1.15 2.84 2.409

SD 0.00 0.00 2.11 × 10−1 1.20 × 10−2 7.87 × 10−1 6.58 × 10−1 1.392
F11 Mean 0.00 0.00 5.50 × 10−3 4.23 × 10−3 5.74 × 10−1 2.29 × 10−1 0.0077

SD 0.00 0.00 7.39 × 10−3 1.29 × 10−3 1.12 × 10−1 1.29 × 10−1 0.0057
F12 Mean 1.57 × 10−32 1.25 × 10−1 1.05 × 10−2 3.13 × 10−4 1.27 6.82 6.373

SD 2.88 × 10−48 5.41 × 10−2 2.06 × 10−2 1.76 × 10−4 1.02 2.72 3.458
F13 Mean 1.35 × 10−32 1.99 4.03 × 10−1 2.08 × 10−3 6.60 × 10−2 21.31 2.897

SD 2.95 × 10−48 2.51 × 10−1 5.39 × 10−1 9.62 × 10−4 4.33 × 10−2 16.99 0.643

Tables 4 and 5 show that, for all functions, the CSCPS might provide better solutions
in terms of the mean value of the objective functions than the conventional SCO, as well as
other optimization techniques. The results also show that the mean and standard deviation
of the CSCPS algorithm are significantly lower than those of the other strategies, indicating
that the algorithm is stable. According to the findings, the CSCPS outperforms both the
standard method and alternative optimization approaches.

5. Model Application

The suggested CSCPS algorithm is employed for seismically slope stability issues in
this section, according to the present study’s main goal. The Morgenstern–Price method
was employed to determine the safety factor for static and earthquake stresses for a general
form of failure surface. The suggested CSCPS algorithm is used to determine the critical
failure associated with the minimum factor of safety. Two series of experiments from
previous studies are used to evaluate the potential application and efficacy of the suggested
research methods in finding the best FOS value. The number of predetermined slip surface
slices is assumed to be 40 in both cases. The algorithm’s parameters are the same as in
Section 4. All cases are remedied by taking into account three distinct values of Kh: 0.0,
0.1, and 0.2. Due to their stochastic nature, both algorithms (i.e., SCO and CSCPS) run
30 epochs autonomously for each problem, and the optimum outcomes are presented.

5.1. A Uniform Soil Slope

The primary case study is a dry slope in a relatively homogenous soil, which was
studied by Zolfaghari et al. [6]. Figure 8 depicts the slope’s geometric design. The slope is
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10.0 m high, with a steepness of 26.56 degrees. The soil’s effective friction angle (φ′) is 20◦,
its effective cohesiveness (c′) is 14.71 kPa, and its unit weight (γ) is 18.63 kN/m3.
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Zolfaghari et al. [6] solved this case by using a simple evolutionary genetic algorithm
(GA) and the Morgenstern–Price method (2005). Cheng et al. [8] used six heuristic algo-
rithms and Spencer’s technique to solve the problem and find the failure surface. They
discovered that the harmony search (HS) and simulated annealing (SA) algorithms could
outperform other approaches [8]. Finally, Himanshu and Burman [11] adopted particle
swarm optimization (PSO) for the solution, as well as Bishop’s method. In the abovemen-
tioned research, the static load is considered. This condition is the same as Case 1 (Kh = 0)
in the current study.

This case study is executed by utilizing the proposed CSCPS approach for various
values of Kh, and the associated lowest factors of safety are computed and presented in
Table 6. Table 6 shows that the minimum FOS calculated by the suggested CSCPS is
1.7132, which is lower than the FOS calculated by the other methodologies when Kh is
zero. Furthermore, when compared to the standard method, the CSCPS algorithm could
calculate better results for all loading cases.

Table 6. The best FOSs for slope in a uniform soil.

Optimization
Method Analysis Method Number of

Slices

Minimum FOS

Kh = 0.0 Kh = 0.1 Kh = 0.2

GA [6] Morgenstern–Price - 1.75 _ _
SA [8] Spencer’s method 40 1.7267 _ _
HS [8] Spencer’s method 40 1.7264 _ _
PSO [11] Bishop’s method 40 1.7195 _ _
SCO (current study) Morgenstern–Price 40 1.7275 1.4012 1.1897
CSCPS (current study) Morgenstern–Price 40 1.7132 1.3803 1.1424

The foregoing results indicate that CSCPS can reduce FOS and the critical failure
surface associated with it, demonstrating its advantage. Furthermore, increasing the Kh to
0.1 and 0.2 reduces the FOS by 19 and 32 percent, respectively. Figure 9 shows the critical
slip surfaces for each loading case.
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5.2. Slope in a Multi-Layered Soil

The next problem is a four-layer slope with different soil properties presented initially
by Zolfaghri et al. [6]. Figure 10 displays the slope geometry, and the surface of the water is
represented by a dashed line at an elevation of 46.7 m.
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Table 7 contains the soil properties of each layer. For this case, Zolfaghari et al. [6]
used an evolutionary genetic algorithm (GA) in conjunction with the Morgenstern–Price
method by considering four different loading cases:

Table 7. Soil properties for multi-layered slope.

Soil Properties Unit
Layer Number

1 2 3 4

Unit weight, γ kN/m3 18.63 18.63 18.63 18.63
Cohesion, c′ kPa 14.7 16.7 4.9 34.3

Friction angle, φ′ Degree 20 21 10 28

No flow of water and no seismic loads for Case 1; flow of water and no seismic
loadings for Case 2; seismic load by Kh = 0.1 and no water flow for Case 3; and seismic load
by Kh = 0.1 and water flow for Case 4.
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This case is solved by utilizing the suggested CSCPS algorithm, and two additional
loading conditions are considered in addition to the ones mentioned. No flow of water and
seismic load with Kh = 0.2 as Case 5; water flow and seismic load with Kh = 0.2 as Case 6.

Cheng et al. [8] used six optimization approaches with the Spencer technique to solve
this case and find the critical failure surface. According to their findings, when compared
to other approaches, the PSO may provide a lower FOS value. The minimum factors of
safety obtained in the previous studies and those calculated by the proposed methodology
are tabulated in Table 8 for different load cases.

Table 8. The best FOSs for multi-layered slope.

Optimization
Method Analysis Method

Loading Case

1 2 3 4 5 6

GA [6] Morgenstern–Price 1.48 1.36 1.37 0.98 _ _
PSO [8] Spencer method 1.3372 1.21 1.0474 0.9451 _ _
SCO (current study) Morgenstern–Price 1.342 1.206 1.0546 0.985 0.849 0.69
CSCPS (current study) Morgenstern–Price 1.322 1.178 1.019 0.916 0.814 0.657

Table 8 shows that the lowest FOS obtained by the suggested methodology is much
lower than GA’s (nearly 10%) and slightly lower than PSO’s for all load cases. Based on the
above findings, it can be found that the present CSCPS algorithm can be used to effectively
evaluate the seismic stability of the slope.

The critical slip surfaces connected to the lowest factors of safety for each loading
condition obtained by the proposed method are presented graphically in Figure 11.
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6. Discussion

In the previous section, two case studies of slope stability problems were solved by
using the proposed method, and the obtained results were compared with other approaches.
The statistical analysis of the obtained results is presented in this section to discuss the
efficiency of the proposed method. As mentioned in Section 6, because of the stochastic
nature of SCO and CSCPS, both techniques were run 30 times, and the optimum result
obtained by each method is reported. The FOS mean and standard deviation from 30 runs
are shown in Figures 12 and 13, respectively. Considering these results, the mean FOS
values obtained by CSCPS are slightly lower than those acquired by SCO. Furthermore,
the standard deviation of the suggested method’s results is significantly smaller than
that of the standard algorithm, demonstrating that the CSCPS significantly reduced the
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SCO algorithm’s instability. The preceding results show that the suggested method can
produce a lower FOS value and the accompanying main slip surface, thus demonstrating
its advantage.
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In addition, for a slope in a multi-layered soil, the FOS mean and standard deviation
from 30 separate runs for various load conditions are shown in Figures 14 and 15. According
to these figures, the mean and standard deviation of the results obtained by CSCPS are
lower than those obtained by SCO. Based on the above findings, it can be inferred that the
novel CSCPS can be used to successfully evaluate the seismic stability of a multi-layered
soil slope in the presence of groundwater.

In addition, in this section, we recount how a sensitivity analysis was carried out
by using the proposed methodology in order to determine the impact of the horizontal
acceleration coefficient and soil characteristics, such as effective friction angle, effective
cohesion, and unit weight, on the minimum factor of safety (FOS) for earth slopes. To this
aim, the first case study presented in Section 5.1 underwent a sensitivity assessment. The
results of the analysis are displayed graphically in Figures 16–18.

Figures 16–18 depict the minimum FOS for various values of Kh (i.e., Kh = 0.0,
Kh = 0.1, and Kh = 0.2) when the soil’s friction angle, cohesion, and unit weight all change
within their reasonable boundaries. As seen in Figures 16 and 17, as the soil’s friction
angle and cohesion increase, the slope’s FOS will also increase. However, as presented
in Figure 18, the relationship between FOS and unit weight is reversed, as expected. In
addition, as illustrated in these figures, compared to Kh = 0.0, Kh = 0.1 results in an average
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19% reduction in FOS. Moreover, when compared to the zero value of Kh, the decrement in
FOS for Kh equal to 0.2 is almost 32 percent.
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7. Conclusions

This research provides a hybrid optimization technique based on the chaotic sand cat,
as well as pattern search (CSCPS), for assessing the safety of soil slopes subjected to seismic
loads. The suggested methodology uses the powerful exploratory ability of the chaos
sand cat optimization, as well as the efficient local search capacity of the pattern search
technique. A variety of benchmark functions, both unimodal and multimodal, were used to
assess the performance of the new approach. Considering the obtained results, the CSCPS
outperforms the standard SCO and some other commonly used metaheuristic algorithms
such as PSO, FA, MVO, SSA, and TSA. The optimization results of benchmark functions
revealed that the new method could reach the global optimum for eight functions and a
near-optimal solution for the others. Moreover, the standard deviations obtained by the
CSCPS are significantly lower than those obtained by other methods, thus indicating the
stability of the algorithm. The proposed CSCPS was then used to find the minimum safety
factor and its associated critical failure surface of earth slopes in the existence of seismic
loading. Two numerical experiments of single-layered and multi-layered soil slopes were
considered from the literature. The findings show that the newly suggested methodology
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can improve the results of the prior methods (i.e., PSO and GA) by up to 10%, indicating
that CSCPS is quite efficient for solving such a complex engineering problem. In future
work, the proposed method will be further applied to reinforced slopes, three-dimensional
slopes, and other geotechnical engineering optimization problems.
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