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Abstract: The Duku Highway in the study area is located in the high-altitude mountainous region of
Xinjiang, China, and it is affected by various environmental factors during construction, among which
the influence of freeze–thaw cycles cannot be ignored. In order to study the effect of freeze–thaw
cycles on the strength of tuff surrounding rock at high-altitude mountainous areas, uniaxial com-
pressive strength and shear wave velocity tests with different numbers of freeze–thaw cycles were
conducted on dry and saturated rock samples from the tunnel entrance of the Duku Highway. The
test results showed that the tuff specimens condensed a thin layer of ice on the surface with raised
freezing points during the freezing stage, but the thickness of the thin ice and the density of the
freezing points did not change with the increase of the number of freeze–thaw cycles. Analysis of the
test data showed that the wave velocity, uniaxial compressive strength, breaking strain, modulus of
elasticity, and Poisson’s ratio of the rock decreased as the number of freeze–thaw cycles increased.
We believe that the freeze–thaw cycles caused the deterioration of the rock strength. The reason for
this phenomenon is that we believe that the freeze–thaw cycling action changed the rock internally
and affected its density, which, in turn, caused the attenuation of strength, etc. However, there is a
limit to the effect of freeze–thaw cycling on the strength of the surrounding rock. After exceeding
the limit of the effect of freeze–thaw cycling, the strength parameters of the surrounding rock will
no longer change with the increase of the number of freeze–thaw cycles. The results of this study
can provide a theoretical basis for the prevention and control of the stability of tuff surroundings at
high-altitude mountain tunnel openings.

Keywords: freeze–thaw cycles; strength parameter; dry rock samples; immersion-saturated rock
samples; high-altitude mountain

1. Introduction

Located in Xinjiang Province, China, the Duku Road connects the north and south of
the Tianshan Mountains. The road is greatly affected by landform, climate, and geological
disasters, causing severe security risks to people and vehicles on the road. In addition, the
annual operation time is only five months (from June to October), which has a significant
impact on the economic development of the north and south of the Tianshan Mountains.
Therefore, building an all-weather bridge-tunnel highway across the north and south of
the Tianshan Mountains is particularly important.

This site in the Tianshan Mountain area is at a high altitude. Some areas are up to
3700 m above sea level, belonging to the cold climate plateau area. According to the
local meteorological data, the lowest ambient temperature can reach −40 ◦C, while the
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temperature is relatively high in summer, The highest temperature can reach 40 ◦C. Thus,
the strength and stability of rocks surrounding the tunnel entrance/exit are affected by
temperature changes. Rock mass engineering failure caused by freeze–thaw is a familiar
construction problem encountered in high-altitude cold regions. For example, tunnel lining
cracking caused by the frost heave of the surrounding rock is one of the primary forms of
tunnel failure in cold areas [1,2]. This paper investigated the effect of freeze–thaw cycles on
the strength changes in rocks at the tunnel entrance/exit.

1.1. Studies of High-Altitude Mountain Areas

For the study of high-altitude mountainous areas, some scholars [3–6] studied the
evaluation of geological hazards such as mudslides on roads with typical alpine and
high-altitude mountainous areas, as well as the hazards and prevention of roads. Some
scholars [7–9] mainly studied the research on roadbed design and safety evaluation as
well as safeguard measures of highways. It can be seen that, at present, for high-altitude
mountainous areas, the main research is on the characteristics of highway geological
hazards and safety evaluation, etc., and the research on the strength change of high-altitude
highway tunnel entrances surrounding rocks under freeze–thaw cycle conditions studied
in this paper is slightly insufficient.

1.2. Studies of Freezing–Thawing Cycles and Rocks

Yavuz et al. [10] found that the rock samples’ P-wave velocity decreased after 20 freeze–
thaw cycles. Momeni et al. [11] investigated the impacts of freeze–thaw cycles on rocks’
physical and mechanical properties. Ghobadi et al. [12] conducted freeze–thaw cycle tests on
the sandstone in Iran, analyzing its physical and mechanical loss. Yambae et al. [13] reported
that the uniaxial compressive strength of rocks dropped as the number of freezing–thawing
cycles increased. Based on experiments, Fahey et al. [14] found that weathering on shale was
3–4 times stronger than freeze–thaw cycles. Matsuoka et al. [15] demonstrated that freeze–
thaw failure occurs in rock when exposed to the open aquifer system. Liu et al. [16] reported
impacts of freeze–thaw cycles on rock weathering and variations of physical and mechanical
parameters of rocks after freeze–thaw cycles. Wan et al. [17] found that the surrounding
rocks’ physical and mechanical properties decreased as the freeze–thaw process continued,
changing laws at different stages. Xu et al. [18,19] examined the failure characteristics of
rock under various conditions such as other forces, cyclic temperatures, and water contents.

Rong et al. [20] conducted laboratory physical and mechanical performance tests and
found the tensile, compressive, and shear performance of intact rock samples and the shear
characteristics of its structural discontinuity plane. Zhang et al. [21] studied the impacts
of rock characters and freeze–thaw cycles on the damage mechanics of rock. Liu et al. [22]
found that after freeze–thaw cycling, the mass, longitudinal wave velocity, and coefficient
of heat conductivity of the rock sample increased before decreasing. In contrast, the uniaxial
compressive strength decreased monotonically, and the elastic modulus and peak strain
increased as the number of freezing–thawing cycles increased. Inada et al. [23] showed
that both rock’s tensile and compressive strength increased as the temperature increased.
Tang et al. [24] demonstrated that as the number of freeze–thaw cycles grew, the rock
compressive strength, cohesion, internal angle of friction, and elastic modulus would
reduce gradually, whereas the Poisson’s ratio would increase. Hou et al. [25] reported that
the rock compressive strength, tensile strength, and elastic modulus declined exponentially
as the number of freeze–thaw cycles grew. Shen et al. [26] found that rock wave velocity
reflects the degradation during freeze–thaw cycles, and the uniaxial compressive strength
and elastic modulus declined exponentially. At the same time, the dynamic Poisson’s
ratio increased exponentially as the number of freeze–thaw cycles grew. Wu et al. [27]
demonstrated that elastic and secant moduli of rock-like materials decreased as the number
of freeze–thaw cycles increased. Jiang et al. [28] reported that freeze–thaw cycles caused
minor freeze–thaw damage to rock samples. Liu et al. [29] found that the frost-heave force
of the surrounding rock would increase and be constant as the number of freeze–thaw
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cycles increased based on the theoretical calculation of the frost-heave force in the tunnel
of the surrounding rock under freeze–thaw cycles, developing, later on, the rock damage
model [30–33]. Al-Omari et al. [34] studied the internal damage of the porous structures of
limestone and the surface spalling under thermal stress, condense, and freeze–thaw cycles.
Wang M et al. [35] have studied the fracture behavior of mixed-model I/II cracks under
dynamic loads. Tensile crack softening failure criterion is used to study impact-induced
crack initiation and propagation in rocks [36]. The crack propagation toughness of tight
sandstone under different loading rates was investigated [37]. The microstructure changes
of specimens induced by cyclic freeze–thaw were measured using nuclear magnetic, the
results show that the cyclic freeze–thaw plays an important part in rock dynamic fracture
behavior [38].

In summary, current studies on this issue at home and abroad mainly explore the
changes of compressive and shear strengths through freeze–thaw cycling of different
types of rock and soil bodies. However, the analysis and research on the rock strength in
high-altitude areas and tunnel entrances surrounded by freeze–thaw cycling deterioration
remained weak. There is no research on rock quality changes under freeze–thaw cycling in
the cold region of Duku Road.

This paper studied the variation rules of rock strength parameters in this area under
freeze–thaw cycles based on relevant laboratory tests and theoretical analysis. The impacts
of freeze–thaw cycles on strength parameters of rocks at the tunnel entrance/exit were
analyzed and summarized.

2. Materials and Methods
2.1. Selection of Study Area

This study aimed to clarify variations of strength parameters of rocks surrounding the
road tunnel entrance/exit in high-altitude mountainous areas under freeze–thaw cycles.
Hence, the study area should meet the requirement of the test, i.e., having the capacity of
simulating the freeze–thaw cycling. Furthermore, the proposed Duku Road (Figure 1) is in
a high-altitude mountainous area, where the temperature difference between summer and
winter was as high as 80 ◦C. Hence, this place naturally satisfied the requirement of the
freeze–thaw test.
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2.2. Sample Selection and Preparation

Test samples were from the rock surrounding the tunnel entrance/exit in the proposed
Duku Road of G217. The rock sample taken is tuff. Figure 2 illustrates the sampling process
used to obtain the standard-sized test sample (50 mm in diameter and 100 mm in height)
through field coring and laboratory processing.
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2.3. Specimen Characteristics

After sampling the site drilling, representative blocks of the proposed tunnel site were
selected for lithological analysis, and it is known that the surrounding rock at the proposed
tunnel entrance is mainly tuff stratigraphy. The lithology of the stratum is Yingan crystal
glass chip tuff. This layer of tuff is tuff structure, block structure, debris composition is
mainly glass chips and crystal chips, medium sorting, of which crystal chips account for
about 60%, rock chips account for about 7%, glass chips about 13%, de-glassing is obvious,
and sericitization and mudification of feldspar crystal chips occur. In this paper, we mainly
focus on the above tuffs.

2.4. Experimental Design

We tested the uniaxial compressive strength and shear wave velocity of rocks after
different numbers of freeze–thaw cycles in the laboratory and discussed the influence of
freeze–thaw cycling on rock strength by analyzing experimental data.

Rock samples were divided into two groups in this experiment to simulate precipi-
tation and drought environments in mountain areas. We obtained one group of samples
when there was no natural precipitation. However, due to the substantial amount of local
evaporation, annual evaporation reached 3008.9 mm, so these samples had low water
content as dry samples. Therefore, we made the other samples by placing the dry samples
in clean water for 24 h to simulate the tunnel entrance/exit surrounding rock situation
after heavy natural precipitation. Therefore, this sample group was immersion-saturated,
because the water in the natural tunnel entrance/exit surrounding rock only penetrates the
crack during precipitation and no longer absorbs water after reaching a certain degree but
was not fully saturated. Thus, this sample group simulated the surrounding rock after high
natural rainfall.

According to the local meteorological data, the annual temperature difference in this
area was excellent. The extreme maximum temperature in the summer project area can
reach 40 ◦C, and the low winter temperature can reach −40 ◦C. In the laboratory experiment,
the maximum temperature of freeze–thaw cycles was 40 ◦C, and the lowest temperature
was −40 ◦C. One freeze–thaw cycle lasted for eight hours, i.e., four hours of freezing and
four hours of thawing.

The freeze–thaw cycles were 0, 5, 10, 15, 20, 25, and 30. Freeze–thaw cycles were con-
trolled using the programmable humidity chamber (constant temperature and humidity).
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2.5. Procedures
2.5.1. Sample Grouping

According to the experimental design, the samples comprised two large groups, the
dry sample groups and the saturated sample groups, and the number of samples in each
group met the standard requirements and parallel experiments to ensure the data reliability
and accuracy of the study. Therefore, as shown in Table 1, the dry samples were labeled
G1~G7 groups and the immersion-saturated samples were S1~S7 groups. According to the
relevant specifications, the number of samples in groups G1~G7 as well as S1~S7 was 3 for
each group, totaling 14 groups and 42 specimens.

Table 1. The sample groups.

Cycle-Index 0 5 10 15 20 25 30

Dry samples groups G1 G2 G3 G4 G5 G6 G7

Saturated sample groups S1 S2 S3 S4 S5 S6 S7

2.5.2. Freeze–Thaw Test

According to the experimental program, two groups of rock samples were put into
the humidity chamber (with constant temperature and humidity), with preset freezing–
thawing test temperature and time according to the test scheme. Then, according to the
program, every five freezing–thawing cycles, the corresponding sample from the humidity
chamber (with constant temperature and humidity) was used immediately for the shear
wave speed and uniaxial compressive tests.

Figure 3 shows the freeze–thaw test temperature pattern. In addition, it shows, during
two freeze–thaw cycles in the test box, the process of practical temperature in experimental
temperature and experimental humidity chamber change process.
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2.5.3. Shear Wave Velocity Test

A shear wave velocity test used the acoustic detector on the freeze–thaw test samples.
As shown in Figure 4, Vaseline was first evenly smeared on the upper and lower surfaces
of the sample, and the transmitter and receiver of the signal acquisition were attached to
the upper and lower surfaces of the sample to collect shear wave speed samples.
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2.5.4. Uniaxial Compressive Strength Test

According to the test design, uniaxial compressive strength tested rock samples with
cycles of 0, 5, 10, 15, 20, 25, and 30. Thus, we determined the influence of freeze–thaw
cycling on rock strength parameters and explored its variation rule.

After exposure to the freeze–thaw cycles, we removed the samples. First, two groups
of resistance strain gauges were pasted symmetrically on the outer wall of the sample in the
transverse and axial, respectively (see Figure 5), to observe the strain change of the sample
during uniaxial compression. Then, we placed the sample on the compression testing
machine and wired the resistance strain gauges to the resistance strain meter. Finally, the
test was started after debugging (Figure 6).
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3. Results and Analysis
3.1. Analysis of Apparent Phenomena of Freeze–Thaw Testing

Figure 3 shows trends of freezing–thawing test temperatures. In freeze–thaw cycles,
sample practical temperatures rapidly reduced from room temperature to the designed
−40 ◦C within 28 min. For example, it took only 36 min for the sample experimental
temperature to decrease from 40 ◦C to −40 ◦C and only 14 min to heat from −40 ◦C to
40 ◦C. Therefore, when the temperature is between −40 ◦C and 40 ◦C, the rising rate of
rock temperature is 2.57 times the falling rate.

Figure 7 shows sample appearance at different freeze–thaw cycling stages. Figure 7a
shows the original samples before the freeze–thaw test, without moisture and ice on the
surface. Figure 7b shows the appearance of a dry sample after being deep-frozen. It has
a thin layer of ice distributed with granular protrusion freezing points, and the sample
was visible from the upper and bottom surfaces. Figure 7c shows the sample situation
after freezing and beginning high-temperature ablation for a while. The frozen thin ice
on its surface gradually melts, and the ablation process starts from the upper surface and
gradually melts downward, in which the surface granular protrusion freezing point melts
first. Figure 7d is the deep-frozen immersion-saturated sample. Its surface ice was more
significant than in the dry sample, the granular protrusion freezing point was denser, and
the sample was not visible from the upper or bottom surface.
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Figure 7. Image of sample changes in different freeze–thaw cycle stages. (a) Before freeze–thaw cycle,
(b) After freeze–thaw cycle (Dry), (c) Melting process, (d) After freeze–thaw cycle (Wet).

After several freeze–thaw tests, the apparent analysis revealed that the sample showed
no evident changes in the surface ice thickness and freezing point density after several
cycles. The surface ice thickness of the dry sample was slightly smaller than that of the
immersion-saturated sample. As a result, the granular protrusion freezing points were
more sparsely distributed than the immersion-saturated sample.
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3.2. Shear Wave Velocity Test

Table 2 illustrates the impacts of freezing–thawing cycling on shear wave speed
and amplitude of rocks. As shown in Table 2 and Figure 8, shear wave speeds of dry
and immersion-saturated samples decreased as the number of freezing–thawing cycles
increased. After the first 30 freezing–thawing cycles, the shear wave speeds of dry and
immersion-saturated samples decreased by 0.8 and 0.34 km/s. The wave speed of the dry
sample was significantly higher than that of the immersion-saturated sample.

Table 2. Freeze–thaw cycles and shear wave velocity results data table.

Cycle-Index Group No. T/µs A/mv V/km·s−1

0 G1 18.7 0.29 5.348
5 G2 18.7 0.39 5.348
10 G3 20.1 0.28 4.975
15 G4 19.9 0.23 5.025
20 G5 20.3 0.24 4.926
25 G6 22.0 0.18 4.545
30 G7 20.3 0.17 4.926
0 S1 20.3 0.21 4.926
5 S2 20.9 0.24 4.785
10 S3 21.4 0.19 4.673
15 S4 21.2 0.17 4.717
20 S5 22.0 0.20 4.545
25 S6 21.7 0.18 4.608
30 S7 21.8 0.17 4.587
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As the number of freeze–thaw cycles increased, the difference in shear wave velocity
between the two types of samples reduced, suggesting that, after a certain number of cycles,
the difference between a dry sample and an immersion-saturated sample became less, and
the wave velocity tended to stabilize, and no significant fluctuation was generated.

As shown in Table 2 and Figure 9, both amplitudes increased before decreasing with
the increasing number of freeze–thaw cycles. In addition, the dry sample had a more
apparent decreasing trend.
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During the first five cycles, the amplitudes of both dry and immersion-saturated
samples increased with the number of freeze–thaw cycles. However, the rate of amplitude
increase of the dry sample was significantly higher than that of the immersion-saturated
sample. Both amplitudes decreased after the 5th freeze–thaw cycle, and both amplitudes
were stable after the 25th cycle. We predicted that after freeze–thaw cycles of a limited
number of cycles, amplitudes of both samples decreased, stabilizing after a limited number
of cycles, with no significant fluctuation with the increase of the cycle number.

According to the physical properties of waves, the freeze–thaw cycle test changes the
nature of the propagating medium to a certain extent, which, in turn, leads to a change in
the wave velocity.

V =
h
T

(1)

In Equation (1), V is the speed of sound in km/s; T is the sound time in µs; h is the
height of the specimen in m.

c = λ•f (2)

In Equation (2), c is the wave speed, λ is the wavelength, and f is the frequency of
the wave.

According to Equations (1) and (2), the propagation medium changes the wavelength,
which, in turn, leads to a decrease in wave speed. Since the biggest difference between
different propagation media is density, the analysis concluded that the freeze–thaw cycling
action changed the density of the specimens, and there was a slight difference in the density
of the specimens after different numbers of freeze–thaw cycles.

Zhu G. et al. [39] analyzed that the density is proportional to the wave velocity, and
according to the wave velocity test results, as the number of freeze–thaw cycles increases,
the specimen wave velocity decreases, that is, the density decreases.

According to the test results of water-saturated specimens and dry specimens, there is
a difference, the analysis that the reason for this change is that the specimen after immersion
in water changes the density of the specimen, etc., water fills the tiny voids inside the
specimen, and the difference in the propagation medium causes the difference in wave
speed and amplitude of the two specimens. The trend of wave velocity and amplitude
after specimen immersion is relatively flat, and the analysis suggests that the difference
between each specimen is reduced after water enters the tiny voids inside the specimen,
which changes the wave propagation medium, so the trend is relatively flat, and the effect
of freeze–thaw cycles on some properties of the rock, so that the wave velocity gradually
decreases with the increase of the number of freeze–thaw cycles.
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3.3. Uniaxial Compressive Strength Test

Table 3 illustrates the impacts of freeze–thaw cycling on the strength parameters of rocks.

Table 3. Freeze–thaw cycles and maximum load, maximum stress data table.

Cycle-Index Group No. Maximum Load/kN Maximum Stress/MPa

0 G1 269,362.2500 137.1851
5 G2 316,925.4000 161.4088
10 G3 209,809.1000 106.8549
15 G4 250,503.1000 127.5802
20 G5 155,875.8000 79.3869
25 G6 83,218.7656 42.3830
30 G7 105,022.6484 53.4876
0 S1 424,275.7813 216.0819
5 S2 244,133.1651 124.3360
10 S3 128,023.9531 65.2021
15 S4 282,091.4583 143.6680
20 S5 159,700.8990 81.3350
25 S6 107,604.4000 54.8025
30 S7 133,001.5000 67.7371

According to Table 3 and Figure 10, the uniaxial compressive strengths of samples
decreased as the number of freeze–thaw cycles increased. Before the 13th freeze–thaw cy-
cle, the uniaxial compressive strength of dry samples was significantly higher than that of
immersion-saturated samples. However, the strengths of both samples decreased with the
increasing number of freeze–thaw cycles. After the 13th freeze–thaw cycle, the strength
of immersion-saturated samples was slightly larger than that of dry rock samples. How-
ever, with the increase in the number of freezing–thawing cycles, the uniaxial compressive
strengths of both rock samples still decreased. However, strength decreased slightly less than
before the 13th freezing–thawing cycle. After the 25th freezing–thawing cycle, the uniaxial
compressive strengths of both rock samples increased somewhat. Still, the rate of increase
was relatively low, suggesting that after a limited number of freeze–thaw cycles, uniaxial
compressive strengths of the two rock samples remained within a specific range, and large
fluctuations would not occur with the increase in the number of freeze–thaw cycles.

According to the analysis of the test results, the uniaxial compressive strength of
the specimens decayed significantly after 30 freeze–thaw cycles, with the dry specimens
decaying about 62.01% and the water-saturated specimens decaying about 68.65%. The
reason for this situation was that the water immersion changed some properties inside the
specimens, resulting in the difference in strength decay between the two specimens.

According to Table 4 and Figure 11a, with the increased number of freeze–thaw cycles,
the strain during dry sample damage first increased, then decreased, and finally increased,
with longitudinal strain greater than transverse strain. During the first five freeze–thaw
cycles, the strain during dry sample damage increased with the number of freeze–thaw
cycles. The number of damaged cycles decreased with the increase of cycles from the 5th to
the 25th cycle and rose again after the 25th cycle.
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Table 4. Freeze–thaw cycles and longitudinal strain, transverse strain data table.

Cycle-Index Group No. Longitudinal Strain/µm Transverse Strain/µm

0 G1 1451.00 736.00
5 G2 1990.00 962.00
10 G3 1882.00 578.00
15 G4 1540.00 332.00
20 G5 950.00 226.00
25 G6 712.00 221.00
30 G7 1633.00 662.00
0 S1 2348.00 820.00
5 S2 1362.00 736.00
10 S3 1130.00 467.00
15 S4 1220.00 664.00
20 S5 885.00 577.00
25 S6 964.00 586.00
30 S7 717.00 384.00
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As shown in Figure 11b, the strain of immersion-saturated sample destruction de-
creased gradually with the increase of freeze–thaw cycles, and the longitudinal strain was
significantly more significant than the transverse strain. However, the strain change rate
was substantial during the first ten freeze–thaw cycles, and the curve remained unchanged
after the 10th cycle. Since strain would not decrease infinitely with the increase of the cycle
number, we predicted that after a specific number of freeze–thaw cycles, the damaging
strain of the immersion-saturated rock samples no longer significantly changed with the
increase of the number of freeze–thaw cycles and appeared to be stable.

According to the comparison of the number of freeze–thaw cycles and the longitudinal
and transverse strains during rock samples destruction (Figure 12a,b), the longitudinal
strain, in general, was more significant than the immersion-saturated sample when the dry
sample was damaged. However, between the 5th and 25th cycle, the longitudinal strain
decreased with the increase in the number of freeze–thaw cycles.
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Figure 12. Freeze–thaw cycles-failure strain comparison curve. (a) Longitudinal strain curve, (b)
Transverse strain curve.

As shown in Figure 12b, when the number of freezing–thawing cycles is less than
11, the transverse strain is more significant than that of the immersion-saturated sample
when the dry sample fails. After the 11th cycle, the transverse strain upon the failure of the
immersion-saturated rock samples was more significant than that of the dry sample as the
number of freeze–thaw cycles. Moreover, the transverse strain, in general, decreased with
the number of freeze–thaw cycles.

According to Table 5 and Figure 13a,b, freeze–thaw cycling impacts the rock elastic
modulus and Poisson’s ratio.

As shown in Figure 13a, the elastic modulus of the immersion-saturated rock samples
is slightly greater than that of the dry sample, and as the number of freeze–thaw cycles
increases, the elastic modulus of both samples decreases. Before the first ten freeze–thaw
cycles, the reduction in the elastic modulus of both samples was slightly more significant
than the reduction after the 10th cycle; between the 10th and 15th cycles, the elastic moduli
of both samples increased with the increase of the number of freeze–thaw cycles but
decreased after the 15th cycle.
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Table 5. Freeze–thaw cycles, elastic modulus, elastic Poisson’s ratio data table.

Cycle-Index Group No. Elastic Modulus Elastic Poisson’s Ratio

0 G1 77.34 0.67
5 G2 58.11 0.48

10 G3 47.37 0.26
15 G4 63.04 0.26
20 G5 55.75 0.24
25 G6 44.69 0.29
30 G7 27.33 0.33
0 S1 88.47 0.37
5 S2 81.20 0.56

10 S3 40.93 0.34
15 S4 76.81 0.47
20 S5 64.30 0.45
25 S6 43.84 0.48
30 S7 67.18 0.41
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curve, (b) Elastic Poisson’s ratio curve.

Figure 13b shows that immersion-saturated rock samples have a higher elastic Pois-
son’s ratio than dry samples. Before the first ten freeze–thaw cycles, the elastic Poisson’s
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ratios of the two samples decreased rapidly. However, after the first ten freeze–thaw cycles,
the elastic Poisson’s ratios of both samples tended to be stable.

The analysis predicted that after a certain number of freeze–thaw cycles, the Poisson’s
ratios of the two samples would be stable. According to the test curve, as the number of
freezing–thawing cycles increased, the Poisson’s ratio of the dry rock sample approached
0.6–0.7 eventually. In contrast, the elastic Poisson’s ratio of the immersion-saturated sample
would have a final elastic Poisson’s ratio of 0.45.

According to Table 6 and Figure 14a,b, freeze–thaw cycling impacted the secant
modulus and secant Poisson’s ratio of rock.

Table 6. Freeze–thaw cycles, secant modulus, secant Poisson’s ratio data table.

Cycle-Index Group No. Secant Modulus Poisson’s Ratio

0 G1 85.74 0.38
5 G2 63.80 0.48
10 G3 41.40 0.30
15 G4 55.83 0.20
20 G5 60.28 0.25
25 G6 47.99 0.34
30 G7 22.92 0.31
0 S1 60.66 0.36
5 S2 62.31 0.53
10 S3 53.47 0.52
15 S4 71.76 0.50
20 S5 63.36 0.48
25 S6 47.98 0.41
30 S7 61.32 0.45

As shown in Figure 14a, as the number of freeze–thaw cycles increased, the secant
modulus of the immersion-saturated sample was slightly larger than that of the dry sample.
The secant modulus of the two groups of rock samples decreased as the number of freeze–
thaw cycles grew. Except for the fact that the secant modulus of the dry sample showed a
slight increase during the 10th and 20th freeze–thaw cycles, it was continuously reducing
with a gradually increasing gradient both when the freezing–thawing was within the first
ten cycles and when the freeze–thaw was after the 20th cycle. However, the secant modulus
of the immersion-saturated sample had a stable change during the freeze–thaw cycles.

As shown in the Figure 14b curve, the secant Poisson’s ratio of the immersion-saturated
sample was more significant than that of the dry sample and had a decreasing trend in
general as the number of freeze–thaw cycles grew, because the secant Poisson’s ratio of the
dry sample had a significant rate of increase as the number of freeze–thaw cycles increased.
In contrast, the rate of increase of the immersion-saturated sample was relatively low.

The effect of freeze–thaw cycles changed the nature of the rock, and the specimens
containing fractures were eliminated after the pre-screening sample, so it is considered
that the effect of water on fractures in freeze–thaw cycles is small, and it is considered that
the freeze–thaw cycles changed the nature of the rock’s own strength by this test, and the
strength deterioration of the specimens gradually increased with the increase of the number
of freeze–thaw cycles, showing the phenomenon that the uniaxial compressive strength of
the rock gradually decreased with the increase of the number of freeze–thaw cycles.

According to the loading direction, the specimens were mainly loaded along the
longitudinal direction when the ring was broken, so the longitudinal strain was always
greater than the transverse strain when the damage occurred. After the specimens were
immersed in water, the modulus of elasticity and Poisson’s ratio changed, their brittleness
changed, and their elastic phase at the time of destruction increased, so the strain value at
the time of destruction of the immersed specimens increased. As the number of freeze–thaw
cycles increases, the uniaxial compressive strength of the rock gradually decreases, so the
longitudinal loading displacement gradually decreases, and the corresponding damage
strain also decreases with the number of freeze–thaw cycles.
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3.4. Summary and Analysis of Test Data

After the samples had the freeze–thaw cycles, we found that most physical and
mechanical parameters of samples decreased as the number of freeze–thaw cycles increased.

Wang et al. [40] found that rock’s compressive strength and wave velocities were
significantly positively correlated. The variation rules of different rock types were similar
to their characteristics. This experimental study again confirmed the relationship between
compressive strength and wave velocities. The modulus and Poisson’s ratio decreased
after freeze–thaw cycles, indicating that the elastic behavior of rocks decreased gradually
and shortened the elasticity range. This law could be explained again by the decrease of
strain, secant modulus, and secant Poisson’s ratio upon failure. In other words, with the
increasing number of freeze–thaw cycles, the wave velocity of rock gradually decreased,
while the strength parameters also decayed. However, the influence of freeze–thaw cycling
on the strength of the surrounding rock had a specific limit. On exceeding the influence
limit of freeze–thaw cycling, the strength parameters ceased changing even if the number
of freeze–thaw cycles continued to grow.
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4. Conclusions and Discussion for Further Research
4.1. Conclusions

Based on the testing of two sets of tuff samples in this study, the uniaxial compressive
strength, shear wave velocity, and amplitude, as well as the longitudinal strain, trans-
verse strain, elastic modulus, Poisson’s ratio, secant modulus, and secant Poisson’s ratio
upon failure were found affected by the freeze–thaw cycles. Furthermore, the following
additional conclusions were evident as the number of freeze–thaw cycles grew:

(1) When the temperature was between −40 ◦C and 40 ◦C, the rock temperature had a
rate of increase 2.57 times greater than that of decrease.

(2) The shear wave velocity of two rock groups decreased as the number of freeze–thaw
cycles grew. Meanwhile, the samples’ uniaxial compressive strength, elastic modulus,
Poisson’s ratio, secant modulus, and secant Poisson’s ratio showed a reduction.

(3) Transverse strain of the two groups was more petite than the longitudinal strain, while
the longitudinal strain of the dry sample was more significant than the immersion-
saturated sample. Furthermore, it showed a trend of first increasing, then decreasing,
and then increasing. On the other hand, longitudinal and transverse strains of the
immersion-saturated sample showed a decreasing trend when it failed.

(4) As the number of freeze–thaw cycles increased, the wave velocity of rock gradually
decreased, and all strength parameters of rock also decayed. However, the influence
of freeze–thaw cycling on the strength of the surrounding rock also had a specific
limit. When the influence limit of freeze–thaw cycling was exceeded, the strength
parameters of the surrounding rock would no longer change with the increase in the
number of freeze–thaw cycles.

(5) We believe that freeze–thaw cycles lead to deterioration of tuff strength. The reason
for this phenomenon is that we believe that the freeze–thaw cycling action changes
the rock internally, affecting its density, which, in turn, causes a decay in strength, etc.

4.2. Discussion for Future Research

This experiment focused on studying the strong attenuation of surrounding rocks at
the tunnel entrance/exit after freeze–thaw cycles. The variation rules of wave velocity,
uniaxial compressive strength, and related parameters with the number of freeze–thaw
cycles were summarized. However, this test only discussed the two groups’ changes in
sample parameters after the first 30 freeze–thaw cycles. Although the number of experi-
mental groups in this study met the specification requirements, there was still a particular
dispersion in the test results.

Based on the tests, we verified the influence of freeze–thaw cycling on the strength
parameters of surrounding rocks in the later stage. Through this study, we realized that the
following problems needed further investigation:

(1) After how many freeze–thaw cycles will the strength parameters of rock no longer
have large fluctuations?

(2) Strength parameters of the surrounding rock will be stable after reaching the influence
limit of freeze–thaw cycling. What is the relationship between the value and the initial
index of surrounding rock strength parameters of surrounding rocks?

Therefore, from an engineering standpoint, the strength degradation of the surround-
ing rock at the tunnel entrance/exit should consider the impact of the freeze–thaw cycles
induced by the local environment. Therefore, this study helped prevent the effects of strong
attenuation of surrounding rocks caused by freeze–thaw cycling to a certain extent, thus
avoiding specific engineering problems. Meanwhile, this study provided a theoretical basis
for covering the stability control of the surrounding rock at the tunnel entrance/exit in the
high-altitude mountainous area. The study in this paper is only applicable to the studied
tuff stratum.
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