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Abstract: Nutrient management is always a great concern for better crop production. The optimized
use of nutrients plays a key role in sustainable crop production, which is a major global challenge
as it depends mainly on synthetic fertilizers. A novel fertilizer approach is required that can boost
agricultural system production while being more ecologically friendly than synthetic fertilizers. As
nanotechnology has left no field untouched, including agriculture, by its scientific innovations. The
use of nanofertilizers in agriculture is in the early stage of development, but they appear to have
significant potential in different ways, such as increased nutrient-use efficiency, the slow release
of nutrients to prevent nutrient loss, targeted delivery, improved abiotic stress tolerance, etc. This
review summarizes the current knowledge on various developments in the design and formulation
of nanoparticles used as nanofertilizers, their types, their mode of application, and their potential
impacts on agricultural crops. The main emphasis is given on the potential benefits of nanofertilizers,
and we highlight the current limitations and future challenges related to the wide-scale application
before field applications. In particular, the unprecedent release of these nanomaterials into the
environment may jeopardize human health and the ecosystem. As the green revolution has occurred,
the production of food grains has increased at the cost of the disproportionate use of synthetic
fertilizers and pesticides, which have severely damaged our ecosystem. We need to make sure that
the use of these nanofertilizers reduces environmental damage, rather than increasing it. Therefore,
future studies should also check the environmental risks associated with these nanofertilizers, if there
are any; moreover, it should focus on green manufactured and biosynthesized nanofertilizers, as
well as their safety, bioavailability, and toxicity issues, to safeguard their application for sustainable
agriculture environments.

Keywords: nanofertilizers; types of nanofertilizers; design and formulation; plants; sustainable
agriculture; environment

1. Introduction

In recent agricultural applications, environmentally friendly technology has been gain-
ing importance as a substitute for traditional pesticides and fertilizers. Nanotechnology
provides a viable alternative solution to overcome the drawbacks of conventional use of
fertilizers in agriculture. Therefore, the use of nanoparticles (NPs) is increasing tremen-
dously in agriculture. This review provides a unique perspective on current advances in
the design and composition of NPs as nanofertilizers, as well as their other agricultural
uses. This review also describes recent investigations on NP–plant interactions, and their
effects on crop plants. Figure 1 shows a graphical illustration of this review.
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Figure 1. Graphical illustration representing the overview of the manuscript with key highlights.

Nanofertilizers are essential to reduce the use of inorganic fertilizers and reduce
their antagonistic effects on the environment, as they are highly reactive, can penetrate the
epidermis, and enable slow release and dispersion, thus improving nutrient-usage efficiency.
They can also help to alleviate heavy-metal toxicity and abiotic stress. Contrarily, there are
also reports on the toxic effects of NPs in different plants due to their deposition on the cell
surfaces and in organelles, inducing oxidative stress [1]. For example, a study reported
the detrimental effects of NPs, i.e., suppressing plant development, inhibiting chlorophyll
synthesis, reducing photosynthetic efficiency, etc. The effects of NPs might be favorable or
detrimental depending on the plant species, type of NPs employed, and concentration [2].
CuO NPs have been reported to induce cytotoxic and genotoxic effects as they penetrate
cells and their different compartments [3]. Another report stated that NPs can penetrate
the cell and disrupt the chloroplast and mitochondrial electron-transport system (ETS)
cycle, triggering an oxidative burst due to an increase in reactive oxygen species (ROS) [4,5].
Many plant species are susceptible to oxidative stress caused by metal and metal-based
NPs. ROS produce oxidative damage to chloroplast and mitochondrial DNA, which induce
changes in the encoded protein, resulting in the malfunction and complete inactivation of
the specified proteins [6]. The exposure of AgNPs to Ricinus communis seed increases ROS
generation, which is implicated in the antioxidant defense system (superoxide dismutase
enzyme (SOD), peroxidase (POD) activity, and phenolic acids) [7,8]. ZnO NPs have been
reported to dramatically decrease ryegrass biomass, causing root-tip shrinkage and root
epidermal and cortical cells to become heavily vacuolated or collapsed. Individual ZnO
NPs were observed in the apoplast and protoplast of the root endodermis and stele, as well
as the root surface. At a lower treatment of ZnO NPs, the translocation factor of Zn from
root to shoot remained low [9]. The accumulation of CeO2 NPs has been reported in plants
without alteration, posing a risk to human health [10]. A study performed on grassland
soil reported the negative effects of metal oxide NPs on soil bacterial communities [11].
These values, however, are extremely high when compared to the current real environment.
However, there is a need to investigate the impacts of manufactured NPs on the rhizosphere
microbiome and adopt ways to combat their potential adverse effects on agricultural soils.
An interesting study was found that presented a simple, cost-effective, and practically
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viable wastewater treatment that utilized renewable Fe3O4@PW-αCFs as a supermagnetic
bioadsorbent for the removal of large quantities of ENMs, including CuO, CoO, and
ZnO, from various real-world wastewater samples [12]. Moreover, information about the
limitations and future outlooks of using nanofertilizers as an alternative to conventional
fertilizers has also been discussed.

Nanofertilizers can be composed of different NPs, i.e., carbon-based, metal oxides,
and other nanoporous materials, depending on their combination and compositional
properties [13]. They can be prepared via biological, chemical (bottom-up), or physical
(top-down) approaches [14]. Another emerging technology that uses clean, non-hazardous,
and especially environmentally friendly procedures, such as green nanotechnology or bio-
fabrication, can also be employed to synthesize nanofertilizers, as opposed to the chemical
and physical methods currently used to make nano-products [15,16]. Nanofertilizers offer
a wide range of features such as the gradual and controlled release of various macro-
and micro-nutrients to plants with particular concentrations, increased surface area, and
appropriate size [17]. Plants respond according to the nutrients absorbed from soil that
are released by these nanofertilizers. Different kinds of nanofertilizers, i.e., macronutrient
nanofertilizers, micronutrient nanofertilizers, and nanomaterial-enhanced fertilizers, can be
developed based on the specific nutrient supplies [18]. These nanofertilizers are attributed
to improvements in solubility, in the dispersion of insoluble nutrients, in phytoavailability,
and in targeted delivery to minimize nutrient losses [19]. They also work as influencers
for several vitamins, proteins, coenzymes, purines, and photosynthetic pigments for plant
photosynthesis and respiratory systems [20,21].

This review provides a novel overview on recent developments in the design and
formulation of nanoparticles used as nanofertilizers, their types, their mode of applica-
tion, and their potential impacts on agricultural crops. The main emphasis is placed on
the potential benefits of nanofertilizers, and we highlight the current limitations and fu-
ture challenges related to the wide-scale application of NPs before field applications. A
recent study highlighted the cost and ecological effects of nanofertilizer application. In
that study, the field observations based on an average of three consecutive rice-growing
seasons revealed that nano-FeIII-tannic acid-modified waterborne polyacrylate-coated urea
outperformed the most widely used polyurethane-coated urea in terms of agronomic,
environmental, and ecosystem economic performance. Nano-FeIII-tannic acid-modified
waterborne polyacrylate-coated urea increased yields by 8.3%, increasing farmer benefits
by nearly 10% and net ecosystem economic benefits by nearly 11%, and decreased reactive
nitrogen losses by nearly 24% when compared to conventional farmers’ fertilizer appli-
cation [22]. Moreover, another subsequent field study on wheat reported the single use
of nano-FeIII-tannic acid-modified waterborne polyacrylate-coated urea, with a nitrogen
rates lowered by one-third having the potential to maintain a high grain yield and high
net ecosystem economic benefits of wheat crop relative to those of traditional nitrogen
practices; in the meantime it reduced reactive nitrogen loss by 58.8% [23].

2. Scope and Importance of Nanofertilizers

In modern agriculture, nanofertilizers are important due to their unique formulation
characteristics and delivery mechanisms with optimum phytoavailability [24,25]. The small
size of nanofertilizers with a high surface–mass ratio enables an increase in the absorption of
nutrients via plants roots [26]. Moreover, they can also be absorbed with different dynamics
relative to their bulk particles or ionic salts and have significant benefits [27–29]. These
nanoscale fertilizers lower nutrient loss due to leaching, avoid chemical modifications, and
help to improve nutrient-use efficiency and environmental quality [30,31].

3. Recent Developments in Designing Nanofertilizers

The major challenge in the upcoming few years would be the soil-fertility and nutrient
management of crops due to the extensive use of chemical fertilizers and existing agricul-
tural practices. The application of traditional fertilizers usually results in the significant
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loss of water bodies, lower crop nutrient productivity, and unfavorable environmental
impacts. Thus, an environmentally friendly and innovative fertilizer method, as compared
to synthetic fertilizers, is required to boost all production in our agriculture system. At
this time, the usage of nanohybrid constructs such as nanofertilizers has gained a lot of
interest for generating sustainable agricultural yields while also protecting the environ-
ment through smart pesticide delivery [30,32]. Engineered nanohybrid structures such as
nanofertilizers have piqued the curiosity of scientists all over the world because of their
useful functional assembly and controllable physicochemical features. In this regard, nan-
otechnology has revolutionized the design and manufacture of materials by altering their
qualities and attributes to meet a variety of requirements. It is reported that the application
of nanofertilizers boosted crop efficiency compared to ordinary chemical compost [33]. In
addition, efforts to improve the reaction of nanofertilizers to the environment in order to
detect humidity, moisture, temperature, pH, etc. have recently been undertaken [34,35]. In
this context, nano-biotechnology is gaining traction as a possible alternative strategy for
providing nutrients to crops in a regulated manner, with the potential to change agricultural
systems. Additionally, nanofertilizers based on engineering NPs can help in the nutrition
management of various crops by increasing their abiotic stress tolerance and agricultural
yield [21]. Based on the latest research, this section highlights the design, interaction, and
impacts of nanofertilizers with edible plants as shown in Figure 2.
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3.1. Design and Formulation of Nanofertilizers

The usage of nutrient-rich NPs is a key component of the nanoscale fertilizer technique.
Physical (top-down) and chemical (bottom-up) processes can both be used to synthesize
the nanomaterials. These two approaches can be further categorized in three methods,
including physical, chemical, and biological. The chemical synthesis of NPs is the fo-
cus of the bottom-up strategy, whereas the physical synthesis falls under the top-down
approach and biosynthesis. Nanomaterials have been produced and employed as nanofer-
tilizers in several studies [36–39]. Basic materials such as zeolites, copper (Cu), silver (Ag),
aluminum (Al), potassium (K), carbon (C), nitrogen (N), zinc (Zn), silica (Si), magnesium (Mg),
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iron (Fe), sodium (Na), manganese (Mn), and calcium (Ca) can be nanostructured and used
as nanofertilizers. Some other plant-based materials such as grape plant substrates [40]
and banana peels [41] are used in the synthesis of nanofertilizers. Natural zeolite (which is
made up of more than 50 minerals) has recently been converted into nanofertilizers. This is
due to its extensive availability and low price [42]. Nanofertilizers could be customized or
designed to treat a specific nutrient scarcity in plants. This is possible because atoms on the
surfaces of NPs can be aligned to attain desirable properties [43]. Nanofertilizers can be
prepared by following methods:

1. Absorption on NPs.
2. Attachment on NPs.
3. Entrapment of polymeric NPs.
4. Encapsulation in nanoparticulate.

Nutrient encapsulation is the most common way of synthesizing nanofertilizers with
nanomaterials. Specific nutrients have been contained in nanoporous materials covered
with a thin film of polymer at the nanoscale, in recent years. The encapsulation of a
beneficial microbe, such as fungus or bacteria, has demonstrated the ability to increase N, P,
and K availability in the root zone [44]. Conclusively, the term nanofertilizers refers to a
nanomaterial that is either a plant nutrient (micro- or macronutrients) or a transporter of a
plant nutrient. Additionally, nanofertilizers are the nutrients that have been encapsulated
or coated with nanomaterials and can be synthesized from various synthetic materials
(modified synthetic fertilizers) or green synthesis (plants extracts) through numerous
mechanical, biological, and chemical methods [45].

Nanofertilizers can be categorized into three groups based on their preparation
method: (1) nanoscale fertilizer, trivial in size like NPs, similar to a conventional fer-
tilizer; (2) nanoscale additive fertilizer, an average fertilizer with additional nanomaterial;
and (3) nanoscale coating fertilizer, whereby nutrients are surrounded by nanofilms or
introduced into the nanoscale pores of a host material [46]. Nanocomposite structures
containing encapsulated nutrients or retained in nanopores within a host material (such as
clays) have been utilized to control nutrient release [47–50].

3.2. Characteristics of Nanofertilizers

Nanofertilizer synthesis based on modern formulation enhances the availability of
specific nutrients, bioavailability, solubility, and the distribution of insoluble nutrients
to minimize nutrient losses [19]. In one study, to boost target-specific plant absorption
efficiency, nanomaterials were first produced using several engineering techniques and then
encapsulated with the essential nutrients [14]. Nanofertilizers must have superior chemical
stability, higher surface tension, increased absorbability, mobility, higher pH lenience, and
ionizing power [51]. Due to these optimistic properties, as shown in Figure 3, nanofertilizers
can possess a slow-release function, controlled and targeted delivery of various nutrients
(micro and macro) to plants at a high surface area, specified concentrations, and suitable size,
according to reports [17]. Nanofertilizers can (1) enhance nutrient-usage efficiency (NUE),
(2) lower the chemical load to the soil, (3) lower the application frequency, and (4) minimize
the negative effects of typical bulky fertilizers [52]. In other words, nanofertilizers are
used to enhance the soil fertility, product quality, and bioavailability of plant nutrients [45].
These characteristics of nanofertilizers make them exceedingly suitable for their use in
modern agriculture [19,51].

Nanomaterials such as nanofertilizers, owing to their extremely small size in nanome-
ters [53], have greater absorption and retention capability when compared to bulky, syn-
thetic chemical fertilizers. Due to greater surface area, nanofertilizers encompass more
nutrients and distribute them steadily as per the requirement of crops without any harm-
ful impacts [54]. The primary drivers of environmental devastation caused by synthetic
fertilizers are lower nutrient absorption efficiency and waste of nutrients through gaseous
emissions, volatilization, leaching, etc. [55,56]. However, the detrimental environmental
effects are reduced by the slow and steady distribution of nutrients from nanofertilizers.
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Based on the literature, plant cell walls with a pore size of 5–20 nm are used as an ob-
stacle for self-protection. Only external agents with a smaller diameter than plant cells can
get through the size exclusion limits (SELs) and generate host carriers for essential nutrients,
which are normally provided in the soil or on the leaves’ surface [21]. Moreover, some other
NPs can also be coupled to form intracellular structures in cell walls, allowing them to enter
and improve genetic features [57]. In comparison to conventional water-soluble fertilizers,
nano-assisted fertilizers have demonstrated outstanding transport qualities through plant
cells/tissues with regulated mobility. The roots of Arabidopsis thaliana plants have been
reported to be penetrated by SiO2 NPs with diameters varying between 50–200 nm [58].
Whereas TiO2 NPs with a diameter ranging from 36–140 nm were unable to pass the root of
wheat parenchyma; however, NPs with a diameter of 36 nm were able to cross the barriers
in wheat to deliver to the other areas of the plant [57]. When TiO2 NPs with a size of
30 nm were applied to maize, they did not translocate due to a larger diameter than the
root cell (6.6 nm) [59]. In another study, the penetration of TiO2 NPs into wheat plants
was carried out, and it was observed that certain NPs penetrated through root cells, while
others did not. The NPs were polydisperse, with the particle sizes less than 20 nm able to
penetrate through roots, whereas the bigger ones agglomerated in the soil and were unable
to penetrate [60]. This suggests that particle size is a crucial factor for the translocation and
absorption of NFs in the plant system.

In addition to particle size, the surface charge of NFs also influences their uptake and
transport in plants in a similar way [61]. The roots of Arabidopsis thaliana released mucilage,
a sticky viscous fluid that facilitated the uptake of positively charged gold NPs (12 nm)
through the roots; however, the same size (12 nm) of gold NPs with a negative charge failed
to do so [62].

3.3. Controlled Release and Targeted Delivery

Nanofertilizers have the ability to foster sustainable agriculture and improve overall
agricultural yield, primarily by enhancing the nutrient-use efficiency (NUE) of both the
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fields and greenhouse crops. When used alone or in conjunction with organic or synthetic
fertilizers, nanofertilizers can release nutrients at a slow and consistent rate. They can
release nutrients in 40 to 50 days, compared to 4–10 days for synthetic fertilizers. As a
result, after field application, chemically synthetic urea fertilizer can quickly lose more than
70% of its nitrogen (N) content due to volatilization and leaching, leaving behind a lesser
amount of 20% to be available for plants [63]. Recently, N was synthesized in the form
of NFs by encapsulating urea with hydroxyapatite NPs, resulting in delayed N release to
plants. Likewise, in rice (Oryza sativa L.) fields, the use of nanohybrid urea (a modified
form of hydroxyapatite) may release N up to 12 times slower than synthetic urea, and it
can improve grain production at half the pace of conventional urea. N-nanofertilizers have
recently been prepared by encapsulating/coating urea with hydroxyl apatite NPs for the
progressive release of N to plants [48]. Phosphorous (P)-based nanofertilizers help in the
direct absorption of P by plants, resulting in lower P loss [64].

The targeted delivery and controlled release of nano-agrochemicals can effectively be
achieved via surface modification. In agriculture, nanofertilizers have a major impact on
seed growth and germination. They can quickly permeate to the roots and soil, enhancing
nutrient release, the production of dry matter, and chlorophyll formation; this, subsequently,
helps the plants to grow faster [65,66]. Agglomeration is a natural tendency of various
nanomaterials which decreases their efficiency and encourages the reactive oxygen species
formation [67]. To avoid agglomeration, various surfactants such as cellulose and gluconic
acid; chemicals such as oleylamine and chitosan; and the polymers poly(methacrylic acid)
(PMAA), poly N-vinyl-2pyrrolidone (PVP), poly (methyl methacrylate) (PMMA), and
polyethylene glycol (PEG) are commonly used for stabilization [68,69].

3.4. Modes of Application

NFs must be applied in a way in which they can retain their vigorous properties such
as efficiency, time-controlled release, solubility, targeted delivery, stability, and less toxicity.
Their effectiveness and impact are primarily influenced by their mode of application for
safe delivery and disposal. Various methods for the delivery of nanofertilizers to plants are
listed below.

3.4.1. In Vitro Methods

Aeroponics and hydroponics are both soil-less (without soil) methods. In aeroponics,
the plant’s roots are suspended in the air, and the nutritional solution is continuously
sprayed in the form of mist. The entire environment near the roots can easily be controlled
in this way. However, this process is not widely used as it demands significant amounts of
nutrients for sustainable, rapid growth [70]. On the other hand, hydroponics, also known
as the “solution culture” method, involves naturally soluble inorganic salts. The roots
of the plants are immersed in a nutrient-rich solution by giving special attention to the
pH, oxygen availability, and volume of the solution. In some commercial applications,
supporting materials (sand, gravel, etc.) are also used. The old solution is withdrawn
from one end while the nutritious solution is discharged from the other. The downsides of
this strategy include frequent pathogen assault and high moisture rates, which can cause
soil-based plants to wilt excessively [71].

3.4.2. In Vivo Methods

In vivo methods are further categorized into foliar application and soil application.
In foliar application, micronutrients are supplied directly to the leaves by spraying

liquid fertilizers. A positive point of this strategy is that it reduces the interval between
fertilizer application and nutrient uptake by plants in their exponential development phase.
In contrast to the method of soil application in which micronutrients such as Fe, Mn, and
Cu are more soaked on the soil particles, it also improves the uptake of these mentioned
micronutrients [72]. As nutrient intake involves the cells of the leaf epidermis and stomata,
agronomic benefits might be observed when employed for nanofertilizer application. As
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stomata are involved, the time it takes for stomatal pores to open must be considered.
Nitrogen, potassium, and phosphorus (NPK) with combination of NPs were studied for
their foliar application. The application of Nanochitosan-NPK fertilizer on wheat produced
significant results by enhancing the mobilization index, crop index, and harvest index.
Nanocomposite foliar uptake in watermelon exhibited the same results [73]. Similarly,
encouraging outcomes in terms of stem height, number of branches, diameter, and seed
productivity were observed upon foliar application of gold NPs [74]. In addition to particle
size, other aspects such as plant species, working environment (gas, light, water), and
nanoparticle delivery methods should be considered for optimal foliar uptake [75].

The soil application or uptake of NFs at the root level are influenced by various pa-
rameters such as nanoparticle size, acquaintance situations, plant structure, rhizospheric
activities, and crop phenology. Soil-applied nanofertilizers enter the roots through their
surface and pass through a series of hurdles before reaching the plant’s vascular sys-
tem. The cuticle layer of roots is the initial barrier (which is similar in composition to
the leaf cuticle layer). After penetrating the cuticle, NPs permeate the root epidermis.
Upon reaching the root epidermis, they can either take the apoplastic or symplastic route.
In the apoplastic route, nanofertilizers first penetrate cell wall pores and, subsequently,
translocate into intercellular gaps [61]. The apoplastic pathway is restricted by the cell wall
diameter (5–20 nm), which prevents huge NFs (>20 nm) from entering. Despite this, cell
death caused by NPs may expand the pore size. However, the Casparian band, which
inhibits NPs from entering the vascular cylinder directly, is a major hurdle in the apoplastic
route [76], while ZnO-nanofertilizers with a size of 30 nm were found in the vascular
system through a maize-cross root intersection [77]. Meanwhile, in the symplastic pathway,
the plasmodesmata path is employed by NPs from one cell to another [61,78]. NPs obtain
access to the aboveground portion of the plants through the central cylinder, followed by
the xylem’s transport stream [57].

The studies conducted by researchers for the improved growth of various crops using
nanofertilizers could open new horizons in sustainable and environmentally friendly
agricultural practices [79]. A few more studies performed in this context are given in
Table 1, based on the characteristics of nanofertilizers along with their mode of action.

Table 1. Literature related to the design and formulation of nanofertilizers and their mode of
application on plants.

Types of
Nanofertilizers (NFs)

Formulation Method;
Characteristics Aim/Purpose Mode of

Application Reference

ZnO NFs Hydrothermal method; hexagonal in
shape with crystal size of 33 nm

To investigate impact on maize
(Zea mays) production and

Zn-deficient soils
Soil and foliar [80]

ZnO NPs
Wet chemical method;

undefined spherical shape with
particle size of 2.4–3.7 nm

To increase the yield of soya bean and
wheat with minimum fertilizer loss Soil and foliar [81]

Chitosan-silicon NFs
Ionic gelation method;
360.5 ± 1.34 nm mean

hydrodynamic diameter

To evaluate effect on yield, seedling
growth, stored food remobilization,

chlorophyll content, and
antioxidative-defense status of

maize (Zea mays L.)

Foliar [82]

Urea-doped calcium
phosphate NPs

Precipitation method; disk-shaped
with particle size of 13.8 nm

To maintain the quality and yield of
durum wheat (Triticum durum L.) Soil [83]

Sulphate-supplemented
NPK NFs

Ionic gelation method;
particle size of 450.5 nm and
145.5 nm using 1% and 0.25%
chitosan solution, respectively

To examine growth as well as nutrient
uptake in maize (Zea mays L.) Soil [84]

Chitosan based CNK NFs

Polymerization followed by
incorporation with potassium (CNK);

spherical in shape with particle
size of 39–79 nm

To investigate impacts
on soil conditioning and yield

production of maize
Soil [85]
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Table 1. Cont.

Types of
Nanofertilizers (NFs)

Formulation Method;
Characteristics Aim/Purpose Mode of

Application Reference

Nano-NPK
Top-to-bottom chemical approach;

uncontrolled shape with
particle size of 8–9 nm

To examine the effect on quality,
yield, and growth of cucumber

(Cucumis sativus L.)
Soil [86]

Iron, manganese, and zinc
oxides NFs

Microwave-assisted hydrothermal
method; average particle size of

20–60 nm

To investigate the effect on production
and growth of squash Cucurbita pepo L Foliar [87]

Zn-chitosan NPs
Ionotropic gelation method;

spherical in shape with particle size
of 200–300 nm

Disease control to obtain high-quality
maize (Zea mays) Foliar [88]

NPK NFs
Ball-milling method; particle size for
N (5.56–12.3 nm), P (4.92–8.62 nm),

and K (5.31–9.84 nm)

To study yield, its components,
and fiber assets of cotton
(Gossypium Barbadense L.)

Foliar and soil [89]

Chitosan–PMAA–NPK NFs

Polymerization followed by
entrapment of NPK; actual particle
size of N (38.98 nm), P (87.65 nm),

and K (24.07 nm)

To study dose-dependent mitosis
and genotoxic effect in garden pea

(Pisum sativum var. Master B)
Soil [90]

Urea-Hydroxyapatite NFs
In situ coating of hydroxyapatite

with urea; bead-shapes crystals with
particle size of 18 nm

To evaluate rice (Oryza sativa) yield via
slow release of nitrogen Soil [48]

ZnO NPs Commercially purchased; average
particle size of <35 nm

To investigate effect on grain
germination and antioxidant system of

maize (Zea mays L.) under Cd stress
Soil [91]

Fe, Zn and NPK NFs _ To investigate yield components and
seed yield in chickpea Foliar [92]

Metallic oxide
(ZnO, AlO, FeO,

CuO, MnO, NiO) NPs

Commercially purchased; particle
size of ZnO (10–30 nm), AlO (20 nm),

FeO (20–40 nm), CuO (30 nm),
MnO (40 nm), and NiO (10–20 nm)

To examine effect on disease
progression, growth, and yield of

tomatoes and eggplant
Foliar [93]

4. Recent Literature on Nanofertilizer Applications

Both macro- and micronutrients are equally important for the healthy growth and
development of plants. If one of these nutrient is missing, it can disable the seed germina-
tion process and affect the plant growth [94]. On the other hand, an excessive amount of
these nutrients can also retard the plant’s growth. It is difficult to obtain enough essential
nutrients to meet the demands of basic cellular activity. Plants require a precise and specific
nutrient supply to complete their life cycles. Mineral nutrients perform various functions
in plants once absorbed by the plants [18]. These nutrients are converted into pigments,
proteins, and enzymes, which are involved in signaling and cell metabolism. Both micro
and macronutrients consist of N, P, K, Mn, Mg, Ca, Fe, C, O, S, Cl, H, B, Ni, Mo, Zn, and
Cu, and have been known as vital nutrients for plant growth. Among them, N, P, Mg, and
K are significant vital components required by the plant. They cannot be absorbed directly
from the atmosphere, but they can be absorbed by plants via their roots [95]. As a result,
the nanoscale dimension of nanofertilizers has emerged as a technical answer to nutrient
insufficiency issues [21]. In general, nanomaterials have improved the nutritional contents
of crop plants [96]. ZnO NPs with significantly better physiochemical characteristics might
be used as a new fertilizer to increase food quality and agricultural productivity [97–99].
Several studies have reported the positive effects of NPs on seed germination, plant growth,
and development. In several agricultural plants, such as Triticum aestivum [100], Glycine
max [29], Cucumis sativus [101], and Solanum lycopersicum [102], higher seed germination and
seedling development, as well as better photosynthetic efficiency, biomass, total protein,
sugar, nitrogen, and micronutrients, were reported. Compared to bulk ZnO treatments,
ZnO NPs (1.0 mg/L) improved shoot and root biomass with increased shoot length in
C. sativus cultured in a gel chamber [103]. On the other hand, excess amounts of these
nanomaterials can also damage the plants. For example, if ZnO NPs and their derivatives,
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particularly ZnCl2, were present in excess in soil, plants may become poisonous [104,105],
and their seed germination, growth, photosynthesis, physiological and biochemical fea-
tures, yield characteristics, and nutritional quality may be affected [60,106,107]. Table 2
gives an overview of the recent studies on nanofertilizer applications.

Table 2. Overview of nanofertilizer applications on crop plants and their impacts.

Type of
Nanofertilizer Experimental Conditions Plant Impacts Reference

CuO NPs CuO NP-embedded hydrogels
Exposure: 31 mg Cu/kg soil Lettuce

CuO NP-embedded hydrogels improved P, Mn,
Zn, and Mg absorption and elevated organic
acid levels as compared to the sick control.

[108]

Nano-sulfur (NS)

Soil
200 mg/kg NS

Period: 35 days (for seedlings),
120 days (mature plants)

Rice

Compared to untreated control plants, NS
spray resulted in a 40% increase in rice seedling

biomass and a 26% increase in mature plant
seed production.

These findings show that the effect of S
fertilization on As toxicity and accumulation in

rice is size-dependent.

[109]

Copper hydroxide
nanowires (CNWs)

Foliar application
Exposure: 32 d

Concentrations: 0.36, 1.8, and 9 mg
CNW/plant

Soybean
(Glycine max)

The dose-dependent response of CNW-treated
soybean plants resulted in the activation of

important biological processes such as
photosynthesis, energy generation, fatty acid

metabolism, lignin formation, and
carbohydrate metabolism.

[110]

TiO2 NPs
Concentration: 500,750 mg kg−1

Medium: Soil
Period: 90 days

Oryza sativa L.

Rice growth and nutrient availability were
researched in varied soil textures.

Plant growth was greatest in silty clay loam,
followed by silt loam and then sandy loam.
Cu (8-fold), Fe (2.3-fold), P (0.4-fold), and

Zn (0.05-fold) increased in shoots treated with
silty clay loam at 500 mg kg−1.

[111]

Carbon dots (CD) and
nitrogen (N)-doped

CDs (N-CDs)

Foliar application
on seedlings

in hydroponics
Concentration:

1, 5, 10, and 50 mg·L−1

Period: 7 days

Corn

When compared to the control, an application
concentration of 50 mgL−1 or lower promoted
photosynthesis and corn growth. N-CDs have
the potential to improve yield and 1000-grain

weight by 24.50 and 15.03 percent, respectively.

[112]

CeO2 NPs Medium: Soil
Period: 75 days

Cabbage
(Brassica oleracea
var. capitata L).

Cabbages treated with nanofertilizers had
larger circumferences (no less than 49.42 cm)

than control cabbages (28.17 cm).
Furthermore, when the cabbage was

fertilized with NPK + CeO2 NPs within
75 days, the average cabbage-head weight

grew to three times more than the control to
reach 1.88 kg/plant.

[113]

Nano-zeolite (NZS),
Hybrid nanocomposite

(HNCSF)
Medium: foliar and soil applied Strawberry

Except for chlorophyll content, the NZS
treatment considerably enhanced the growth

metrics as compared to HNCSF and HNCF + NZs.
However, HNCSF considerably (P 0.05)

affected the proximate composition in terms of
ash, protein, and fat, whereas HNCF + NZs

increased carbohydrate and energy.
All of the nanofertilizers had a variety of effects

on various growth and nutritional metrics.

[114]

Copper Hydroxide
Nanowires

(CNW)

Concentrations: 0.36, 1.8, and 9 mg
CNW/plant
Period: 32 d

Soybean

CNW exposure at medium and high levels
affected Co, Mn, Zn, and Fe accumulation in

tissues while increasing photosynthetic activity.
Proteomic and metabolomic investigations of
CNW-treated soybean plant leaves indicated a

dose-dependent response, resulting in the
activation of fundamental biological processes

such as photosynthesis, energy generation,
fatty acid metabolism, lignin formation, and

carbohydrate metabolism.

[110]
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Table 2. Cont.

Type of
Nanofertilizer Experimental Conditions Plant Impacts Reference

ZnO NPs

Concentrations: 0, 40, 80, 160, and
400 mg Zn/kg
Medium: Soil
Period: 120 d

Soybean
(Glycine max
cv. Kowsar)

All the Zn compounds (ZnO NPs, Zn2+) increased
seed production by up to 160 mg Zn/kg.

ZnO NPs might be used as a new nanofertilizer
to enrich Zn-deficient soil.

[115]

TiO2 NPs
Concentration: 0, 50, 100, 200,

and 400 mg/L
Medium: Hydroponics

Coriander

Low concentrations of TiO2 NPs improved the
nutritional quality of coriander.

Nano-TiO2 can increase the nutritional content
of edible tissues at an adequate concentration

(50 mg/L) without being poisonous to the plant
or creating a health concern to consumers.

[116]

Nanourea-Modified
Hydroxyapatite NPs

or Hybrid
nanofertilizer (HNF)

Concentration: 50 mg
Medium: Soil

Period: 1, 7, and 14 days

Abelmoschus
esculentus

Nanourea-modified hydroxyapatite NPs (HNF)
were shown to be functionally useful for the

delayed and sustained release of plant
nutrients. The prepared HNF was administered

at a rate of 50 mg/week, whereas the
commercial fertilizer was applied at a rate of

5 g/week to A. esculentus. Because of the
gradual release of HNF, the results

demonstrated a considerable increase in Cu2+,
Fe2+, and Zn2+ nutrient absorption

in A. esculentus.

[50]

ZnO NPs
Concentrations: 2, 4, 8,

and 16mg/L
Medium: Soil

Lycopersicum
esculentum

Growth, photosynthetic efficiency, antioxidant
enzymes, and proline buildup all increased. [102]

TiO2 NPs

Concentration:
0, 25, 50, 150, 250, 500,

and 750 mg kg−1

Medium: Soil
Period: 90 d

Oryza sativa

The use of TiO2 NPs enhanced shoot
length by up to 14.5 percent. At 750 mg kg−1

TiO2 NPs, the phosphorus content of rice roots,
shoots, and grains rose 2.6, 2.4,

and 1.3-fold, respectively.

[117]

n CeO2

Soil microcosm
n CeO2 at 0, 125, 250,

and 500 mg kg−1

Barley (Hordeum
vulgare L.)

In comparison to the control, nCeO2
(250 mg kg−1) increased grain Ce accumulation

by up to 294 percent, which was followed by
significant increases in P, K, Ca, Mg, S, Fe, Zn,

Cu, and Al. Plants treated with nCeO2
(250 mg kg−1), on the other hand, did not

develop grains.

[118]

TiO2 and Fe3O4 NPs

Concentrations: TiO2 and Fe3O4 (0,
50, 100, 150, 200, and 250 mg kg−1).

Medium: Soil
Period: 90 d

Lactuca sativa
(lettuce)

The impacts of TiO2 and Fe3O4 NPson plant
availability of naturally soil-bound inorganic

phosphorus (Pi) were investigated.
In response to TiO2 NPs, a shift of up to
−0.38 pH units was observed, with a

substantial (p < 0.05) 2.9-fold increase in P
absorption. Similarly, Fe3O4 NP treatments
reduced the pH by up to −0.64 units with a
substantial (p < 0.05) 2.8-fold increase in P

absorption per plant.

[119]

Nanotechnology is a promising approach with huge potential for solving agricultural-
related problems such as land degradation, nutrient insufficiency, low crop production,
leaching losses, etc. [120]. According to reports, the nanostructure of nanofertilizers pos-
sesses a high surface-area-to-volume ratio, allowing plants to absorb nutrients gradually
and sustainably as required [121–123]. Furthermore, nanofertilizers offer several advan-
tages, including increased soil fertility, reduced nutrient loss, increased crop output, and re-
duced environmental contamination, and provide a viable habitat for microorganisms [124].
Many researchers have synthesized slow-release fertilizers by combining hydroxyapatite
(HA) with urea to improve nutrient delivery to plants [50,125].
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5. Other Applications of Nanotechnology in the Agricultural Sector

As an alternative to NFs, nano-based herbicides, insecticides, pesticides, and fungi-
cides also play a role in sustainable agriculture. Nanopesticides overcome the limitations
of conventional pesticides, making them highly soluble in water via encapsulation in a
shell made of NPs [126]. Crop production can be improved by the efficient use of these
nano-pesticides. The slow release and targeted delivery of these pesticides can be achieved
using nanocarrires, referred to as “precision farming”, which increases agricultural yields
without damaging the water and soil [120].

It has been demonstrated that nano-enabled herbicides have a great ability to eradicate
weeds and increase crop yields. Additionally, when NPs were combined with specific
herbicides such as triazine, ametrine, and atrazine, the potency of these nano-enabled herbi-
cides increased by 84 percent [127]. In a study, atrazine-loaded poly (epsilon-caprolactone)
nanocapsules were applied to mustard plants (Brassica juncea) and resulted in improved
herbicidal activity as compared to commercial herbicides [128]. Likewise, Si NPs were
synthesized and used as nanocarriers for the controlled delivery of pesticides [129]. Addi-
tionally, nanoencapsulation lowers herbicide dosage (sustainable environment approach)
without compromising efficiency. Owing to their inherent toxicity, metal oxide nanopar-
ticles such as TiO2, ZnO, and CuO have been extensively used for their ability to shield
plants from pathogen infestations [120].

In addition to this, nanotechnology has a significant impact on food biotechnology,
food packaging, food processing, food safety, food development, improved shelf lives
and pathogen detection in food. The application of nanotechnology has also facilitated
gene sequencing, and increased the identification and application of plant trait means and
altered plants’ capacity to adapt to environmental stresses and diseases [130]. Some other
applications of nanotechnology in the agricultural sector are illustrated in Figure 4.
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Figure 4. Application of nanotechnology in agriculture sector for (a) improved soil quality, Reprinted
from reference (adapted with permission from Ref. [131], 2018, Adv. Agron.), with permission from
Elsevier, (b) root growth (adapted with permission from Ref. [132], 2021, Maize. Plants), (c) nano-
pesticides (adapted with permission from Ref. [133], 2019, Environ. Int.), (d) plant growth (adapted
with permission from Ref. [117], 2017, J. Agric. Food Chem.), (e) seed germination (adapted with
permission from Ref. [134], 2020, Arab. J. Chem.), and (f) crop yield (adapted with permission from
Ref. [135], 2016, J. Agric. Food Chem.).
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6. Limitations Regarding the Use of Nanofertilizers

Innovative development in agriculture is a crucial prospect to limit expanded global
food demand. The two most important factors for establishing a proper crop-yield frame-
work are climate-change mitigation and sustainable agricultural escalation. However, the
situation during the last few decades demonstrates that excessive nanofertilizer application
has a negative impact on the environment, as well as on living systems. Even though the
use of nanofertilizers is beneficial to the conventional agriculture system, some researchers
are concerned about their negative impacts. Due to their reactive nature, NPs can interact
with various environmental components, which results in their transformation through the
alteration of their physicochemical properties. These transformed NFs may cause toxicity
upon their reaction with soil components. On the other hand, the accumulation of these NFs
may lead to the production of reactive oxygen species, growth inhibition, and, ultimately,
cell death. However, the accumulation of NFs in food might be lethal to humans. In a study,
an absorption and translocation analysis of CeO2 NPs was conducted in cucumber plants
whereby 15% of Ce4+ was reduced to Ce3+ and the transformed products were ultimately
transported to phloem. These transported species might be harmful to human health and
their safety concerns must be evaluated [136].

The excessive use of NFs in agricultural practices can result in irreversible and un-
wanted environmental concerns. Concerns about workers’ safety during their production
and field application have been highlighted by the reactivity and unpredictability of nano-
materials. Therefore, it is crucial to evaluate the risks and identify the negative effects of
these NFs, including their life cycle analysis [137]. Moreover, we need to ensure the use of
these nanofertilizers at an optimum level only, to avoid their excessive or extra release in
the environment. On a global scale, the green revolution increased food grain production at
the cost of the disproportionate use of artificial/synthetic pesticides and fertilizers, both of
which have gravely harmed our ecosystem. We need to make sure that we are not repeating
the same mistakes, so future studies should also check the environmental risks associated
with these nanofertilizers, if there are any. Moreover, to boost up crop yield in sustainable
agriculture, green synthesized or bio-synthesized nanofertilizers or nano-biofertilizers
should be investigated [138]. In this context, the vigilant and research-based application
of nanofertilizers must be examined in detail prior to the distribution or marketing of
nanofertilizers commercially. Future research should focus on the toxicity, bioavailability,
and safety of various NPs or NFs before their application in agricultural production.

7. Conclusions and Future Perspectives

From the perspective of sustainable agriculture, nanotechnology has the capability
to produce novel and innovative nano-based fertilizers, to maintain agricultural security
while considering the environmental challenges. NFs have advantages over conventional
fertilizers due to their higher surface-to-volume ratio and controlled release of nutrients. For
instance, NFs release nutrients up to 12 times slower as compared to synthetic fertilizers,
and they can boost crop yields and quality features dramatically. Similarly, the use of
nanofertilizers might be helpful in decreasing the dosage of fertilizers by delivering active
ingredients more efficiently; increasing NUE values and nutrient uptake; and reducing the
loss of fertilizers via runoff, leaching, volatilization, and energy consumption during crop
production. For example, synthetic fertilizers or nanofertilizers take 4–10 days to actively
release nutrients, which is accomplished in 40–50 days using conventional fertilizers.
Consequently, synthetic fertilizers, specifically N-urea, after application in the field, can
lose more than 50% of its nutrients rapidly through volatilization and leaching. Additionally,
nano-sensors and seed coverings with nanofertilizers might reduce agricultural production
costs and environmental problems. The advantages of NFs have exposed innovative
vistas towards efficient and sustainable agriculture; however, the behavior of various
nanomaterials varies differently for different plant species, and accurate information on
the combined features (allowable limit, eco-toxicity, efficiency) of distinct nanomaterials
is vague. In this context, a viable basic platform for nanofertilizers in the upcoming
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smart agriculture system, extensive research on improved synthesis techniques, and a
variety of remediation and inhabiting databases are potentially required for sustainable
agricultural practices.

The vigilant and research-based application of nanofertilizers must be examined in
detail prior to the distribution or marketing of nanofertilizers commercially. Future research
should focus on the toxicity, bioavailability, and safety of various NPs or nanofertilizers
before their application in agricultural production. Moreover, we need to ensure the use of
these nanofertilizers at an optimum level only, to avoid their excessive or extra release in
the environment. On a global scale, the green revolution increased food grain production at
the cost of the disproportionate use of artificial/synthetic pesticides and fertilizers, both of
which have gravely harmed our ecosystem. We need to make sure that we are not repeating
the same mistakes, so future studies should also check the environmental risks associated
with these nanofertilizers, if there are any.
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