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Abstract: This study compares the performances of four existing snow indices (Normalized-Difference
Snow Index, Normalized-Difference Snow and Ice Index, Difference Snow Index, and Ratio Snow
Index) in estimating snow cover depth at three agricultural enterprises in different soil zones, namely,
the “North Kazakhstan Agricultural Experimental Station”, A.I. Barayev “Research and Production
Center for Grain Farming”, and “Naidorovskoe”. From 30 January to 9 February 2022, the snow cover
thickness and density were measured at 410 and 285 points, respectively, throughout the agricultural
enterprise territories. It was found that: (1) snow-covered territories were effectively classified using
all spectral indices except both combinations of RSI; (2) the snow cover fraction maps generated from
DSI most accurately classified the non-snow areas as forest plantations, settlements, and strongly
blown uplands; (3) the maps generated from DSI-2 presented a clear pattern of objects in all three
study areas; (4) the liquid water in snowpacks is available in excess for possible reservation and
rational use in agriculture during the dry season. At the “North Kazakhstan AES”, A.I. Barayev
“Research and Production Center for Grain Farming”, and “Naidorovskoe”, the RMSE varied from
5.62 (DSI-2) to 6.85 (NDSII-2), from 3.46 (DSI-2) to 4.86 (RSI-1), and from 2.86 (DSI-2) to 3.53 (NDSII-1),
respectively. The DSI-2-based snow depths best matched the ground truth, with correlations of 0.78,
0.69, and 0.80, respectively.

Keywords: snow indices; snow depth; North Kazakhstan agricultural experimental station; research
and production center for grain farming; Naidorovskoe

1. Introduction

Kazakhstan’s largest crop production areas are found in the northern and central
regions, which permanently suffer from spring and summer droughts. The dry climate
reduces crop yield and quality and lowers Kazakhstan’s socio-economic situation. Given
the current realities of climate change and the agrarian practice of rainfed agriculture on
the great steppe of Kazakhstan, spring melt water can be a primary source of water for
irrigated agriculture. To do this, estimating the amount of snow and snow water equivalent
and retaining melt water in small reservoirs is necessary. In addition, this decision would
help prevent the annual spring floods of settlements. The region receives a stable amount
of snow cover for up to six months a year, potentially allowing the use of melt water for
agricultural purposes.

Methods for obtaining reliable, large-area snow cover information with high spa-
tial and temporal resolution are essential because snow cover naturally has high spatio-
temporal variability and shows rapid directional changes under the influence of climate
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change [1–4]. Owing to its extreme thermophysical characteristics, highly variable pa-
rameters, and duration of occurrence on vast land areas, snow cover affects almost all
interactions between the atmosphere and the underlying surfaces at temperate and high lat-
itudes in the cold season [5,6]. Climate warming causes earlier than normal snowmelt and
shortens the period of stable snow cover, with adverse effects on natural and anthropogenic
systems [7–9]. Mountainous regions and plains in temperate regions, where the snow cover
is susceptible to temperature fluctuations, will most likely suffer from increased snow
melting [10,11]. Regime changes in snow accumulation and snow melting alter the level of
spring floods and increase the potential for evaporation, thus affecting water resources and
the agriculture sectors that depend on them [12]. Snow cover is an essential water supply
for plants, as it prevents freezing winter crops, perennial grasses, and the root systems of
fruits and berries [13–15].

Researchers worldwide have estimated snow depth from ground observations, ge-
ographic information systems, and remote sensing. These investigations are primarily
conducted from two perspectives: direct measurements of actual snow depth and indirect
estimates using snow indices and modeling equations. From the first perspective, the
Nordic Snow Radar Experiment (NoSREx) conducted by Lemmetyinen et al. [16] estimates
the snow depth, snow density, and snow water equivalent (SWE) in real-time from gamma
water instruments at intensive observation points. Gan et al. [17] compared two passive
microwave-estimated snow depths with SWE retrievals from the Advanced Technology
Microwave Sounder and the Advanced Microwave Scanning Radiometer 2. They proposed
two equations for calculating the snow depth in forested and non-forested territories. Both
products captured the temporal variability of the SWE at elevations lower than 900 m and
snow depths lower than 20 cm well. Jenssen and Jacobsen [18] measured the snow depth,
snow density, and SWE in Norway using an ultra-wide-band (0.7–4.5 GHz) radar mounted
on an unmanned aerial vehicle (UAV). They found that pseudo-noise radar can measure
snow depths up to 5.5 m with high precision (R > 0.92) [18]. However, the frequency–
wavenumber migration algorithm proved insufficient for estimating the snow density, and
system improvements were required. From the second perspective, various snow indices
and snow cover fraction (SCF) equations have been proposed for snow depth estimation.
Analogously to the ratio vegetation index and difference vegetation index, Lin et al. [19]
employed the ratio snow index (RSI), the difference snow index (DSI), and the existing
normalized-difference snow index (NDSI) to estimate the SCF in northwestern China. They
discovered that an exponential fitting (R2 > 0.79) outperforms the linear fitting (R2 > 0.15).
Romanov and Tarpley [20] found a strong correlation between snowpack depth and FSC.
After fitting the relationship to an exponential equation and formulating a parametrization,
they achieved a mean absolute error of 5 cm over the U.S. Great Plains and Canadian
prairies [20]. Kim et al. [21] compared the abilities of three existing SCF equations, namely
linear, quadratic and exponential functions of NDSI, to estimate snow depth over South
Korea. Although the quadratic function obtained the lowest root mean squared error
(RMSE = 2.37 cm), the authors recommended the linear equation (RMSE = 3.43 cm) because
the error of the snow depth map calculated by the quadratic equation will increase when
using satellite images with high snowfall [21]. Additionally, Dixit et al. [22] compared
NDSI, NDSII, and S3 to delineate snow cover over the Beas River basin, India, and pro-
posed a new Snow Water Index (SWI). According to their findings, S3 could delineate
snow and non-snow pixels more accurately (89%) compared with NDSI (80%) and NDSII
(85%). The S3 index has a huge advantage in assessing snow cover in the forest zone,
combining Red, NIR, and SWIR bands. However, since the authors needed to minimize the
snow-water mixing, they proposed SWI (overall accuracy 93%), which utilizes green, NIR,
and SWIR bands.

Although there are methods for snow cover assessment, new approaches are needed
in the steppe zone, where there is no snow–water, snow–vegetation, or snow–shadow
mixing. Consistently, within the framework of this study, we set a goal to develop an
approach that allows assessing the snow cover (1) over large areas (>10,000 ha), (2) with
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high temporal resolution (<7 days), and (3) without field snow surveys, which are time- and
resource-consuming. This paper compares snow indices for estimating snow depth at three
agricultural enterprises in different soil zones, namely, the limited liability partnerships
(LLPs) North Kazakhstan Agricultural Experimental Station, A.I. Barayev Research and
Production Center for Grain Farming, and Naidorovskoe. The selected snow indices were
the NDSI, NDSII, DSI, and RSI from the Sentinel-2 multispectral instrument (MSI). The
choice of these indices is justified because each has its advantages and disadvantages,
which are suitable for use in the steppe zone and have not been compared before. NDSI is
the most widely used snow index, which identifies snow cover by ignoring cloud cover
and reducing the influence of atmospheric effects, while NDSII is used to determine not
only snow cover, but also ice. In turn, knowing that snow density is greater than ice
density, we intend to evaluate and compare the performance of NDSII in calculating
the snow water equivalent. The use of such simple snow indices as DSI and RSI are
bottomed because they are both susceptible to the amount of snow and can distinguish
snow from soil differently. If DSI does not consider the difference between reflectance
and radiance caused by the atmosphere or shadows, RSI takes advantage of the reduced
influence of the atmosphere and topography. The modeled results were compared with
actual snow survey results to assess the possibility of estimating the snowpack depth
from the SCF–snow depth relationship. The objective of this study was to compare the
snow depths estimated from the existing snow indices with parametrization in three
different soil zones. The study outcomes form a scientific basis for early warning of spring
floods, combating meteorological and agricultural droughts, and developing more accurate
approaches for estimating snow depths over vast territories using geographic information
systems (GISs) and remote sensing methods. Moreover, in addition to a new approach for
snow cover assessment in the steppe zone, field snow survey data from three soil zones
for independent testing and comparative studies by the international research community
have been published under the CC BY license (see the Data Availability Statement).

2. Materials and Methods
2.1. Study Area

The study sites (see Figure 1) were three agricultural enterprises in different soil
zones, the LLP North Kazakhstan Agricultural Experimental Station (Akkayin district,
North Kazakhstan region), the LLP A.I. Barayev Research and Production Center for Grain
Farming (Shortandy district, Akmola region) and the LLP Naidorovskoe (Osakarov district,
Karagandy region). The climate is extremely continental and arid in all three regions, with
hot summers and cold winters. The daily and annual temperatures fluctuate sharply. The
average annual precipitation in the North Kazakhstan and Akmola regions is 350 mm, of
which around 80% falls during the warm season (April–October). The Karaganda region
receives only around 200 mm. Snow cover on the studied agricultural enterprises resides
for approximately 150 days (November–March) and reaches average depths of 20–25 cm
by the end of the winter season. Snow melt begins in mid-March and is completed at the
end of April. The A.I. Barayev Research and Production Center for Grain Farming and
the Naidorovskoe LLPs each have approximately 20,000 ha of cultivated land, while the
North Kazakhstan Agricultural Experimental Station sows around 25,000 ha of arable land.
Three main crop types are grown in the studied enterprises: cereals (wheat, oat, barley, and
millet), legumes (peas, lentils, alfalfa, clover, and sweet clover), and oilseeds (safflower,
sunflower, rapeseed, and flax). The sowing campaign typically begins in mid-May and
ends in October.
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Figure 1. Study area and soil map of the Republic of Kazakhstan.

2.2. Data Sources
2.2.1. In Situ Surveying

Field snow at the key sites was surveyed from 30 January to 9 February 2022 in the
territories of the three agricultural enterprises (Figure 2). The snow cover thickness was
measured at 410 points, and the snow density was measured at 285 points (Table 1).

Table 1. Snow survey dates and numbers of measured points in the territories of the three limited
liability partnerships.

Study Area/Snow Survey Dates and the
Number of Points

30 January 2022 7 February 2022 9 February 2022

Depth Density Depth Density Depth Density

LLP North Kazakhstan Agricultural
Experimental Station 118 118

LLP A.I. Barayev Research and Production
Center for Grain Farming 144 19

LLP Naidorovskoe 148 148

The snow thickness was measured with a metal ruler with a 1 mm scale, and the snow
density was calculated using a weight snow gauge (VS-43M). The actual snow density ρ

(kg/m3) was calculated from the snow mass m (kg), the snow depth SD (m), and the area S
(m2) of the VS-43M weight snow gage cylinder as

ρ =
m

SD × S
(1)

For convenient and quick movement in the study area, we operated our snowmobile
(RM Vector 551i). To measure the actual snow height and density and determine the
geolocation during snow surveys, we employed an M-103 II snow gage, a VS-43M weight
snow gage, and a Garmin Montana 610 system (see Figure 3).
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2.2.2. Digital Satellite Image Dataset

As the remote sensing data for estimating the snow cover thickness, we used wide-
swath and high-resolution multispectral images of the Sentinel-2 MSI. Images with the
nearest dates to the field-snow surveying dates were downloaded and processed. At the
LLP North Kazakhstan Agricultural Experimental Station, the satellite images and field
work dates coincided, but to cover the large territory of the study area, we constructed a
mosaic of two satellite images with different cloud cover percentages. At the A.I. Barayev
Research and Production Center for Grain Farming and Naidorovskoe, satellite images
were taken four days earlier and two days later than the field-snow survey, respectively.
The cloud coverage in the satellite image excluded the study area of the three agricultural
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enterprises. Table 2 provides the details of the Sentinel-2 MSI specifications. All satellite
images were downloaded from the Google Earth Engine cloud-based geospatial platform.

Table 2. Specifications of the Sentinel-2 multispectral instrument.

Sensor Acquisition Date Spectral Band with Wavelet (µm) Cloud Cover

Sentinel-2

30 January 2022, 42UWE Coastal (0.443) 26%
Blue (0.490)

30 January 2022, 42UWF Green (0.560) 60%
Red (0.665)

3 February 2022, 43UCR Vegetation red edge (0.705) 1%
Vegetation red edge (0.740)

11 February 2022, 42UCX Vegetation red edge (0.783) 84%
Near-infrared (0.842)

Vegetation red edge (0.865)
SWIR-Cirrus (1.375)

SWIR-1 (1.610)
SWIR-2 (2.190)

2.3. Methodology

The methodology of the present study included selecting an appropriate study site,
collecting satellite and ground data, applying snow cover indices, calculating SCF maps
from the snow cover indices, and estimating snow depth and SWE (Figure 4). The accuracy
of each snow depth map was assessed through field-data validation. All the computations
and analysis were applied to the satellite images using the Google Earth Engine cloud-
based geospatial platform, ERDAS IMAGINE was used for stack image generation, and
the final maps were produced in Quantum GIS software.
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2.3.1. Spectral Snow Indices

The spectral reflectivity of snow has a distinct spectral variability, being high in the
green band of visible light (0.543–0.578 µm) and low in the shortwave infrared region
(SWIR) (1.565–2.280 µm). Therefore, we can automatically detect and extract snow cover
extent using various snow spectral indices [23–27]. As mentioned above, we adopted the
NDSI, NDSII, DSI, and RSI (see Table 3). Using the NDSI, we can not only distinguish
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snow from non-snow pixels, but can also reduce the effects of clouds, atmospheric noise,
and geometric distortion [28,29]. In addition, the NDSI accounts for the topographic effect
and can map snow in mountain shadows [27]. Hall et al. reported that the NDSII index
produces the same results as NDSI [24]. The NDSII was developed in 2001 as a mapping
index of snow and ice cover for the VGT sensor of the SPOT-4 satellite [30]. It has four
spectral bands (blue, red, near-infrared, and shortwave infrared), and its spectral range is
similar to that of the Sentinel-2 MSI. The NDSII recognizes that the expressions of snow
reflectivity differ in the red and SWIR ranges. The DSI and RSI, developed by Lin et al. in
2012 [19], respectively, imitate the difference vegetation index and ratio vegetation index
with particular modifications in the spectral bands. In addition, as the snow reflectance in
the SWIR-1 (1.610 µm) and SWIR-2 (2.190 µm) spectral bands are very similar, another set
of snow indices was generated by changing B11 of the Sentinel 2 MSI to B12.

Table 3. Snow indices and their definitions.

Snow Index For Sentinel 2 MSI For Landsat 8 OLI

NDSI1 GreenB03 − SWIRB11/GreenB03 + SWIRB11 GreenB03 − SWIRB06/GreenB03 + SWIRB06
NDSI2 GreenB03 − SWIRB12/GreenB03 + SWIRB12 GreenB03 − SWIRB07/GreenB03 + SWIRB07
NDSII1 RedB04 − SWIRB11/RedB04 + SWIRB11 RedB04 − SWIRB06/RedB04 + SWIRB06
NDSII2 RedB04 − SWIRB12/RedB04 + SWIRB12 RedB04 − SWIRB07/RedB04 + SWIRB07

DSI1 GreenB03 − SWIRB11 GreenB03 − SWIRB06
DSI2 GreenB03 − SWIRB12 GreenB03 − SWIRB07
RSI1 GreenB03/SWIRB11 GreenB03/SWIRB06
RSI2 GreenB03/SWIRB12 GreenB03/SWIRB07

2.3.2. Calculation of SCF

The SCF defines the share of snow-covered surfaces within each pixel and is the most
crucial parameter for estimating snow depth. The SCF varies between 0 and 1 (0–100%).
Thus, a pixel value of 0.91 means that 91% of the pixel area is covered with snow. The
literature provides both direct and indirect SCF calculation methods. Indirect methods are
based on the correlations between snow indices and SCF, whereas direct methods employ
visual analysis of high- and medium-resolution images. As the NDSI is highly correlated
with SCF, many authors develop their own analysis approaches. For instance, Salomonson
and Appel proposed the following linear function [28]:

SCF = a + b × NDSI (2)

where a and b are constants equal to 0.06 and 1.21, respectively. Barton et al. proposed the
quadratic function [31]:

SCF = a + b × NDSI + c × NDSI2 (3)

where a, b, and c are constants optimized at 0.180, 0.371, and 0.255, respectively. Lin et al.
proposed the exponential function [19]:

SCF = a + b × ec×NDSI (4)

where a, b, and c are equal to −0.41, 0.571, and 1.068, respectively. As direct methods are
more accurate than indirect methods for estimating snow cover, we here compared the
performances of four existing snow indices using a mixed linear method with two variables
representing the reflectivity of an entirely snow-covered surface and a bare surface. For
this purpose, we adopted the formula developed by Romanov and Tarpley [20]:

SCF =
R − Land

Snow − Land
(5)
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where R is the observed visible reflectance of the scene, and Land and Snow are the
reflectivity of land and snow, respectively. The error in the SCF estimation was 10–13%
depending on the SCF value [32]. In this study, we used the SCF maps of the three different
soil zones in North Kazakhstan, along with the four snow indices from Sentinel-2 MSI.

2.3.3. Estimation of Snow Depth and SWE

Romanov et al. found a high positive correlation between the SCF and SD. They
proposed the following equation:

SD = eaSCF − 1 (6)

where a is a constant equal to 0.33. The projections of low-level plants through the snow
cover dominantly affect the dependency of snow depth on SCF. Once the snowpack
completely covers the greenery, the SCF no longer responds to additional increases in snow
depth. Romanov and Appel reported that the snow cover given by Equation (6) reaches
100% at a snow depth of around 27 cm [20].

The SWE integrally characterizes the thickness and density of the snow cover. This
indicator, which most fully characterizes the snow reserves in a particular area, can also
clarify the water regime of rivers and lakes and the activation of erosion processes. In the
current work, the SWE was simply determined as:

SWE = ρ × SD (7)

where SWE is in kg/m2, ρ is in kg/m3, and SD is in m.

3. Results

As many maps were generated, we considered it prudent to limit our discussion to
the “North Kazakhstan Agricultural Experimental Station”. The maps from A.I. Barayev
“Research and Production Center for Grain Farming” and “Naidorovskoe” are displayed in
Appendix A.

3.1. Calculation of the Snow Spectral Indices

As mentioned above, we analyzed Sentinel-2 MSI images using two variations of
four spectral snow indices. Figure 5 displays the snow indices at the “North Kazakhstan
Agricultural Experimental Station” (the spectral indices at A.I. Barayev “Research and
Production Center for Grain Farming” and “Naidorovskoe” are presented in Figures A1
and A2, respectively, of Appendix A).

All spectral indices except the RSI (misclassified area: 6241 ha or 4.8%) accurately
classified the snow-covered territories. The RSI-1 and RSI-2 maps displayed many large
and small spots, respectively, with larger values in the northeastern part of the study
area. Such patterns cannot reflect the actual intensity of the snow cover in the three
agricultural enterprises. To distinguish dry snow from snow crust formed by the thawing
and subsequent freezing of snow or by wind compaction (wind crust), we employed
the NDSI and NDSII indices. The significant density difference between dry snow and
snow/wind crust will likely affect the SWE calculation. However, consistent with Hall
et al. [23], the NDSI and NDSII gave the same results and did not distinguish between snow
and crust (Figure 5), although they classified the snow-covered territories with satisfactory
accuracy. Despite the blurry class outlines, both difference snow indices detected the precise
contours of the areas completely covered with snow (untouched agricultural fields), snow-
free areas (settlements), and areas partially covered with snow (agricultural fields after
snow retention). Snow retention is the agricultural practice of retaining and accumulating
snow on arable land, mainly in the fields of steppe and forest-steppe zones (Figure 6). This
technique is designed to prevent freezing of the soil and wintering plants and increase soil
moisture reserves.
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Figure 6. Agricultural field at the “North Kazakhstan Agricultural Experimental Station” after
applying the snow retention technique. Source: Captured by the authors during the field-snow survey.

3.2. Estimation of SCF

Figure 7 shows the SCF maps at the “North Kazakhstan Agricultural Experimental
Station” generated by inserting each snow index into the formula mentioned above (5).
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Equivalent maps at the A.I. Barayev “Research and Production Center for Grain Farming”
and “Naidorovskoe” are displayed in Figures A3 and A4 of Appendix A, respectively. As
the SCF quantifies the share of a snow-covered area in each pixel, we calculated a single
SCF value over the entire study area based on the pixel data. The SCF maps generated
from the NDSII and RSI performed equally well and classified 94.3–94.5% of the land as
totally snow-covered. At the “North Kazakhstan Agricultural Experimental Station”, the
NDSI gave the highest snow coverage (96–96.2%), while DSI-1 and DSI-2 gave the smallest
coverages (90.6% and 92.5%, respectively). It should also be noted that DSI most accurately
classified non-snow areas as forest plantations, settlements, and strongly blown uplands.
In the second study area located at A.I. Barayev “Research and Production Center for Grain
Farming”, the NDSI and NDSII again obtained the highest proportion of snowed area (82–
85.5%), followed by RSI (72.7–77.2%) and DSI (67–69.5%). In contrast, the “Naidorovskoe”
territory was consistently classified as snow-covered (98.8–99.3%), although the DSI yielded
the smallest share of snow-bound area (98.1–98.2%).
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2, (e) DSI-1, (f) DSI-2, (g) RSI-1, and (h) RSI-2.

3.3. Snow Depth Modeling

Next, the snow depth maps were generated from each SCF map derived from the
Sentinel-2 MSI data using Equation (6). Figure 8 displays the snow depth maps at the
“North Kazakhstan Agricultural Experimental Station” (equivalent maps at A.I. Barayev
“Research and Production Center for Grain Farming” and “Naidorovskoe” are presented
in Figures A5 and A6 of Appendix A, respectively). The height values in the snow depth
map generated from NDSI and NDSII were similar between the variations, although
NDSI-1 classified a larger snowy territory (depth > 30 cm) than NDSI-2 in the southeast
part of “North Kazakhstan Agricultural Experimental Station”. The same behaviors were
observed in A.I. Barayev “Research and Production Center for Grain Farming”, but in the
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“Naidorovskoe” territory, NDSI-2 classified the pixels more accurately than the other indices.
In all three soil zones, the NDSI and NDSII obtained a blurry snow depth classification
and failed to clarify the contours of the agricultural fields with and without snow retention.
Meanwhile, both variations of RSI performed equally well in estimating SD in the three
soil zones, and the pixel values were highly correlated with those in the snow depth maps
derived from NDSII-1 and NDSII-2. The SD maps generated from DSI-1 showed the lowest
depth values (0–10 cm) in the chernozem soil zone covering almost 80% of the study area,
intermediate values in the chestnut soil zone (15–20 cm), and the highest value (51.4 cm) in
the dark-chestnut soil zone. The most outstanding snow depth results, with clear object
patterns in all three study areas, were obtained from DSI-2. No generalization of the pixel
values was observed over the entire area, and fields with recently applied snow retention
were easily distinguished as regions of partially visible snow–soil mixture (southern part
of the study area; see Figure 8f). The DSI-2-derived map showed a larger area of 10–20-cm
deep snow cover (>80%) than the other maps, while only specific fields (after recent snow
retention), settlements, and hills were snow-free or thinly covered (0–10 cm).
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The performances of the SCF maps generated from both variations of the four indices
were compared in terms of the RMSEs and correlation coefficients (R) between the snow
depths simulated using Equations (5) and (6) and the snow survey data collected in the field
(Table 4). The RMSE decreased from the chernozem to the chestnut soil zones and varied
from 5.62 (DSI-2) to 6.85 (NDSII-2) in the “North Kazakhstan Agricultural Experimental
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Station”, from 3.46 (DSI-2) to 4.86 (RSI-1) in the A.I. Barayev “Research and Production
Center for Grain Farming”, and from 2.86 (DSI-2) to 3.53 (NDSII-1) in “Naidorovskoe”.
The results of the DSI-2 model were most strongly correlated with the ground-truth snow
depths in all three agricultural enterprises, with R values of 0.78, 0.69, and 0.80 in “North
Kazakhstan Agricultural Experimental Station”, A.I. Barayev “Research and Production
Center for Grain Farming”, and “Naidorovskoe”, respectively. At the latter two enterprises,
the simulated snow depth from DSI-1 was the second-best match to the ground truth, but
at the “North Kazakhstan Agricultural Experimental Station”, the snow depth was better
modeled by RSI-2 (0.55) and NDSI-2 (0.53) than by DSI-1.

Table 4. Modeled snow depth error assessments.

Study Area Error/Index NDSII-2 NDSII-1 NDSI-2 NDSI-1 RSI-2 RSI-1 DSI-2 DSI-1

LLP “North Kazakhstan Agricultural
Experimental Station”

R 0.45 0.2 0.53 0.24 0.55 0.25 0.78 0.51
RMSE 6.85 7.45 6.44 7.02 6.16 6.66 5.62 7.29

LLP A.I. Barayev “Research and
Production Center for Grain Farming”

R −0.07 −0.01 −0.06 0 −0.06 0 0.69 0.5
RMSE 4.75 4.69 4.84 4.67 4.85 4.86 3.46 4.1

LLP “Naidorovskoe” R 0.26 0.18 0.44 0.41 0.44 0.4 0.80 0.51
RMSE 3.47 3.53 3.4 3.5 3.27 3.35 2.86 3.17

3.4. SWE Calculation

The SWE was calculated from each snow depth map using Equation (7). The SWE
maps of the “North Kazakhstan Agricultural Experimental Station” generated from the
snow depth maps of NDSI, NDSII, RSI, and DSI are displayed in Figure 9 (those of the A.I.
Barayev “Research and Production Center for Grain Farming” and “Naidorovskoe” are
displayed in Figures A7 and A8 of Appendix A, respectively). Accurate SWE calculations
require the snow densities in the steppe zone, which were averaged from our own data in
each study area rather than extracted from the literature. The average snow density was
300 kg/m3 at “North Kazakhstan Agricultural Experimental Station” and 220 kg/m3 at
A.I. Barayev “Research and Production Center for Grain Farming” and “Naidorovskoe”.
This difference can be explained from a geographical viewpoint. The first study area is
located in the forest-steppe zone, whereas the second is located in the steppe, and the third
occupies the border between the steppe and the semi-desert zone. Comparing the SWE
maps, all indices except DSI-2 underestimated the amount of snowpack water in all three
soil zones. The SWE from DSI-2 exceeded 50 kg/m2 over a large proportion of the “North
Kazakhstan Agricultural Experimental Station”. In fields with recent snow retention, the
SWE reduced to 20–40 kg/m2, and in settlements and heavily blown hills, it varied between
0 and 20 kg/m2.

In general, the liquid water contained in snowpacks at all three enterprises is available
in surplus for potential agricultural reservation and rational use during the dry season.
Moreover, the retained water could flood nearby communities and damage their infrastruc-
tures during a sudden spring thaw.
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4. Discussion

The above results indicate that snow depths can be more accurately estimated using
spectral snow indices from SCF maps than from previously proposed SCFs and snow
depth estimation techniques. As mentioned, the SCF can be calculated either directly
or indirectly. Salomonson and Appel [28], Barton et al. [31], and Lin et al. [19] proposed
different regression functions based on NDSI. However, as direct methods are more accurate
than indirect methods, we here compared the performances of four snow indices (NDSI,
NDSII, DSI, and RSI) using two variables representing the reflectivities of an entirely snow-
covered surface and a bare soil surface. In the NoSREx of Lemmetyinen et al. [16], the snow
depth, snow density, and SWE NoSREx were automatically measured in real-time using a
gamma water instrument at intensively observed points, but this work only characterized
the snow cover at one or a few points. Although the study delivered the highest accuracy,
its spatiality was very low. Furthermore, spatial interpolation will decrease the overall
accuracy of the snow cover characteristics measured by NoSREx. Gan et al. [17] compared
two passive microwave-obtained snow depths with SWE retrievals, but only achieved
high accuracy for snow depths below 20 cm. Our present method increases this limit to
27 cm. Analogous work was performed by Jenssen and Jacobsen [18] in Norway. They
measured the snow depth, snow density, and SWE using a UAV-mounted ultra-wide-band
(0.7–4.5 GHz) radar. They found that pseudo-noise radar can measure the snow depth up
to 5.5 m with high precision (R > 0.92). However, this method requires constantly repeated
flights, which consumes time and resources; moreover, UAV flights are limited to smaller
areas than those of our study (>10,000 ha). Regarding the work of Dixit et al., a comparative
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analysis of NDSI, NDSII, and S3 performance in assessing the snow cover in India was
carried out, and the SWI index was proposed. Since SWI prevents the snow-water mixing
and S3 averts the snow-vegetation mixing, they were excluded in the current study since
this problem is not relevant in the steppe zone. Nevertheless, if the results of the snow
cover assessment using NDSI and NDSII by Indian colleagues showed high accuracy, in
our case, we observed an overestimation of these indices compared to DSI and RSI. Thus,
according to the averaged Snow Cover Fraction data, NDSI classified 93% of the study area
as snow-covered, and NDSII classified 92%. In comparison, DSI and RIS labeled only 86%
and 89% of the area, respectively. Considering that DSI-2 showed the highest accuracy
in snow depth estimation, we believe that NDSI and NDSII are less effective in assessing
snow cover in Northern Kazakhstan. The approach we propose to use DSI-2 for snow
cover depth estimation and further calculating the SWE can be used over a vast territory,
with optimal temporal resolution (revisit time of Sentinel-2 is five days) and without field
snow surveys.

Considering the advantages and limitations of estimating snow depths and SWE, we
expect that our approach will be helpful for sustainable water management, the reservation
and rational use of meltwater in agriculture during the dry season, and as an early warning
system for spring floods.

5. Conclusions

All spectral indices except the RSI classified snow-covered territories with satisfactory
performance. The NDSI and NDSII obtained the same results and did not distinguish
between snow and crust. Both difference snow indices performed very well and clarified
the completely snow-covered contours (untouched agricultural fields), snow-free areas (set-
tlements, hills), and partially snow-covered areas (agricultural fields after snow retention)
in the territory.

The SCF maps generated from NDSI and NDSII classified the highest proportion of the
study area as snow-covered, whereas the maps generated from DSI-1 and DSI-2 identified
the smallest share of snow-covered land. The SCF generated from DSI most accurately
classified non-snow areas into forest plantations, settlements, and strongly blown uplands.

The RMSE between the simulated and surveyed snow depths decreased as the soil
zone changed from chernozem to dark-chestnut. The snow depth maps generated from
DSI-2 showed clear patterns of objects in all three study areas, and fields in which snow
retention had been recently applied were easily identified as partially visible snow–soil
mixtures. At the “North Kazakhstan Agricultural Experimental Station”, the A.I. Barayev
“Research and Production Center for Grain Farming”, and “Naidorovskoe” areas, the
RMSE varied from 5.62 (DSI-2) to 6.85 (NDSII-2), from 3.46 (DSI-2) to 4.86 (RSI-1), and
from 2.86 (DSI-2) to 3.53 (NDSII-1), respectively, with DSI-2 yielding the highest correlation
coefficients between the modeled and ground-truth data (0.78, 0.69, and 0.80, respectively).

The average snow density was 300 kg/m3 at “North Kazakhstan Agricultural Exper-
imental Station” and A.I. Barayev “Research and Production Center for Grain Farming”
and 220 kg/m3 at “Naidorovskoe”. The SWE maps generated from all indices except DSI-2
underestimated the amount of water in a snowpack. In general, the snowpacks in the
study area contain surplus water that can be harnessed for reservation and rational use
in agriculture during the dry season. Utilizing this water could also prevent flooding and
damage to nearby communities during a sudden spring thaw.

The current study was limited to three agricultural enterprises in the North Kaza-
khstan, Aqmola, and Qaragandy regions and did not attempt a thorough investigation
of all snow-covered regions in Kazakhstan. Further work will include a relief analysis
and a methodology for choosing the best places for reserving melt and flood water in the
northern regions of the Republic of Kazakhstan.
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