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Abstract: Wildfires influence the global carbon cycle, and the regularity of wildfires is mostly de-
termined by elements such as meteorological conditions, combustible material states, and human
activities. The time series and spatial dispersion of wildfires have been studied by some scholars.
Wildfire samples were acquired in a monthly series for the Montesinho Natural Park historical fire
site dataset (January 2000 to December 2003), which can be used to assess the possible effects of
geographical and temporal variations on forest fires. Based on the above dataset, dynamic wildfire
distribution thresholds were examined using a K-means++ clustering technique for each subgroup,
and monthly series data were categorized as flammable or non-flammable depending on the thresh-
olds. A five-fold hierarchical cross-validation strategy was used to train four machine learning
models: extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM),
and decision tree (DT). Finally, to explore the performance of those we have mentioned, we used
accuracy (ACC), F1 score (F1), and the values for the area under the curve (AUC) of the receiver
operating characteristics (ROCs). The results depicted that the XGBoost model works best under the
evaluation of the three metrics (ACC = 0.8132, F1 = 0.7862, and AUC = 0.8052). The model perfor-
mance is significantly improved when compared to the approach of classifying wildfires by burned
area size (ACC = 72.3%), demonstrating that spatiotemporal heterogeneity has a broad influence on
wildfire occurrence. The law of a spatiotemporal distribution connection in wildfires could aid in the
prediction and management of wildfires and fire disasters.

Keywords: space–time series; wildfire prediction; machine learning; Portugal

1. Introduction

Wildfires are hazardous and challenging when it comes to the environmental pro-
tection of forests [1–4]. They pose a major threat to the forest environment. Forest fires
are common in the United States [5,6], Russia [2,7], China [8], Australia [9,10], and the
European Mediterranean rim countries [11]. Forest fires are caused by a variety of sources,
including lightning, spontaneous combustion, and human actions [12]. Therefore, to pre-
dict wildfires, advanced data mining algorithms have been applied, including decision
trees (DTs), support vector machines (SVMs), random forests (RFs), and gradient boosting
decision trees (GBDTs) [13]. In 2017, Jaafari et al. [14] analyzed the spatial pattern of forest
fires in the Zagros Mountains in Iran from 2007 to 2014 using five decision-tree-based
classifiers (the alternating decision tree, the classification and regression tree, the functional
tree, the logistic regression tree, and the plain Bayesian tree). In 2019, Gigović et al. [15]
employed an SVM to derive forest fire sensitivity maps from a database of historical forest
fires in Serbia. In 2020, Collins et al. [16] monitored natural and designated burning forest
fires in southern Australia from 2006 to 2019; they deployed an RF model to predict fires in
the region and discussed whether the sample capacity imbalance model could be translated
across geographic regions. In 2020, Michael et al. [17] conducted tests to determine whether
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long-term vegetation dynamics and the cumulative dry condition of woody vegetation may
improve fire risk mapping through three machine learning methods (logistic regression, RF,
and extreme gradient boosting (XGBoost)). The above research has proven that climate, as
well as other conditions (fuel accumulation and dryness), has an impact on fire activity.

The research with respect to the existing algorithms focuses on the interaction be-
tween parameters, including climatic condition excavation, combustible accumulation,
and wildfire occurrence. Temperature, humidity, wind speed, humus thickness, and other
parameters have a substantial impact on the occurrence of wildfires [12,18]. In addition,
certain temporal elements, including season [19] and day and night [20], affect the me-
teorological conditions and the burning state; some spatial factors, such as the sun and
the shadow on slopes and the steepness of hills, alter combustible material properties by
changing vegetation distribution [21]. Predicting fire activity is challenging due to these
spatial and temporal limits [18]. In this study, we looked into the impacts of temporal and
spatial distribution on forest fire forecasts based on the traditional influencing elements.

Some scholars have recently concentrated their fire prediction research on wildfire oc-
currence time series and spatial distribution. Spatial and temporal variation have an impact
not only on vegetation productivity [22] and vegetation cover patterns [23,24], but also on
fuel moisture [25], wind conditions, and fuel loadings [26]. Numerous experiments have
established a positive association between seasonal variations in meteorological variables
and long-term fire activity throughout the year [19]. Climate fluctuation can be cyclical over
time, resulting in fairly predictable fire genesis and development [27]. Chen et al. [28] de-
veloped a global fire prediction system, which takes into account region-specific seasonality,
long-term trends, recent fires, large-scale climate change, and climate-driven information
in different regions, and the system can better predict fire activity peaks and troughs on
a seasonal timescale. Liu et al. [29] proposed that fire burning, particularly farmland
burning, has a large and powerful seasonal and spatial correlation, which, when combined
with the fire season and land cover distribution, can essentially remove the influence of
thin clouds and fog in remote sensing observational data and improve fire identification
accuracy. Zhou et al. [30] proposed in their paper that burned areas after grassland fires are
significantly affected by the seasonal timing of fires, and burned grasslands recover too
quickly in early spring for fire detection algorithms based on anomalous changes before
and after remote sensing images to identify them as change events, making the algorithms
less sensitive. In non-extreme weather, the daily fluctuations in meteorological conditions
and combustible states are smoother, and with less unpredictability, these qualities might
hamper the model’s performance when used as features in the machine learning model.
The monthly fire time series, in addition to seasons, gives a fair characterization of the
connection of variables across the progression of time, allowing for greater temporal pre-
cision while keeping the substantial variance in climatic circumstances and combustible
states. Carvalho et al. [31] utilized monthly fire time series from 2003 to 2019 to describe
fire dynamics throughout the year and to identify fire frequency months, revealing that,
statistically, more than half the annual average of active fires occurred during the peak
months, demonstrating a clear monthly pattern of fire occurrence associated with spatial
and temporal variability.

Most of the previous research has made direct predictions of wildfire numbers or areas
based on meteorological conditions and fire indices. However, an increasing number of
researchers are discovering that wildfires are intimately tied to spatiotemporal heterogene-
ity. The objective of this study was to use cluster analysis and classification algorithms
to investigate and evaluate the potential influence of temporal and spatial characteristics
on forest fire occurrence and to propose a new model based on the spatiotemporal char-
acteristics of the previous work for more scientific and effective wildfire prevention and
management. In this study, we investigated the relationship between the spatiotemporal
dimensions and the individual wildfire sample points in the Montesinho Natural Park,
Portugal, forest fire dataset obtained from the UCI machine learning knowledge base and
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looked for potential patterns in wildfire occurrence over time, using data mining methods
such as cluster analysis and classification evaluation.

2. Materials and Methods
2.1. Study Area

The Montesinho Natural Park, with a maximum elevation of 1486 m, an average
elevation of 750–900 m, and a total area of roughly 742.25 km2, is located in northwest
Portugal near the Spanish border (Figure 1). The park is divided into two sections: a
natural woodland environment and a classic highland agriculture landscape with steep
slope variations. The climate of the natural park is characteristic of the Mediterranean, with
wet winters and little rainfall in the summer and average yearly temperatures ranging from
8 to 12 degrees Celsius [32]. Most of the park is in the highland landscape, with annual
precipitation reaching 800 mm, but the temperatures stay below 12 degrees Celsius due
to its elevation. August has the greatest temperature and the lowest humidity, whereas
December has the highest humidity and January has the lowest temperature [33]. Studying
the geographical and temporal heterogeneity of forest fires is made easier in this region
due to the quick changes in elevation and the complexity of the climate.

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 18 
 

and management. In this study, we investigated the relationship between the spatiotem-

poral dimensions and the individual wildfire sample points in the Montesinho Natural 

Park, Portugal, forest fire dataset obtained from the UCI machine learning knowledge 

base and looked for potential patterns in wildfire occurrence over time, using data mining 

methods such as cluster analysis and classification evaluation. 

2. Materials and Methods 

2.1. Study Area 

The Montesinho Natural Park, with a maximum elevation of 1486 m, an average ele-

vation of 750–900 m, and a total area of roughly 742.25 km2, is located in northwest Por-

tugal near the Spanish border (Figure 1). The park is divided into two sections: a natural 

woodland environment and a classic highland agriculture landscape with steep slope var-

iations. The climate of the natural park is characteristic of the Mediterranean, with wet 

winters and little rainfall in the summer and average yearly temperatures ranging from 8 

to 12 degrees Celsius [32]. Most of the park is in the highland landscape, with annual 

precipitation reaching 800 mm, but the temperatures stay below 12 degrees Celsius due 

to its elevation. August has the greatest temperature and the lowest humidity, whereas 

December has the highest humidity and January has the lowest temperature [33]. Study-

ing the geographical and temporal heterogeneity of forest fires is made easier in this re-

gion due to the quick changes in elevation and the complexity of the climate. 

 

Figure 1. Terrain distribution map of Montesinho Natural Park, Portugal. 

2.2. Data 

Cortez and Morais acquired and compiled the Montesinho Natural Park forest fire 

dataset, which is currently publicly available in the UCI machine learning knowledge base 

[34]. This collection contains data for 517 forest fires from January 2000 to December 2003. 

It has the following 13 characteristics: X, Y, month, day, FFMC, DMC, DC, ISI, temperature, 

RH, wind, rain, and area. Each variable in the dataset is described in depth in Table 1. 

Cortez and Morais divided the study area into a 9 × 9 grid; so, the X and Y values are the 

X- and Y-axis coordinates corresponding to each fire. The Forest Fire Weather Index (FWI) 

from the Canadian Fire Danger Rating System [35] is represented by the fine fuel moisture 

code (FFMC), the duff moisture code (DMC), the drought code (DC), and the initial spread 

index (ISI). The area variable is the burned area of the forest (in ha), and the value of the 

area variable is 0 for fires with a burned area of less than 100 m2.  

Figure 1. Terrain distribution map of Montesinho Natural Park, Portugal.

2.2. Data

Cortez and Morais acquired and compiled the Montesinho Natural Park forest fire
dataset, which is currently publicly available in the UCI machine learning knowledge
base [34]. This collection contains data for 517 forest fires from January 2000 to December
2003. It has the following 13 characteristics: X, Y, month, day, FFMC, DMC, DC, ISI,
temperature, RH, wind, rain, and area. Each variable in the dataset is described in depth
in Table 1. Cortez and Morais divided the study area into a 9 × 9 grid; so, the X and Y
values are the X- and Y-axis coordinates corresponding to each fire. The Forest Fire Weather
Index (FWI) from the Canadian Fire Danger Rating System [35] is represented by the fine
fuel moisture code (FFMC), the duff moisture code (DMC), the drought code (DC), and the
initial spread index (ISI). The area variable is the burned area of the forest (in ha), and the
value of the area variable is 0 for fires with a burned area of less than 100 m2.
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Table 1. Variables in the wildfire dataset described in great detail.

Abbreviation Variables Explanations

Location
X X-axis spatial coordinates (1 ≤ X ≤ 9)
Y Y-axis spatial coordinates (1 ≤ Y ≤ 9)

Time series
Month Months of the year (from January to December)

Day Days of the week (from Monday to Sunday)

FWI

FFMC fine fuel moisture code Water content of cured fine fuels (from 18.7 to 96.20),
with a time period of 16 h

DMC duff moisture code
Water content of surface combustible material (from 1.1

to 291.3) in the upper layer of forest humus, with a
time period of 12 days

DC drought code Index of the effect of prolonged drought on forest
combustibles (7.9–860.6), with a time period of 52 days

ISI initial spread index The initial rate of fire spread (from 0 to 56.10)

Climatic conditions

temp temperature Temperature (Celsius) (from 2.2 to 33.30)
RH relative humidity Relative humidity (%) (from 15.0 to 100)

Wind Wind speed (km/h) (from 0.40 to 9.40)
Rain Outdoor rainfall (mm/m2) (from 0.0 to 6.40)

Burned area Area Total forest burned area (ha) (0.00~1090.84)

2.3. Data Preprocessing

The original dataset has a total of 13 properties, 4 of which (X, Y, month, and day) are
not very useful for normalization; thus, they are removed individually, and the remaining
9 features are aggregated into new datasets (NDs). The features in the new datasets are
linearly mapped using the min–max normalization technique for the transformed range
of 0 to 1 because of the clustering algorithm’s sensitivity to distance. The formula for the
min–max normalization method is as follows:

enow =
ei −MINlist

MAXlist −MINlist
(eup − elow) + elow, (1)

where ei is the feature element, MAXlist is the highest value of the existing data in the
feature, MINlist is the minimum value of the existing data in the feature, and eup and elow
are the upper and lower bounds of the data range after linear transformation, which in this
experiment is taken as (0, 1). The modifications before and after feature pre-processing are
depicted in Figure 2b.

2.4. Grouping the Datasets

The substantial association between fires and the monthly time series may be shown
by temporally periodizing the data, while the distinctive geographical patterns of the
different subsets of fire activity can be seen through a deconstruction of the grid cells [36].
The following data sample split was used in this experiment to look at the link between fire
incidence and spatiotemporal heterogeneity.

2.4.1. Time Series

“Month” and “day” are the properties linked with the temporal dimension in the
source data. First, the normalized ND is separated into 12 subsets, depending on the month
attribute of the original dataset, to identify a link between forest fire occurrence and the
two temporal variables.

OriginalDatasets = {dm1, dm2, . . . , dm12}|month, (2)

In each subgroup, the number of forest fires (n) and the total area are calculated, and
the number of monthly fires and the total area are plotted, with the month as the X-axis
and n and area as the Y-axis, as shown in Figure 3a.
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Similarly, based on the value of the “day” variable, the data are separated into seven
groups. Figure 3b shows the statistical results.

OriginalDatasets = {dd1, dd2, . . . , dd7}|day, (3)Sustainability 2022, 14, x FOR PEER REVIEW 5 of 18 
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Figure 2. The three key steps of the experiment are as follows: (a) pre-process the data using the
min–max normalization technique, due to the sensitivity of the K-means++ clustering methodology
to distance fluctuation; (b) investigate the link between climate changes and time; the overall sam-
ple is divided into numerous sub-samples along the time axis; discover the relationship between
sample distribution and the presence of spatial dimensions and use spatial coordinates to grid the
forest fire data; generalize the common features within each sub-dataset, compare the clustering
results to the geographical division findings, and label the dataset with the clustering technique;
(c) for wildfire-prone region prediction, the labeled subsets were concatenated as the complete
sample set with labeling, and four machine learning methods were applied. Figure 2 depicts the
model’s architecture.

Figure 3a shows that the number of forest fires that occur each month and the total
burned area are both trending in the same direction. The overall burned area and the
number of fires fluctuated dramatically from month to month, demonstrating that the
month has a substantial impact on forest fire production. Figure 3b shows that the total
number of forest fires did not change significantly, and the trend in the total daily burned
area did not correlate well with the total number of forest fires per day, indicating that the
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relationship between forest fire occurrence and a specific day of the week is not obvious.
As a result, the month attribute was used as the foundation for splitting the time axis
and discarding the predicted association between the “day” attribute and the incidence of
forest fires.
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Figure 3. Total number of wildfires and total areas burned (in hectares): (a) total number of wildfires
and total areas burned per month; (b) number of wildfires and total areas burned on each day of
the week. The figure shows that the number and area of wildfires vary greatly with “month”, but
relatively little with “day”, which is why “month” was chosen as the time division in the experiment.

2.4.2. Spatial Series

The original dataset has two geographical location attributes: X and Y. These two
characteristics define the only blocks where forest fires can occur. To look for a link between
wildfires and their location, the dataset was partitioned into 81 blocks based on the original
9 × 9 grid in the data, which equates to 81 subsets, as follows:

OriginalDatasets = {da1, da2, . . . , da81}|block, (4)

In each subgroup, the total number and the area of the wildfires were calculated, and
the results are set out in Figure 4. The number of wildfires and the total area within each
sub-region fluctuate significantly; the trend between the number of wildfires and the total
area is essentially the same, as shown in the figure. This is an excellent indicator of the
relationship between forest fire incidence and geographic location.
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2.4.3. Time and Space Division

The preceding two sections show that the wildfire incidence is strongly linked to both
temporal (month) and geographical (block) factors (X, Y). To represent this association in the
data, we separated the ND into 12 subgroups based on month and then further subdivided
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each subset into 81 smaller sections based on the X and Y coordinates. Figures 5 and 6
indicate the number and the area of wildfires for each block in each month.
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Figure 5. Number of times burned by wildfires (NB) in the 81 blocks during each month: (a–l) for
January–December, respectively. The figure shows that the NB varies greatly from month to month
and is unevenly distributed within each block, a phenomenon that provides a basis for the spatial
and temporal delineation of wildfires.
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2.5. K-Means Cluster

The K-means method [37] is a traditional division-based clustering technique, which
is extensively utilized in large-scale data clustering due to its efficiency. Many algorithms
are currently being developed and refined around this approach.

The K-means approach requires a number K, which groups the dataset into K clusters
( C1, C2, . . . , Ck|k ∈ [1, K] ). The cost function of K-means clustering is:

J =
K

∑
k=0

∑
x∈Ck

‖x− µk‖2
2, (5)

where µk is the mean vector of cluster Ck, sometimes called the center of mass, with
the expression:

µk =
1
|Ck|

∑x∈Ck
x, (6)

D. Arthur et al. [38] presented the K-means++ method to overcome the problem of the
sensitivity of K-means to the initialized center of mass by utilizing initialized clustering
centers that are as far away as feasible.

In this experiment, to investigate the similarities between flammable and non-flammable
fires, 12 subsets (dm) were separately clustered using the K-means++ algorithm, with the K
value set to 2 (flammable fires, non-flammable fires). A link was discovered between the
clustering findings and the blocks where forest fires occurred, with fire sites from the same
cluster frequently being found in many blocks. In the experiment, we used the clustering
findings and the distribution of fire spots inside each block to automatically create a dynamic
threshold (i.e., the number of fires starting within each block), which would split the fire
region into flammable and non-flammable zones in each month.

2.6. Machine Learning Models
2.6.1. XGBoost

By adding a regular term to the GBDT algorithm’s loss function to discover the best
solution and increase the resistance to overfitting, the XGBoost [39] technique is meant
to manage the accuracy of the GBDT [40] algorithm and avoid overfitting. Thus, the loss
function of the XGBoost algorithm is:

L(yi, ŷi) =
N

∑
i=1

l(yi, ŷi) +
M

∑
m=1

Ω( fm), (7)

where l(yi, ŷi) is the GBDT loss function, yi denotes the actual value, ŷi denotes the forecast
value, and Ω is the canonical term and denotes the model’s complexity. The number of
trees is denoted by M, while the m th tree is denoted by fm.

Ω( f ) = γT +
1
2

λ‖ω‖2, (8)

T is the total number of leaves in each tree, and ω is the leaf node score, while γ and
ω are the user-determined parameters.

2.6.2. Support Vector Machine

The SVM is a high-performing classifier. For two labeled sets of vectors, the SVM
provides an ideal partitioning surface that splits the two sets of vectors into two sides as
much as is feasible and maximizes the shortest distance between the two sets of vectors to
this hyperplane.
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2.6.3. Decision Tree

The essence of the DT is a set of generalized classification rules from the training set.
The entire DT learning process is a process of iteratively picking the best features and
partitioning the dataset based on them, such that each sample is optimally classified. The
DT is the foundation of common integrated learning models such as RFs and GBDTs, and
it has a strong reputation in the field of machine learning.

2.6.4. Random Forest

The RF is a learning algorithm that is integrated and is based on the concept of bagging.
The random forest is made up of multiple unrelated decision trees, and rather than using
all of the data’s features for training, a random selection of a portion of the samples is made
before constructing each decision tree. When a new sample is input after the forest has
been obtained, each decision tree within the RF is voted on, and the sample is predicted
to be the category with the most votes. The RF is less prone to overfitting and more noise
resistant than the DT.

2.7. Performance Evaluation Metrics

After model training, three metrics—accuracy (ACC), F1 score (F1), and area under the
curve (AUC) values—were used to assess the four models, and each parameter is explained
as follows.

ACC: the ratio of the number of samples properly categorized by the classifier to the
total number of samples is defined as accuracy, which refers to the model’s prediction
accuracy. There are two sorts of samples in the number of correctly categorized samples:
(1) the number of samples accurately predicted by positive classes (TP) and (2) the number
of samples correctly predicted by negative classes (TN). The total number of samples is n.
The formula is as follows:

ACC =
TP + TN

N
, (9)

F1: precision (P) and recall (R) are weighted 1:1 to obtain the F1 index. Precision
denotes the proportion of positive samples among those classified as positive cases by
the classifier, whereas recall denotes the proportion of positive samples predicted by the
classifier among all the positive samples. The formula is as follows:

F1 =
2× P× R

P + R
, (10)

AUC: the AUC (area under the curve) value is the area of the geometry below the ROC
(receiver operating characteristic) curve (see Figure 7). The AUC value is usually between
0.5 and 1.0, and a higher AUC indicates that the model is more predictive.
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3. Results

Five hundred and seventeen samples were labeled using ‘X’, ‘Y’, and K-means++,
with 254 positive (flammable flames) and 263 negative samples (non-flammable fires). The
models contained ten features: X, Y, FFMC, DMC, DC, ISI, temp, RH, wind, and rain.
Because the attribute “month” was used to divide the data, it was removed here. As “day”
is not a feature that is sensitive to spatial and temporal variation, it is likewise excluded
here. “Area” is not a feature that existed prior to the wildfire; hence, it is likewise removed.

Four classification models were used to assess and validate the labeled data, compris-
ing XGBoost, RF [41], SVM [42], and DT [43]. The sklearn machine learning library was
used in the experiments for the auxiliary operations, and the parameters of the four models
were configured as shown in Table 2. To avoid bias, the trials utilized stratified 5-fold
cross validation (SFV), in which the dataset was randomly divided into five equal portions
to guarantee that the percentage of the majority and minority samples in each dataset
matched the original data. Four of them served as the training set, while the fifth served as
the test set, with the average value produced after five times serving as the model’s overall
reference result.

Table 2. Parameter settings for the four models. The four models are extreme gradient boosting
(XGBoost), random forest (RF), support vector machine (SVM), and decision tree (DT).

Model Parameters

XGBoost

max_depth = 3; min_child_weight = 1; gamma = 0.1
colsample_bytree = 1; scale_pos_weight = 1; learing_rate = 0.05

n_estimators = 500; silent = 1; colsample_bytree = 1
early_stopping_rounds = 100; eval_metric = “logloss”

RF max_depth = 5; n_estimators = 10; max_fearure = 1
n_estimators = 500; min_samples_split = 2

SVM Kernel = ‘linear’; degree = 3; tol = 0.001

DT criterion = “gini”; min_samples_split = 2; min_samples_leaf = 1

In this study, we employed the same model and assessment criteria as for a compara-
tive dataset experiment using conventional markers so as to validate that spatiotemporal
variables indeed have an influence on the forest fire prediction model. Traditional markers
utilize the burned area (the area attribute in the dataset) to judge fire size; fires with a
burned area greater than 5 ha are classified as major fires, and those with a burned area
less than 5 ha are classified as minor fires [32].

Performance Evaluation Results

The AUC values of all four models are larger than 0.65 and less than 0.81, while the
ACC and F1 are between 60% and 80%. These values indicate that the models result in
accurate predictions. The area dashboard of the respective models for the three indicators
is given in Figure 8, with K-nearest neighbor (KNN) serving as the baseline model. The
greater the area, the higher the model score and the better the model effect. Figure 8 shows
that the XGBoost and DT models perform better than KNN, but the RF and SVM models
perform even worse. Among these, the XGBoost model has a much higher ACC and AUC,
while having a nearly identical F1 to the DT model. This is due to XGBoost’s greater
flexibility to small sample data and its effective ability to avoid overfitting. Table 3 shows
the comprehensive evaluation findings for each model.
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Figure 8. The evaluation results of spatiotemporal models on the test set. Using the score of the
K−nearest neighbor (KNN) model as the benchmark (the dashed part in the figure is the KNN model
score), a line graph of the area of the four machine learning model scores is drawn, and the larger the
area, the better the model effect. The four models are extreme gradient boosting (XGBoost), random
forest (RF), support vector machine (SVM), and decision tree (DT). The evaluation indexes of the
model are accuracy (ACC), F1 Score (F1), and the values for the area under the curve (AUC) of the
receiver operating characteristics.

Table 3. Evaluation results of the four machine learning models based on spatiotemporal characteristics.

Model Accuracy (ACC) F1 Score (F1) AUC 1

XGBoost 0.8132 0.7862 0.8052
RF 0.7204 0.7122 0.7204

SVM 0.6722 0.6322 0.6724
DT 0.7968 0.7880 0.7966

1 AUC is the value for area under the curve of receiver operating characteristics (ROC).

The data for each index were much lower than the spatiotemporal model and machine
learning model findings, which employ the burned area as the foundation for fire size
estimation (see Table 4). The AUC values of the old method’s prediction results are around
0.5, suggesting their model’s lack of predictive capacity.

Table 4. Evaluation results of the four machine learning models based on the approach of classifying
wildfires by burned area size.

Model ACC F1 AUC

XGBoost 0.6366 0.4484 0.4804
RF 0.6846 0.4258 0.4912

SVM 0.7082 0.4146 0.5000
DT 0.5322 0.4600 0.4648

4. Discussion
4.1. Drivers of Wildfire

A forest fire is caused by a complex interaction in terms of time, space, the status of
the combustibles, the long-term weather conditions, and other factors. As can be seen from
the statistics, the peak is in August and September, with over 70% of active fires happening
during that time. In areas where fires have occurred, 73% of the block’s peak number of
fires occurred between August and September, while the remaining blocks’ peak number
of fires occurred primarily between March and July, indicating a clear monthly pattern
of fires associated with spatial and temporal heterogeneity. The two nearby blocks have
markedly different numbers of forest fires, despite the fact that the other elements are
almost identical, which might be connected to the Montesinho Natural Park’s significant
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elevation fluctuations. Elevation differences cause variations in human activities and
vegetation distribution fractions, impacting fire numbers, as seen in the FWI.

Weather also has a large impact on fuel availability and flammability; thus, it is a
significant reason as to why wildfires occur. The regional and temporal patterns of fire
weather in the Mediterranean climate are quite variable, which aids our understanding
of various fire situations [44]. The four indices that have the most impact on wildfire
occurrence are geographic coordinates, temporal dimension, DMC, and DC. In August, the
maximum temperature and the lowest humidity of the year are found in the Montesinho
Natural Park, and the plant types, as well as the high temperatures and low humidity,
contribute to the spread of a significant number of wildfire sites.

Agricultural operations have decreased in the Montesinho Natural Park, but tourist
and leisure activities have increased [33]. During the majority of the year, only around
200 sheep are grazed; however, from May to August, grazing activity increases dramatically.
Shepherds move around 5000 sheep from lower to higher elevations to improve grazing
outcomes, and shepherd activity is one of the reasons for the high incidence of wildfires at
this time [45].

4.2. Limitations and Future Work

Despite the fact that this research is an improvement over the previous work, it still
has several flaws. The data for the experiment were only gathered centrally during a short
period of time (2000–2003), and they lacked the exact years in which the fires occurred. Due
to the lack of years, it may not be possible to expand the data into longer data series per
month. In this study, we demonstrated that temporal features have a significant influence
on forest fire incidence, and more wildfire data products will be used in the future to better
understand the dynamics and long-term development of fires throughout the year.

In this study, the studied area was the Montesinho Natural Park, which is just 742 km2

in size and covers a tiny region. Although the influence of spatial division on the forest
fire prediction model was proven in this experiment, the short area span and similar geo-
graphical circumstances resulted in insignificant experimental results. To further confirm
the experimental results, it is necessary to broaden the research area in order to acquire a
larger and more complicated regional division. Second, because of the modifiable areal
unit problem (MAUP), different scales and zoning schemes for the same study area can
have an effect on the wildfire results analysis [46]. The MAUP effect could not be resolved
well in this experiment due to dataset limitations.

5. Conclusions

The study of the spatiotemporal heterogeneity of wildfire occurrence is currently a
prominent issue. To investigate the effect of spatiotemporal features on wildfire incidence
in the Montesinho Natural Park, experiments were carried out to evaluate the fire point
data using a clustering method and four classification models. The results reveal that
the XGBoost-based spatiotemporal prediction model for forest fires performs better than
earlier prediction models in the literature for identifying wildfires (11.37% improvement in
accuracy rate). Month, geographic location, and FWI factors were determined to have the
greatest impact on forest fire occurrence, followed by climate index variables. There is a non-
linear relationship between forest fire drivers and the likelihood of forest fire occurrence,
and there is a dynamic critical threshold between the two that is affected by changes in the
month and the spatial coordinates; once this threshold is exceeded, there is a high likelihood
of wildfire disasters. Predicting fire occurrence from spatial and temporal characteristics,
FWI indices, and meteorological data is currently a difficult problem to solve because fire
occurrence is also influenced by human activities and surface phenology [47], and the
effects of climate change on fires are difficult to account for [48]. Humans are both a source
of fires and a facilitator of fire suppression [49], and while human activities exacerbate the
severity of fires in the Montesinho Natural Park area, the rational use of human activities,
such as forest thinning [50] and artificial combustible material management [51], can reduce
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the occurrence of fires. For the investigation of the geographical and temporal aspects of
fires in the future, a larger experimental region and a longer time axis should be considered.
The analysis of parameters such as population density and vegetation distribution can also
improve the performance of spatiotemporal wildfire prediction models, allowing managers
to deploy resources more rationally and to lower the danger of extensive fires.
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